首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
液舱晃荡是船舶与海洋工程领域的热点问题,有效地抑制液舱晃荡、减小壁面冲击载荷关系着船体结构的安全。使用内嵌隔板是抑制舱内晃荡,减小壁面冲击载荷的有效手段。实际工程中,内嵌隔板的最优设计的前提是对隔板抑制晃荡的机理有深入了解。CIP法具有高精度、低耗散等特点,以THINC格式捕捉自由液面,可以再现液面破碎、翻卷、涡旋以及液滴飞溅等现象。基于此法,建立了数值液舱,对比了单一隔板和组合隔板抑制晃荡的效果。结果表明,内嵌隔板的安装在水平位置上应尽量靠近舱底中线,在垂直位置上应尽量靠近自由液面,且液面附近安装的双垂直隔板抑制晃荡能力最佳。  相似文献   

2.
于曰旻 《海洋工程》2021,39(5):144-150
基于黏性流理论,采用动网格技术和6自由度模型,以及动量源方法,建立了双浮板液舱晃荡的数值模型。分别采用3种不同空间步长的网格离散计算区域,进行了网格收敛性验证。通过光滑液舱晃荡的模型试验和解析得到的爬高最大值,验证了数值模型的精确性。在载液率为50%,激励幅值为2 mm条件下,对双浮板液舱晃荡进行了数值计算,与光滑液舱相比,双浮板液舱晃荡的最大爬高明显减小。通过一个激励周期内双浮板液舱晃荡的波面显示发现,液舱晃荡模式由光滑液舱的驻波模式变为U管模式,晃荡模式的改变起到了明显地抑制液舱晃荡的效果。  相似文献   

3.
通过物理模型实验,对弹性侧壁液舱和刚性液舱内液体晃荡问题进行了研究。由于流固耦合的影响,弹性侧壁液舱内液体晃荡的最低阶固有频率稍小于同尺寸的刚性液舱内液体晃荡的最低阶固有频率。液舱模型处于纵向简谐激励作用下,其中激励频率在最低阶固有频率附近。实验分析两种相对液深比h/L=0.167和h/L=0.333,在二阶模态的次共振和一阶模态的共振状况下,对弹性侧壁液舱与刚性液舱内不同测点的波面、振幅谱和晃动波高进行对比分析。结果表明:在浅液深(h/L=0.167)一阶共振下,流固耦合对波面形态的影响比较明显,弹性侧壁液舱内测点晃动波高明显大于刚性液舱内对应测点波高;而在一般液深(h/L=0.333)一阶共振下,水弹性效应减弱,弹性侧壁液舱与刚性液舱内对应测点处波高差异较小。  相似文献   

4.
王元  王德禹 《海洋工程》2016,34(2):88-94
独立B型LNG液舱内部设置舱壁板材及多种桁材,有效缓解了液舱晃荡效应。针对晃荡载荷下的独立B型LNG液舱结构多目标优化,利用规范中的公式计算晃荡载荷,并引入液舱晃荡系数,以期综合反映液舱内部构件对晃荡特性的影响,在此基础上进一步建立以液舱结构重量和液舱晃荡系数为目标的多目标优化模型,采用多目标遗传算法(NCGA),计算得到改进的独立B型LNG液舱结构设计方案。  相似文献   

5.
针对大型浮式液化天然气储卸生产装置FLNG的液舱晃荡压力变化特征,在深水试验池中开展带液舱模型的FLNG水池模型试验研究。通过试验,获得了FLNG在风浪流联合作用下的浮体六自由度运动,以及相应的液面高度变化数据。通过液舱的液面高度变化数据,提出平液面假设,并在此基础上,求得液舱晃荡引起的舱壁压力变化结果。研究中进一步讨论了液舱晃荡压力的影响因素,并将试验数据与CCS船级社规范计算结果进行对比,为FLNG液舱晃荡压力引起的结构安全性评估提供技术支持。  相似文献   

6.
三维自由面流动模拟中GPU并行计算技术   总被引:1,自引:0,他引:1       下载免费PDF全文
MPS(Moving Particle Semi-implicit)法能够有效地处理溃坝、晃荡等自由面大变形流动问题。在三维MPS方法中,粒子数量的急剧增加会导致其计算效率的降低并限制其在大规模流动问题中的应用。基于自主开发的MPS求解器MLParticleSJTU,本文对求解过程中耗时最多的邻居粒子搜寻和泊松方程求解两个模块采用了GPU并行加速,详细探讨了CPU+GPU策略。以三维晃荡和三维溃坝这两种典型的自由面大变形流动为例,比较了CPU+GPU相对于MLParticle-SJTU串行求解时的加速情况,结果表明CPU+GPU在邻居粒子和泊松方程这两个模块中的加速比最高能达到十倍左右。此外,采用CPU+GPU并行能够较准确地模拟溃坝、晃荡等自由面大变形问题。  相似文献   

7.
液体晃荡现象在诸多工程领域具有深刻的研究意义,并引起了广泛的关注。基于Level-set方法,借助流场通度的概念,模拟了流场内具有障碍物的液体晃荡现象。选取不同形式的防晃结构分析研究对晃荡的抑制效果,得到几点关于防晃结构的设计与选择的重要结论。计算结果表明,通度系数法与Level-set方法的结合使用,能够有效地处理流场内带有障碍物的液体晃荡问题,该方法具有一定的可行性和应用前景。  相似文献   

8.
采用移动粒子半隐式法(moving particle semi-implicit,简称MPS)对自由漂浮二维方舱的破舱瞬时进水过程进行数值模拟。首先,采用基于GPU平台自主开发的MPS软件模拟破舱进水问题,并与其他方法得到的数值模拟结果进行对比验证。然后,对该二维方舱的各种模型进行了数值模拟,其中开孔位于不同位置以表示舷侧不同高度下的损坏。此外,还研究了不同类型的挡板对破舱进水后方舱稳定性的影响。结果表明损坏的孔洞和内部挡板会影响损坏舱段的运动特性,开孔距静水面的距离越大引起舱段的横摇等运动幅度越大,垂直挡板比水平挡板对舱内洪水的影响更大。  相似文献   

9.
从无旋运动的理论出发,并利用微扰法,推导了液舱三维晃荡运动二阶共振问题的理论解。考虑纵荡和横荡运动情况,对液舱三维晃荡二阶共振问题进行了分析。当两个晃荡方向的和频(即其外部激发频率的和)或差频(即其外部激发频率的差值)等于液舱固有频率时,二阶共振发生;当某一晃荡方向(横荡或纵荡)外部激发频率与另一晃荡方向(纵荡或横荡方向)液舱某一固有频率的和或差值等于液舱另一固有频率时,二阶共振也会发生。进一步研究了各个二阶共振激发频率下水深变化对晃荡振幅的影响。结果表明,对于两个晃荡方向外部激发频率的和频和单一晃荡方向(纵荡或横荡)某一个激发频率与另一晃荡方向(横荡或纵荡)某一个属于奇模的固有频率的和频所引发的共振情况,水深变化对共振振幅大小的影响比较大;而对于相应差频所引发的共振情况,水深变化对共振振幅大小的影响比较小。  相似文献   

10.
改进的移动粒子半隐式法模拟楔形体入水砰击   总被引:1,自引:0,他引:1  
余谦  张怀新 《海洋工程》2013,31(6):9-15
移动粒子半隐式法(Moving-Particle Semi-Implicit Method,MPS)是一种新的基于拉格朗日(Lagrange)理念的无网格方法,适用于模拟自由液面的大变形和水流的喷射现象。用基于大涡模拟的改进MPS法首先模拟了矩形体的入水砰击,砰击压力的计算结果证明了这种方法的正确性,然后模拟了楔形体的匀速入水砰击,并与实验结果进行了对比,验证了大涡模拟改进MPS法在砰击问题中的适用性。  相似文献   

11.
A numerical model has been developed to study sloshing of turbulent flow in a tank with elastic baffles. The Moving-Particle Semi-implicit method(MPS) is a kind of meshless Lagrangian calculation method. The large eddy simulation(LES) approach is employed to model the turbulence by using the Smagorinsky Sub-Particle Scale(SPS)closure model. This paper uses MPS-FSI method with LES to simulate the interaction between free surface flow and a thin elastic baffle in sloshing. Then, the numerical model is validated, and the numerical solution has good agreement with experimental data for sloshing in a tank with elastic baffles. Furthermore, under external excitations,the MPS is applied to viscous laminar flow and turbulent flow, with both the deformation of elastic baffles and the wave height of the free surface are compared with each other. Besides, the impact pressure with/without baffles and wave height of free surface are investigated and discussed in detail. Finally, preliminary simulations are carried out in the damage problem of elastic baffles, taking the advantage of the MPS-FSI method in computations of the fluid–structure interaction with large deformation.  相似文献   

12.
Three-dimensional liquid sloshing in a tank with baffles   总被引:1,自引:0,他引:1  
A numerical model has been developed to study three-dimensional (3D) liquid sloshing in a tank with baffles. The numerical model solves the spatially averaged Navier-Stokes equations, which are constructed on a non-inertial reference frame having six degree-of-freedom (DOF) of motions. The large-eddy-simulation (LES) approach is employed to model turbulence by using the Smagorinsky sub-grid scale (SGS) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate volume-of-fluid (VOF) method is used to track the distorted and broken free surface. The baffles in the tank are modeled by the concept of virtual boundary force (VBF) method. The numerical model is first validated against the available analytical solution and experimental data for two-dimensional (2D) liquid sloshing in a tank without baffles. The 2D liquid sloshing in tanks with baffles is then investigated. The numerical results are compared with other results from available literatures. Good agreement is obtained. Finally, the model is used to study 3D liquid sloshing in a tank with vertical baffles. The effect of the baffle is investigated and discussed.  相似文献   

13.
A liquid sloshing experimental rig driven by a wave-maker is designed and built to study liquid sloshing problems in a rectangular liquid tank with perforated baffle. A series of experiments are conducted in this experimental rig to estimate the free surface fluctuation and pressure distribution by changing external excitation frequency of the shaking table. An in-house CFD code is also used in this study to simulate the liquid sloshing in three-dimensional (3D) rectangular tank with perforated baffle. Good agreements of free surface elevation and pressure between the numerical results and the experimental data are obtained and presented. Spectral analysis of the time history of free surface elevation is conducted by using the fast Fourier transformation.  相似文献   

14.
Liquid sloshing is a common phenomenon in the liquid tanks transportation. Liquid waves lead to fluctuating forces on the tank wall. Uncontrolled fluctuations lead to large forces and momentums. Baffles can control these fluctuations. A numerical method, which has been widely used to model this phenomenon, is Smoothed Particle Hydrodynamics(SPH). The Lagrangian nature of this method makes it suitable for simulating free surface flows. In the present study, an accurate Incompressible Smoothed Particle Hydrodynamics(ISPH) method is developed and improved using the kernel gradient correction tensors, particle shifting algorithms, k–ε turbulence model, and free surface particle detectors. Comparisons with the experimental data approve the ability of the present algorithm for simulating shallow water sloshing. The main aim of this study is to investigate the effects of the vertical baffle on the damping of liquid sloshing. Results show that baffles number has a major role in sloshing fluctuation damping.  相似文献   

15.
Pressure variations and three-dimensional effects on liquid sloshing loads in a moving partially filled rectangular tank have been carried out numerically and experimentally. A numerical algorithm based on the volume of fluid (VOF) technique is used to study the non-linear behavior and damping characteristics of liquid sloshing. A moving coordinate system is used to include the non-linearity and avoid the complex boundary conditions of moving walls. The numerical model solves the complete Navier–Stokes equations in primitive variables by using of the finite difference approximations. In order to mitigate a series of discrete impacts, the signal computed is averaged over several time steps. In order to assess the accuracy of the method used, computations are compared with the experimental results. Several configurations of both baffled and unbaffled tanks are studied. Comparisons show good agreement for both impact and non- impact type slosh loads in the cases investigated.  相似文献   

16.
The sloshing waves in a three dimensional (3D) tank are analysed using a finite element method based on the fully non-linear wave potential theory. When the tank is undergoing two dimensional (2D) motion, the calculated results are found to be in very good agreement with other published data. Extensive calculation has been made for the tank in 3D motion. As in 2D motion, in addition to normal standing waves, travelling waves and bores are also observed. It is found that high pressures occur in various circumstances, which could have important implications for many engineering designs.  相似文献   

17.
In the present study, three-dimensional sloshing phenomena occurring in liquid cargo tanks are numerically simulated. The Navier-Stokes equations and continuity equation are used for the governing equations, and solved with a finite difference method in a rectangular fixed staggered mesh system. The positions of free surface are defined by the Marker density method satisfying the free-surface boundary conditions, and the flows of the gas and liquid regions are simulated simultaneously. The irregular leg length and star method is employed on the cells near the free surface for the computations of pressure. The computation results are compared with other experimental results to verify the consistency of the present numerical method, and the agreements are reasonably good. Furthermore, the flow characteristics inside a partially filled liquid tank of a real sized ship oscillating regularly and irregularly are computed to verify the possibility of practical application of the present method.  相似文献   

18.
Moving particle semi-implicit (MPS) method is a fully Lagrangian particle method which can easily solve problems with violent free surface. Although it has demonstrated its advantage in ocean engineering applications, it still has some defects to be improved. In this paper, MPS method is extended to the large eddy simulation (LES) by coupling with a sub-particle-scale (SPS) turbulence model. The SPS turbulence model turns into the Reynolds stress terms in the filtered momentum equation, and the Smagorinsky model is introduced to describe the Reynolds stress terms. Although MPS method has the advantage in the simulation of the free surface flow, a lot of non-free surface particles are treated as free surface particles in the original MPS model. In this paper, we use a new free surface tracing method and the key point is "neighbor particle". In this new method, the zone around each particle is divided into eight parts, and the particle will be treated as a free surface particle as long as there are no "neighbor particles" in any two parts of the zone. As the number density parameter judging method has a high efficiency for the free surface particles tracing, we combine it with the neighbor detected method. First, we select out the particles which may be mistreated with high probabilities by using the number density parameter judging method. And then we deal with these particles with the neighbor detected method. By doing this, the new mixed free surface tracing method can reduce the mistreatment problem efficiently. The serious pressure fluctuation is an obvious defect in MPS method, and therefore an area-time average technique is used in this paper to remove the pressure fluctuation with a quite good result. With these improvements, the modified MPS-LES method is applied to simulate liquid sloshing problems with large deforming free surface. Results show that the modified MPS-LES method can simulate the large deforming free surface easily. It can not only capture the large impact pressure accurately on rolling tank wall but also can generate all physical phenomena successfully. The good agreement between numerical and experimental results proves that the modified MPS-LES method is a good CFD methodology in free surface flow simulations.  相似文献   

19.
Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes used in modal method. The kinematic and dynamic boundary conditions create a set of two-space-dimensional differential equations with respect to time. The numerical solution of this set of differential equations, in the time domain, predicts the time response of interfacial oscillations. Modal method solutions for the time response of container sloshing due to lateral harmonic oscillations show a good agreement with experimental and numerical results reported in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号