首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present Keck II spectroscopy of optical mHz quasi-periodic oscillations (QPOs) in the light curve of the X-ray pulsar binary Hercules X-1. In the power spectrum it appears as 'peaked noise', with a coherency ∼2, a central frequency of 35 mHz and a peak-to-peak amplitude of 5 per cent. However, the dynamic power spectrum shows it to be an intermittent QPO, with a lifetime of ∼100 s, as expected if the lifetime of the orbiting material is equal to the thermal time-scale of the inner disc. We have decomposed the spectral time series into constant and variable components and used blackbody fits to the resulting spectra to characterize the spectrum of the QPO variability and constrain possible production sites. We find that the spectrum of the QPO is best fitted by a small hot region, possibly the inner regions of the accretion disc, where the ballistic accretion stream impacts on to the disc. The lack of any excess power around the QPO frequency in the X-ray power spectrum, created using simultaneous light curves from RXTE , implies that the QPO is not simply reprocessed X-ray variability.  相似文献   

2.
The X-ray quasi-periodic oscillation (QPO) seen in RE J1034+396 is so far unique amongst active galactic nuclei (AGN). Here, we look at another unique feature of RE J1034+396, namely its huge soft X-ray excess, to see if this is related in any way to the detection of the QPO. We show that all potential models considered for the soft energy excess can fit the 0.3–10 keV X-ray spectrum, but the energy dependence of the rapid variability (which is dominated by the QPO) strongly supports a spectral decomposition where the soft excess is from low-temperature Comptonization of the disc emission and remains mostly constant, while the rapid variability is produced by the power-law tail changing in normalization. The presence of the QPO in the tail rather than in the disc is a common feature in black hole binaries (BHBs), but low-temperature Comptonization of the disc spectrum is not generally seen in these systems. The main exception to this is GRS 1915+105, the only BHB which routinely shows super-Eddington luminosities. We speculate that the super-Eddington accretion rates lead to a change in disc structure, and that this also triggers the X-ray QPO.  相似文献   

3.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

4.
In this paper, we address the question of whether existing X-ray observations of Seyfert galaxies are sufficiently sensitive to detect quasi-periodic oscillations (QPOs) similar to those observed in the X-ray variations of Galactic black holes (GBHs). We use data from XMM–Newton and simulated data based on the best Rossi X-ray Timing Explorer ( RXTE ) long-term monitoring light curves to show that if X-ray QPOs are present in Seyfert X-ray light curves – with similar shapes and strengths to those observed in GBHs, but at lower frequencies commensurate with their larger black hole masses – they would be exceedingly difficult to detect. Our results offer a simple explanation for the present lack of QPO detections in Seyferts. We discuss the improvements in telescope size and monitoring patterns needed to make QPO detections feasible. The most efficient type of future observatory for searching for X-ray QPOs in active Galactic nuclei (AGN) is an X-ray All-Sky Monitor (ASM). A sufficiently sensitive ASM would be ideally suited to detect low-frequency QPOs in nearby AGN. The detection of AGN QPOs would strengthen the AGN–GBH connection, and could serve as powerful diagnostics of the black hole mass and the structure of the X-ray emitting region in AGN.  相似文献   

5.
The observations of the black hole binary Cygnus X-l were made in the energy band of 20–100keV with a balloon-borne Xenon-filled multiwire proportional counter telescope on 5th April 1992. Timing analysis of the data revealed the presence of Quasi-Periodic Oscillations (QPO) in the hard X-ray emission from the source. The QPO feature in the power density spectrum is broad with a peak at a frequency of 0.06 Hz. This result is compared with similar reports of QPOs in Cyg X-l in soft and hard X-rays. Short time scale random intensity variations in the X-ray light curve are described with a shot noise model.  相似文献   

6.
We present a detailed study of the 5-Hz quasi-periodic oscillation (QPO) recently discovered in the bright X-ray transient and black hole candidate (BHC) GRS     (Borozdin & Trudolyubov) during a Rossi X-ray Timing Explorer observation taken on 1996 March 31. In total 6.6 ksec of on-source data were obtained, divided in two data sets of 3.4 and 3.2 ksec which were separated by ∼2.6 ksec. The 5-Hz QPO was only present during the second data set. The QPO increased in strength from below 2 per cent rms amplitude for photon energies below 4 keV to ∼5 per cent rms amplitude for energies above 10 keV. The soft QPO photons (below 5 keV) lagged the hard ones (above 10 keV) by almost 1.5 rad. Besides the QPO fundamental, its first overtone was detected. The strength of the overtone increased with photon energy (from < 2 per cent rms below 5 keV to ∼8 per cent rms above 10 keV). Although limited statistics did not allow for an accurate determination of the lags of the first overtone, indications are that also for this QPO the soft photons lagged the hard ones. When the 5-Hz QPO was not detected (i.e., during the first part of the observation), a broad noise component was found for photon energies below 10 keV but it became almost a true QPO (with a Q value of ∼1.9) above that energy, with a frequency of ∼3 Hz. Its hard photons preceded the soft ones in a way reminiscent of the 5-Hz QPO, strongly suggesting that both features are physically related. We discuss our finding in the framework of low-frequency QPOs and their properties in BHCs.  相似文献   

7.
In this paper we report on further observations of the third and fourth kilohertz quasi-periodic oscillations (QPOs) in the power spectrum of the low-mass X-ray binary (LMXB) 4U 1636−53. These kilohertz QPOs are sidebands to the lower kilohertz QPO. The upper sideband has a frequency  55.5 ± 1.7 Hz  larger than that of the contemporaneously measured lower kilohertz QPO. Such a sideband has now been measured at a significance  >6σ  in the power spectra of three neutron-star LMXBs (4U 1636−53, 1728−34 and 1608−52). We also confirm the presence of a sideband at a frequency ∼55 Hz less than the frequency of the lower kilohertz QPO. The lower sideband is detected at a 3.5σ level only when the lower kilohertz QPO frequency is between 800 and 850 Hz. In that frequency interval, the sidebands are consistent with being symmetric around the lower kilohertz QPO frequency. The upper limit to the rms amplitude of the lower sideband is significantly lower than that of the upper sideband for lower kilohertz QPO frequencies >850 Hz. Symmetric sidebands are unique to 4U 1636−53. This might be explained by the fact that lower kilohertz QPO frequencies as high as 800–850 Hz are rare for 4U 1728−34 and 1608−52. Finally, we also measured a low-frequency QPO at a frequency of ∼43 Hz when the lower kilohertz QPO frequency is between 700 and 850 Hz. A similar low-frequency QPO is present in the power spectra of the other two systems for which a sideband has been observed. We briefly discuss the possibility that the sideband is caused by Lense–Thirring precession.  相似文献   

8.
For the bright neutron star low-mass X-ray binary Sco X-1, we analyzed all updated frequencies of the twin kilohertz quasi-periodic oscillations (kHz QPOs), their correlations and distributions. We found that the frequency separation of the kHz QPO peaks appears not to be a constant, rather, it decreases with increasing inferred mass accretion rate. We show that the currently available data of Sco X-1 by Rossi X-ray Timing Explorer are inconsistent with the proposals of the beat model that the frequency separation is a constant. Our conclusions are consistent with those of some previous researchers and we discuss further implications for the kilohertz QPO models.  相似文献   

9.
We report the discovery of quasi-periodic oscillations (QPOs) at roughly 187 and 150 Hz in the X-ray intensity of X-ray nova XTE J1859+226. The source was observed during a recent outburst with the Rossi X-Ray Timing Explorer. Besides these high-frequency QPOs, we have also detected QPOs (and sometimes their harmonics) at 6-7 Hz and significant broadband variability at low frequencies. These properties, as well as the observed hard X-ray spectrum, make XTE J1859+226 a black hole candidate (BHC). The detection of QPOs at two distinct frequencies greater, similar100 Hz in two observations separated by about 4 hr provide additional insights into the high-frequency QPO phenomenon in BHCs. The importance lies in the proposed interpretations, which invariably involve the effects of strong gravity near a black hole. We compare our results to those of other BHCs and discuss the impact of the observational data on the models in a global context.  相似文献   

10.
利用“慧眼”(Hard X-ray Modulation Telescope, Insight-HXMT)卫星在2017年9月对黑洞候选体MAXI J1535-571的观测数据,研究了该源在爆发期内的时变现象.当源处于不同的爆发谱态时,功率密度谱的谱型存在明显差异.在硬中间态,有明显的限带噪声(band-limited noise)成分和QPO (Quasi-Periodic Oscillation)成分.分析结果表明:低频限带噪声的特征频率随能量的变化呈现正相关,即软能段光子的特征频率小于硬能段光子的特征频率. 0.1–0.5 Hz频率区间的限带噪声RMS (Root Mean Square)谱在硬中间态和软中间态均出现峰值,且在高能端存在差异,可能是主导噪声RMS的能谱成分占比不同.当谱态由硬中间态过渡到软中间态时, C型QPO的RMS谱保持相似趋势,但限带噪声RMS谱存在谱态依赖现象,暗示着噪声和QPO有不同的起源机制.  相似文献   

11.
We report on a comprehensive analysis of the kilohertz (≥300 Hz) quasi-periodic oscillations (kHz QPOs) detected from the neutron star low-mass X-ray binary 4U 0614+09 with the Rossi X-ray Timing Explorer. With a much larger data set than previously analysed (all archival data from 1996 February up to 2007 October), we first investigate the reality of the 1330 Hz QPO reported by van-Straaten et al. This QPO would be of particular interest since it has the highest frequency reported for any source. A thorough analysis of the same observation fails to confirm the detection. On the other hand, over our extended data set, the highest QPO frequency we measure for the upper kHz QPO is at ∼1224 Hz; a value which is fully consistent with the maximum values observed in similar systems. Secondly, we demonstrate that the frequency dependence of the quality factor  ( Q =ν/Δν)  and amplitude of the lower and upper kHz QPOs follow the systematic trends seen in similar systems. In particular, 4U 0614+09 shows a drop of the quality factor of the lower kHz QPO above ∼700 Hz. If this is due to an approach to the innermost stable circular orbit, it implies a neutron star mass of  ∼1.9 M  . Finally, when analysing the data over fixed durations, we have found a gap in the frequency distribution of the upper QPO, associated with a local minimum of its amplitude. A similar gap is not present in the distribution of the lower QPO frequencies, suggesting some cautions when interpreting frequency ratio distributions, based on the occurrence of the lower QPO only.  相似文献   

12.
We report results from a spectral and timing analysis of M82 X-1, one of the brightest known ultraluminous X-ray sources. Data from a new 105-ks XMM–Newton observation of M82 X-1, performed in 2004 April, and of archival RossiXTE observations are presented. A very soft thermal component is present in the XMM spectrum. Although it is not possible to rule out a residual contamination from the host galaxy, modelling it with a standard accretion disc would imply a black hole (BH) mass of  ≈103 M  . An emission line was also detected at an energy typical for fluorescent Fe emission. The power density spectrum of the XMM observation shows a variable Quasi-Periodic Oscillation (QPO) at frequency of 113 mHz with properties similar to those discovered by Strohmayer and Mushotzky. The QPO was also found in seven archival RXTE observations, that include those analysed by Strohmayer and Mushotzky, and Fiorito and Titarchuk. A comparison of the properties of this QPO with those of the various types of QPOs observed in Galactic black hole candidates strongly suggests an association with the type-C, low-frequency QPOs. Scaling the frequency inversely to the BH mass, the observed QPO frequency range (from 50 to 166 mHz) would yield a BH mass anywhere in the interval few tens to  1000  M  .  相似文献   

13.
Modern methods of spectral estimation based on parametric time-series models are useful tools in power spectral analysis. We apply the autoregressive (AR) model to study quasi-periodic oscillations (QPOs). An empirical formula to estimate the expectation and standard deviation of the noise AR power densities is derived, which can be used to estimate the statistical significance of an apparent QPO peak in an AR spectrum. An iterative adding-noise algorithm in AR spectral analysis is proposed and applied to studying QPOs in the X-ray binary Cir X-1.  相似文献   

14.
We present high-time-resolution multicolour observations of the quiescent soft X-ray transient V404 Cyg obtained with ULTRACAM. Superimposed on the ellipsoidal modulation of the secondary star are large flares on time-scales of a few hours, as well as several distinct rapid flares on time-scales of tens of minutes. The rapid flares, most of which show further variability and unresolved peaks, cover shorter time-scales than those reported in previous observations. The power density spectrum of the 5-s time-resolution data shows a quasi-periodic oscillation (QPO) feature at 0.78 mHz (=21.5 min). Assuming this periodicity represents the Keplerian period at the transition between the thin and advective disc regions, we determine the transition radius. We discuss the possible origins for the QPO feature in the context of the advection-dominated accretion flow model.
We determine the colour of the large flares and find that the i '-band flux per unit frequency interval is larger than that in the g ' band. The colour is consistent with optically thin gas with a temperature of ∼8000 K arising from a region with an equivalent blackbody radius of at least  2 R  , which covers 3 per cent of the surface of the accretion disc. Our timing and spectral analysis results support the idea that the rapid flares (i.e. the QPO feature) most likely arise from regions near the transition radius.  相似文献   

15.
We re-examine the correlation between the frequencies of upper and lower kHz quasi-periodic oscillations (QPO) in bright neutron star low-mass X-ray binaries. By including the kHz QPO frequencies of the X-ray binary Cir X-1 and two accreting millisecond pulsars in our sample, we show that the full sample does not support the class of theoretical models based on a single resonance, while models based on relativistic precession or Alfvén waves describe the data better. Moreover, we show that the fact that all sources follow roughly the same correlation over a finite frequency range creates a correlation between the linear parameters of the fits to any subsample.  相似文献   

16.
通过分析1997年2月27日和3月1日对天鹰座X-1的两次空间数据观测.发现千赫兹QPO频率同X射线能诺有一定相关,其行为类似于另一个X射线暂现源4U1608-52,讨论了分析结果对了解吸积及QPO产生过程的意义.  相似文献   

17.
We have produced the colour–colour diagram of all the observations of 4U 1728–34 available in the Rossi X-ray Timing Explorer public archive (from 1996 to 2002) and found observations filling in a previously reported 'gap' between the island and the banana X-ray states. We have made timing analysis of these gap observations and found, in one observation, two simultaneous kHz quasi-periodic oscillations (QPOs). The timing parameters of these kHz QPOs fit in the overall trend of the source. The 'lower' kHz QPO has a centroid frequency of ∼308 Hz. This is the lowest 'lower' kHz QPO frequency ever observed in 4U 1728–34. The peak frequency separation between the 'upper' and the 'lower' kHz QPO is  Δν= 274 ± 11 Hz  , significantly smaller than the constant value of  Δν∼ 350 Hz  found when the 'lower' kHz QPO frequency is between ∼500 and 800 Hz. This is the first indication in this source for a significant decrease of kHz QPO peak separation towards low frequencies. We compare the result briefly to theoretical models for kHz QPO production.  相似文献   

18.
Using data obtained with the Rossi X-ray Timing Explorer , we report the detection of a 5-Hz quasi-periodic oscillation (QPO) in the bright low-mass X-ray binary and Z source Cygnus X-2 during high overall intensities (the high-intensity state). This QPO was detected on the so-called normal-branch and can be identified with the normal-branch QPO or NBO. Our detection of the NBO is the first one during times when Cygnus X-2 was in the high-intensity state. The rms amplitude of this QPO decreased from 2.8 per cent between 2 and 3.1 keV to <1.9 per cent between 5.0 and 6.5 keV. Above 6.5 keV, its amplitude rapidly increased to ∼12 per cent rms above 16 keV. The time lags of the QPO were consistent with being zero below 5 keV (compared with the 2–3.1 keV band), but they rapidly increased to ∼70 ms (140°) around 10 keV, above which the time lags remained approximately constant near 70 ms. The photon energy dependences of the rms amplitude and the time lags are very similar to those observed for the NBO with other satellites ( Ginga , EXOSAT ) at different (i.e. lower) intensity states.  相似文献   

19.
We use data from the Rossi X-ray Timing Explorer to search for harmonics and sidebands of the two simultaneous kilohertz quasi-periodic oscillations (kHz QPOs) in Sco X-1. We do not detect any of these harmonics or sidebands, with 95 per cent confidence upper limits to their power between ∼1 and ∼10 per cent of the power of the upper kHz QPO. The oscillations produced at these frequencies may be attenuated in a scattering corona around the neutron star. We find that upper limits to the unattenuated power of some of the strongest theoretically predicted harmonics and sidebands are as low as ∼2 per cent of the unattenuated power of the high-frequency QPO in Sco X-1.  相似文献   

20.
We develop a simple, time-dependent Comptonization model to probe the origins of spectral variability in accreting neutron star systems. In the model, soft 'seed photons' are injected into a corona of hot electrons, where they are Compton upscattered before escaping as hard X-rays. The model describes how the hard X-ray spectrum varies when the properties of either the soft photon source or the Comptonizing medium undergo small oscillations. Observations of the resulting spectral modulations can determine whether the variability is due to (i) oscillations in the injection of seed photons, (ii) oscillations in the coronal electron density, or (iii) oscillations in the coronal energy dissipation rate. Identifying the origin of spectral variability should help clarify how the corona operates and its relation to the accretion disc. It will also help in finding the mechanisms underlying the various quasi-periodic oscillations (QPOs) observed in the X-ray outputs of many accreting neutron star and black hole systems. As a sample application of our model, we analyse a kilohertz QPO observed in the atoll source 4U 1608–52. We find that the QPO is driven predominantly by an oscillation in the electron density of the Comptonizing gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号