首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
MPS方法数值模拟液舱晃荡问题   总被引:1,自引:0,他引:1  
基于无网格粒子法MPS方法(moving particle semi-implicit method)研究了液舱晃荡问题。针对二维矩形液舱晃荡问题进行了数值验证,结果表明MPS方法能够很好地计算晃荡产生的拍击压力。同时将MPS方法应用到带隔板的液舱晃荡问题计算中,分析了二维和三维带隔板液舱晃荡问题。计算结果表明:隔板的存在很大程度地限制了流体的水平运动,隔板附近出现了自由面的翻卷、破碎和融合现象,MPS方法能够很好地模拟这些流动现象。计算得到的波高与实验测得的波高吻合较好,表明MPS方法模拟带隔板的晃荡问题具有一定的可靠性。  相似文献   

2.
为了研究波浪与抛石潜堤相互作用过程中大自由表面变形和堤内渗流等强非线性紊流运动问题,利用改进的MPS法,建立了模拟波浪与抛石潜堤相互作用的MPS法数值计算模型。模型将抛石潜堤假定为均质多孔介质,采用Drew的二相流运动方程描述多孔介质内外的流体运动;通过在动量方程中增加非线性阻力项,并引入亚粒子尺度紊流模型,模拟波浪与可渗结构物相互作用过程中的紊流运动。选取“U”型管中多孔介质内渗流过程和孤立波与可渗潜堤相互作用两个典型的渗流问题,通过将数值计算结果与理论解和实测值的对比分析,对所提出的MPS法紊流渗流模型的模拟精度进行验证。结果表明:基于改进的MPS法构建的垂向二维紊流渗流模型可以很好地再现“U”型管中多孔介质内渗流以及波浪作用下可渗潜堤内外的复杂流场,显著缓解流-固界面处的压力震荡与粒子分布不均匀问题,实现了较高的模拟精度。  相似文献   

3.
基于10 MW级大型风机,采用钢筋混凝土结构,进行了半潜浮式风机平台的概念设计,采用SESAM建立平台的数值模型,对立柱间距、立柱倾角及立柱直径对该半潜平台完整稳性的影响规律进行了重点研究并对平台进行优化,对优化后半潜平台的破舱稳性、综合许用重心高度及固有周期进行了验证。结果表明:以上因素以不同的方式影响平台完整稳性,而增加立柱倾角在钢筋混凝土用量和排水量等方面更具优势,优化后的平台完整稳性、破舱稳性、综合许用重心高度及运动周期均满足设计规范要求。  相似文献   

4.
唐蔚  孙大鹏  吴浩 《海洋工程》2017,35(4):44-52
采用三步有限元法对N-S方程进行离散,同时借助CLEAR-VOF方法追踪流体自由表面,利用主动吸收式造波等手段改进了二维不规则波浪数值水槽,使得水槽中的波浪谱与目标靶谱吻合较好。进而建立了不规则波浪与开孔沉箱作用一种新的数值模式,分析研究不规则波作用下开孔沉箱的反射率,并与现有的物模结果和数模结果进行了对比,为不规则波与开孔沉箱作用问题的研究,探求了一种新的数值手段。  相似文献   

5.
本文基于雷诺平均的Navier-Stokes方程和k-ε模型求解湍流流动,采用流体体积法(Volume of Fluid,VOF)追踪自由表面运动,建立无反射波浪数值水槽,对多消浪室开孔沉箱的消浪特性进行数值模拟研究。将单消浪室和多消浪室开孔沉箱反射系数和结构前波面分布的数值分析结果与物理模型试验结果进行对比验证,两者符合良好。利用数值算例,研究多消浪室开孔沉箱的反射特性以及开孔结构附近的速度场和湍流强度分布。分析结果表明:波浪与开孔沉箱相互作用时,涡旋和湍动主要分布在开孔墙和消浪室内部自由表面附近;与单消浪室开孔沉箱相比,多消浪室开孔沉箱可以更有效的耗散波浪能量,降低结构的反射系数。本文分析结果可为开孔沉箱结构的工程设计提供参考依据。  相似文献   

6.
海雾的数值模拟试验   总被引:1,自引:0,他引:1  
采用二维数值模式,对海雾进行了数值模拟,通过不同海洋气象条件下进行的数值试验,初步揭示了海雾的生成与时空变化规律,并对其生成机制进行了初步探讨.  相似文献   

7.
开孔率是开孔沉箱波浪反射系数的重要影响因素,迄今为止关于开孔沉箱的物模试验研究成果(包括《防波堤设计与施工规范》)中,开孔率μ通常以线性关系反映在开孔沉箱波浪反射系数的计算关系式中,适用范围为0.2~0.4。但当μ0.2或μ0.4时,开孔率μ对波浪反射系数Kr的影响规律尚需进一步的研究探讨。现借助二维数值波浪水槽,在扩大了的开孔率取值范围内,模拟不规则波与可渗明基床上开孔沉箱的相互作用。结果表明:在0.2≤μ≤0.4的范围内,用线性关系描述开孔率μ对波浪反射系数Kr的影响是合适的;在μ0.4时,数模值和物模试验拟合的经验关系式的趋势是一致的;在μ0.2时,开孔沉箱反射系数K_r随开孔率μ的减小而增大,用物模试验拟合的经验关系式及《防波堤设计与施工规范》中计算公式的线性关系来描述开孔率μ对反射系数K_r的影响是不恰当的。研究成果对开孔沉箱消浪机理的深入认识和开孔沉箱结构的优化设计具有重要意义。  相似文献   

8.
为给养殖对象提供适宜生长条件,本文探究了冷水团养殖工船养鱼水舱水体温度、舱底流态与进水流速的关系。利用CFD(Computational fluid dynamics)技术模拟养鱼水舱的传热和流态,设计水舱保温方案,确定最佳进水流速,通过理论计算分析水舱保温效果。研究表明:在无保温层情况下,养殖水体温度与进水流速呈现函数关系:y=-1.75lnx+293.25,外界环境对舱内水体温度影响较大;保温层厚度为30和50mm时,两者均有良好的保温效果。流态模拟表明,该进排水条件下,池中心存在一定规模死水区,最小进水流量为76.3m3/h,此时池底水体旋转速度为17.2cm/s。经分析,可采用硬质聚氨酯泡沫作为水舱保温材料,玻璃钢内衬作为养殖舱壁。理论计算表明设计的保温方案可长时间满足养殖对象对水温的需求,但在高温时段舱盖板应及时关闭。通过温度场和流场数值模拟验证,模拟值与实测值对比,温度误差小于9.1%,速度模拟值和实验值可较好吻合。研究结果表明,所选湍流模型能对养鱼水舱温度场和流场准确模拟,外界温差13℃条件下,养鱼水舱保温层厚度为30mm,设计的保温方案具有良好保温效果,养殖水体水力停留时间应小于1.9h。  相似文献   

9.
在非交错网格下采用有限差分法首次对一组非线性精确至O(μ2)阶的全非线性Boussinesq方程数学模型进行了二维数值模拟分析.首先通过在方程的非线性项中引入缓坡假定,考察了其对模型数值精度的影响;其次,在模型中对二阶非线性项采用不同精度,考察了其对模型数值结果的影响.数值模拟结果表明,所建立的二阶完全非线性Boussinesq方程二维数值模型具有良好的适用性,模型非线性项中引入缓坡假定以及在二阶非线性项选用不同的精度对数值模拟结果影响不明显.  相似文献   

10.
明基床开孔沉箱不规则波反射系数试验研究   总被引:1,自引:1,他引:0  
通过二维波浪水槽物模试验,在考虑消浪室相对宽度、相对水深、相对波高、开孔率对反射系数的影响基础上,针对明基床开孔沉箱的工程应用,引入相对基床高度新的影响因素,通过控制单一变量原则分析各因素和反射率的关系,采用多元回归给出明基床开孔沉箱不规则波浪反射系数的计算公式,对明基床开孔沉箱的消浪机理进行了有益的探索,研究成果为工程设计及应用提供了一种简捷可靠的计算方法。  相似文献   

11.
Reliable analysis of stability and safety level in a flooding emergency onboard a damaged passenger ship is extremely important for making correct decisions on evacuation and abandonment. Thus there is demand for an automated system that detects flooding and analyzes the severity of the situation. This procedure requires estimation of the actual breach in the hull, and calculation of possible progressive flooding to undamaged compartments. A new approach to the breach assessment, based on measurement data from the flood level sensors, is presented. The developed method is complemented by time-domain flooding simulations in order to separate progressive flooding from direct inflow through the breaches in the hull of the damaged ship. The developed approach is tested and demonstrated with a large passenger ship design for various damage scenarios. The results show that the size and location of the breach can be evaluated with reasonable accuracy on the basis of the level sensor data, provided that there are enough well-placed, working level sensors.  相似文献   

12.
A meshless method, Moving-Particle Semi-hnplicit Method (MPS) is presented in this paper to simulate the rolling of different 2D ship sections. Sections S. S. 0.5, S.S. 5.0 and S. S. 7.0 of series 60 with CB = 0.6 are chosen for the simulation. It shows that the result of MPS is very close to results of experiments or mesh-numerical simulations. In the simulation of MPS, vortices are found periodically in bilges of ship sections. In section S. S. 5.0 and section S. S. 7.0, which are close to the middle ship, two little vortices are found at different bilges of the section, in section S. S. 0.5, which is close to the bow, only one big vortex is found at the bottom of the section, these vortices patterns are consistent with the theory of Ikeda. The distribution of shear stress and pressure on the rolling hull of ship section is calculated. When vortices are in bilges of the section, the sign clmnge of pressure can be found, but in section S. S. 0.5, there is no sign change of pressure because only one vortex in the bottom of the section. With shear stress distribution, it can be found the shear stress in bilges is bigger than that at other part of the ship section. As the free surface is considered, the shear stress of both sides near the free surface is close to zero and even sign changed.  相似文献   

13.
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.  相似文献   

14.
Most of the large scaled casualties are caused by loss of structural strength and stability due to the progressive flooding and the effect of waves and wind. To prevent foundering and structural failure, it is necessary to predict the motion of the damaged ship in waves.This paper describes the motion of damaged ship in waves resulting from a theoretical and experimental study. A time domain theoretical model, which can be applied to any type of ship or arrangement, for the prediction of damaged ship motion and accidental flooding has been developed considering the effects of flooding of compartments. To evaluate the accuracy of the model, model tests are carried out in ship motion basin for three different damaged conditions: engine room bottom damage, side shell damage and bow visor damage of Ro–Ro ship in regular and irregular waves with different wave heights and directions.  相似文献   

15.
The dynamics of a damaged ship in waves is a complex phenomenon regarding fluid and structure interactions. Flooded water motions in the damaged compartment could be influenced by decks, obstructions and obstacles in the compartment. This becomes particularly relevant in case of flooding in the engine room that is usually characterized by the presence of large objects such as engines and machineries. In such cases the possibility to better understand the behavior of a damaged ship, influenced by the fluid and structure interactions, could provide novel outcomes and thus enhance the damaged ship safety.In this paper an experimental campaign is conducted on a passenger ferry hull. The effects of obstacles in the engine room compartment, such as decks and engines, on ship roll responses, are studied. Roll decay in still water and steady roll responses in beam regular waves at zero speed are measured for the empty compartment and for the compartment with obstructions, as defined above.The main outcomes from the conducted experiments disclose a mitigation of the resonant behavior of the coupled system, ship with damaged compartment, by having engine shapes occupying the flooded engine room. Moreover it is possible to observe how the resonant frequency of the ship modifies having a more realistic arrangement of damaged compartment and how motion RAOs and roll decay characteristics modify accordingly.  相似文献   

16.
Hu  Li-fen  Zhang  Ke-zheng  Li  Xiao-ying  Chang  Run-xin 《中国海洋工程》2019,33(2):245-251
The International Maritime Organization has developed the second-generation intact stability criteria. Thus, damage stability criteria can be established in the future. In order to identity the capsizing probability of damaged ship under dead ship condition, this paper investigates two methods that can be used to research the capsizing probability in time domain, which mainly focus on the nonlinear righting lever GZ curve solution. One method subjects the influence of damaged tanks on the hull shape down to the wind and wave, and the other method is consistent with the real-time calculation of the GZ curve. On the basis of one degree of freedom rolling equation, the solution is Monte Carlo method, and a damaged fishery bureau vessel is taken as a sample ship. In addition, the results of the time-domain capsizing probability under different loading conditions are compared and analyzed. The relation of GM and heeling angle with the capsizing probability is investigated, and its possible reason is analyzed. On the basis of combining the time-domain flooding process with the capsizing probability calculation, this research aims to lay the foundation for the study of capsizing probability in time domain under dead ship condition, as well as provide technical support for capsizing mechanism of dead ship stability and damage stability criteria establishment in waves.  相似文献   

17.
The longitudinal strength of turret mooring productive/storage tanker is studied.A numeri-cal example has been implemented according to the method presented in this paper to give practical il-lustration.From the results of the numerical example,it is concluded that the turret hole located near theforward of the amidships has small effect on the longitudinal strength of the ship hull.As for design ex-treme value of wave bending moment of storage tanker,statistic method is a more reasonablemethodology,especially with the consideration of the servere environmental conditions.The primary esti-mation of design section modulus of turret storage tanker can be determined by this design bending mo-ment.  相似文献   

18.
When a vessel is damaged, seawater floods into the damaged compartments and subsequently influences the motion of the vessel. Furthermore, the vessel’s behaviour affects the floodwater motion. In this paper, a Navier-Stokes (NS) solver with a free surface capturing technique, i.e., the volume of fluid (VOF) method, was developed to numerically simulate water flooding into a damaged vessel. To verify the developed solver, a 2-D and a 3-D dam break problems were tested. The numerical results coincide well with the experimental results and with the published numerical results. Additionally, it was used to solve the problems of linear and non-linear liquid sloshing in a hexahedral tank. The numerical results are satisfactory in comparison with the experimental results and analytical solutions. Finally, the phenomenon of water flooding into a damaged compartment of a Ro-Ro ferry was simulated numerically. The computed results are in good agreement with the experimental data.  相似文献   

19.
This work documents a detailed series of experiments performed in a wave flume on a thin walled prismatic hull form. The model consists of a rectangular opening located on the side. The length of the model is slightly smaller than the flume breadth to achieve two-dimensional (2D) behavior in the experiments. Forced oscillatory heave tests in calm water have been carried out by varying the model-motion parameters and examining both intact and damaged conditions. Video recordings, measurements of the wave elevation inside the damaged compartment and of the force on the model were performed in all the experiments. The effect of damage opening in the model on hydrodynamic loads is examined by comparing with an intact section. A theoretical analysis is used to explain the behavior of added mass and damping coefficients in heave for a 2D damaged section. The presented results demonstrate occurrence of sloshing and piston mode resonances in the tests and their influence on the hydrodynamics loads of a damaged ship. Detailed physical investigations are presented at these resonance frequencies for the damaged section. Effect of filling level in the damage compartment, damage-opening length and air compressibility in the airtight compartment is examined. Nonlinear effects are documented and appear dominant, especially, for lowest filling level where we have shallow-water depth conditions in the damaged compartment. Resonance phenomena that can lead to significant local loads are identified for the shallow water condition. Air compressibility in the airtight compartment and floodwater act as a coupled system and influence inflow/outflow of floodwater in the compartment. It has a significant effect on local floodwater behavior in the damaged compartment.  相似文献   

20.
Ship motions after damage are difficult to evaluate since they are affected by complex phenomena regarding fluid and structures interactions. The possibility to better understand how ship behavior in damage is influenced by these phenomena is important for improving ship safety, especially for passenger vessel.In this paper an experimental campaign is carried out on a passenger ferry hull, to show the effects of the water dynamics across damage openings on ship motions. Novel aspects of this research include the study of the effects of the damage position on the ship roll response. The study is carried out for still water and for beam regular waves at zero speed.Results from the experiments carried out underline that the roll behavior of a damaged ship is affected by the position of damage opening and not only by its size. Assuming the same final equilibrium conditions after flooding but characterized by different damage openings it is possible to observe how motions RAOs and roll decay characteristics modify according to the opening locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号