首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ocean signal for this study is the sea surface height due to the slowly varying (greater than 5-day) ocean processes, which are predominantly the deep ocean mesoscale. These processes are the focus of present assimilation systems for monitoring and predicting ocean circulation due to ocean fronts and eddies and the associated environmental changes that impact real time activities in areas with depths greater than about 200 m. By this definition, signal-to-noise may be estimated directly from altimeter data sets through a crossover point analysis. The RMS variability in crossover differences is due to instrument noise, errors in environmental corrections to the satellite observation, and short time period oceanic variations. The signal-to-noise ratio indicates that shallow areas are typically not well observed due to the high frequency fluctuations. Many deep ocean areas also contain significant high frequency variability such as the subpolar latitudes, which have large atmospheric pressure systems moving through, and these in turn generate large errors in the inverse barometer correction. Understanding the spatial variations of signal to noise is a necessary prerequisite for correct assimilation of the data into operational systems.  相似文献   

2.
A theoretical model for the vertical directionality and depth dependence of high frequency (8 to 50 kHz) ambient noise in the deep ocean is developed. The anisotropic noise field at a variety of depths and frequencies is evaluated and displayed. It was found that at high frequencies and deep depths, a bottom-mounted hydrophone receives the maximum noise energy from overhead rather than from the horizontal. This leads to the consideration of an oblate hydrophone receiving response pattern for underwater tracking ranges that would provide a constant signal-to-noise ratio (SNR) for an acoustic source located anywhere in a circular area centered above the hydrophone. Two of the desirable characteristics of this type of pattern are the increase in receiving range of a bottom-mounted sensor and the decrease of the dynamic range of signals that a signal processor must handle.  相似文献   

3.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

4.
《Ocean Modelling》2011,39(3-4):251-266
Results are presented from an ensemble prediction study (EPS) of the East Australian Current (EAC) with a specific focus on the examination of the role of dynamical instabilities and flow dependent growing errors. The region where the EAC separates from the coast, is characterized by significant mesoscale eddy variability, meandering and is dominated by nonlinear dynamics thereby representing a severe challenge for operational forecasting. Using analyses from OceanMAPS, the Australian operational ocean forecast system, we explore the structures of flow dependent forecast errors over 7 days and examine the role of dynamical instabilities. Forecast ensemble perturbations are generated using the method of bred vectors allowing the identification of those perturbations to a given initial state that grow most rapidly. We consider a 6 month period spanning the Austral summer that corresponds to the season of maximum eddy variability. We find that the bred vector (BV) structures occur in areas of instability where forecast errors are large and in particular in regions associated with the Tasman Front and EAC extension. We also find that very few BVs are required to identify these regions of large forecast error and on that basis we expect that even a small BV ensemble would prove useful for adaptive sampling and targeted observations. The results presented also suggest that it may be beneficial to supplement the static background error covariances typically used in operational ocean data assimilation systems with flow dependent background errors calculated using a relatively cheap EPS.  相似文献   

5.
Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.  相似文献   

6.
中国物理海洋学研究70年:发展历程、学术成就概览   总被引:2,自引:2,他引:0  
本文概略评述新中国成立70年来物理海洋学各分支研究领域的发展历程和若干学术成就。中国物理海洋学研究起步于海浪、潮汐、近海环流与水团,以及以风暴潮为主的海洋气象灾害的研究。随着国力的增强,研究领域不断拓展,涌现了大量具有广泛影响力的研究成果,其中包括:提出了被国际广泛采用的“普遍风浪谱”和“涌浪谱”,发展了第三代海浪数值模式;提出了“准调和分析方法”和“潮汐潮流永久预报”等潮汐潮流的分析和预报方法;发现并命名了“棉兰老潜流”,揭示了东海黑潮的多核结构及其多尺度变异机理等,系统描述了太平洋西边界流系;提出了印度尼西亚贯穿流的南海分支(或称南海贯穿流);不断完善了中国近海陆架环流系统,在南海环流、黑潮及其分支、台湾暖流、闽浙沿岸流、黄海冷水团环流、黄海暖流、渤海环流,以及陆架波方面均取得了深刻的认识;从大气桥和海洋桥两个方面对太平洋–印度洋–大西洋洋际相互作用进行了系统的总结;发展了浅海水团的研究方法,基本摸清了中国近海水团的分布和消长特征与机制,在大洋和极地水团分布及运动研究方面也做出了重要贡献;阐明了南海中尺度涡的宏观特征和生成机制,揭示了中尺度涡的三维结构,定量评估了其全球物质与能量输运能力;基本摸清了中国近海海洋锋的空间分布和季节变化特征,提出了地形、正压不稳定和斜压不稳定等锋面动力学机制;构建了“南海内波潜标观测网”,实现了对内波生成–演变–消亡全过程机理的系统认识;发展了湍流的剪切不稳定理论,提出了海流“边缘不稳定”的概念,开发了海洋湍流模式,提出了湍流混合参数化的新方法等;在海洋内部混合机制和能量来源方面取得了新的认识,并阐述了混合对海洋深层环流、营养物质输运等过程的影响;研发了全球浪–潮–流耦合模式,推出一系列海洋与气候模式;发展了可同化主要海洋观测数据的海洋数据同化系统和用于ENSO预报的耦合同化系统;建立了达到国际水准的非地转(水槽/水池)和地转(旋转平台)物理模 型实验平台;发展了ENSO预报的误差分析方法,建立了海洋和气候系统年代际变化的理论体系,揭示了中深层海洋对全球气候变化的响应;初步建成了中国近海海洋观测网;持续开展南北极调查研究;建立了台风、风暴潮、巨浪和海啸的业务化预报系统,为中国气象减灾提供保障;突破了国外的海洋技术封锁,研发了万米水深的深水水听器和海洋光学特性系列测量仪器;建立了溢油、危险化学品漂移扩散等预测模型,为伴随海洋资源开发所带来的风险事故的应急处理和预警预报提供科学支撑。文中引用的大量学术成果文献(每位第一作者优选不超过3篇)显示,经过70年的发展,中国物理海洋学研究培养了一支实力雄厚的科研队伍,这是最宝贵的成果。这支队伍必将成为中国物理海洋学研究攀登新高峰的主力军。  相似文献   

7.
海洋环流是海洋系统物质能量收支、配置、平衡、维持和变化的关键通道与机制。从全球海洋视角,基于目前海洋环流多变率动力过程与趋势演变的认知,重点综述气候变化下海洋环流的海盆尺度三维联动特征机制、洋际交换与协同、世界大洋经向输运变化以及相关的海洋气候与环境生态效应,依据研究现状和需求,提出研究建议。结果表明:全球一致性变暖路径与进程调控下,受驱动因子的演变与胁迫,海洋环流变化对副热带中高纬地区年际、年代际气候与环境变迁具有突出作用影响,并可产生显著环境生态效应和严重致灾风险。建议加大专精特新观测仪器自主研发,通过国际合作加大中高纬海洋环流多尺度动力过程综合调查的参与度和主导性,增强多学科融合交叉研究力度,有效提升深层次海洋环流变异及动力、环境、生态灾害影响的气候变化综合风险预测预评估和防治能力,为海洋领域能源开发、生态系统保护、气候变化应对与灾害风险治理提供必要的动力学参考。  相似文献   

8.
The authors examine the subject of space-time processing and review fundamental environmental effects and their influence on arrays in the deep ocean sound channel. Space-time transforms are reviewed to demonstrate the analogy between spatial and temporal properties to stress the importance of convolution and matched field processing. A criterion is presented by which the resolution of such measurement systems could be calculated. The static source-receiver case is shown to be influenced by the randomness in signal phase due to scattering. Calculations and data are used to show the importance of multipath effects on the relative gain of line array measurement systems and the difficulties encountered for the determination of coherence lengths. Single path coherence lengths were found to be large and predictable using an environmental parameter and the Beran-McCoy mutual coherence functional form. However, multipath effects appeared to be dominant. The temporal fluctuation problem is briefly introduced to stress the fact that for relative source-receiver speeds of 1.5 m/s (3 knots) or greater, the fluctuations are dominated by the changes in the multipath arrivals  相似文献   

9.
风通过影响海洋表面从而产生200 Hz以上的深海环境噪声,但有研究指出,通过风生表面波之间的非线性相互作用产生的驻波,能够与海床共振构成海底微震,从而产生10 Hz以下的噪声。针对这一新型风生噪声机制,本研究对威克岛海域10 Hz以下的极低频噪声进行了分析。比较了不同频率下海洋环境噪声功率谱级与风速的相关性,并讨论了风速和风向对设立在威克岛南北部二组水听器三联体信号的影响,结果表明2 Hz处的海洋环境噪声级与风速相关性最好,而风速和风向变化越剧烈海洋环境极低频噪声与风速风向的相关性越好。  相似文献   

10.
Bias errors, resulting from inaccurate boundary and forcing conditions, incorrect model parameterization, etc. are a common problem in environmental models including biogeochemical ocean models. While it is important to correct bias errors wherever possible, it is unlikely that any environmental model will ever be entirely free of such errors. Hence, methods for bias reduction are necessary. A widely used technique for online bias reduction is nudging, where simulated fields are continuously forced toward observations or a climatology. Nudging is robust and easy to implement, but suppresses high-frequency variability and introduces artificial phase shifts. As a solution to this problem Thompson et al. (2006) introduced frequency dependent nudging where nudging occurs only in prescribed frequency bands, typically centered on the mean and the annual cycle. They showed this method to be effective for eddy resolving ocean circulation models. Here we add a stability term to the previous form of frequency dependent nudging which makes the method more robust for non-linear biological models. Then we assess the utility of frequency dependent nudging for biological models by first applying the method to a simple predator–prey model and then to a 1D ocean biogeochemical model. In both cases we only nudge in two frequency bands centered on the mean and the annual cycle, and then assess how well the variability in higher frequency bands is recovered. We evaluate the effectiveness of frequency dependent nudging in comparison to conventional nudging and find significant improvements with the former.  相似文献   

11.
The distribution of ocean salinity controls the density field and thereby plays a major role in influencing the ocean dynamics. It has been a challenging task to understand the variability of salinity structure in the regions of large fresh water discharge and high precipitation such as Bay of Bengal (BoB). Recent advancement in satellite technology has made possible the measurement of sea surface salinity (SSS). Aquarius is the satellite which measured the global SSS for the period 2011 to 2015. In the present study, we assimilated Aquarius SSS in the Global Ocean Data Assimilation System based on 3DVAR technique. The assimilation of Aquarius SSS resulted in reduced biases in salinity not only at the surface, but also in the vertical distribution of salinity and better captured the temporal variations of salinity structure in sensitive regions, such as the Bay of Bengal. In addition, the assimilation of SSS showed marginal improvement in ocean thermal structure over data sparse regions of Indian Ocean. It is also shown that the assimilation of Aquarius SSS has improved the stratification in the upper Ocean which is the key factor in the observed improvement in ocean analysis.  相似文献   

12.
Reducing systematic errors by empirically correcting model errors   总被引:2,自引:0,他引:2  
A methodology for the correction of systematic errors in a simplified atmospheric general‐circulation model is proposed. First, a method for estimating initial tendency model errors is developed, based on a 4‐dimensional variational assimilation of a long‐analysed dataset of observations in a simple quasi‐geostrophic baroclinic model. Then, a time variable potential vorticity source term is added as a forcing to the same model, in order to parameterize subgrid‐scale processes and unrepresented physical phenomena. This forcing term consists in a (large‐scale) flow dependent parametrization of the initial tendency model error computed by the variational assimilation. The flow dependency is given by an analogues technique which relies on the analysis dataset. Such empirical driving causes a substantial improvement of the model climatology, reducing its systematic error and improving its high frequency variability. Low‐frequency variability is also more realistic and the model shows a better reproduction of Euro‐Atlantic weather regimes. A link between the large‐scale flow and the model error is found only in the Euro‐Atlantic sector, other mechanisms being probably the origin of model error in other areas of the globe.  相似文献   

13.
Decadal-Scale Climate and Ecosystem Interactions in the North Pacific Ocean   总被引:7,自引:0,他引:7  
Decadal-scale climate variations in the Pacific Ocean wield a strong influence on the oceanic ecosystem. Two dominant patterns of large-scale SST variability and one dominant pattern of large-scale thermocline variability can be explained as a forced oceanic response to large-scale changes in the Aleutian Low. The physical mechanisms that generate this decadal variability are still unclear, but stochastic atmospheric forcing of the ocean combined with atmospheric teleconnections from the tropics to the midlatitudes and some weak ocean-atmosphere feedbacks processes are the most plausible explanation. These observed physical variations organize the oceanic ecosystem response through large-scale basin-wide forcings that exert distinct local influences through many different processes. The regional ecosystem impacts of these local processes are discussed for the Tropical Pacific, the Central North Pacific, the Kuroshio-Oyashio Extension, the Bering Sea, the Gulf of Alaska, and the California Current System regions in the context of the observed decadal climate variability. The physical ocean-atmosphere system and the oceanic ecosystem interact through many different processes. These include physical forcing of the ecosystem by changes in solar fluxes, ocean temperature, horizontal current advection, vertical mixing and upwelling, freshwater fluxes, and sea ice. These also include oceanic ecosystem forcing of the climate by attenuation of solar energy by phytoplankton absorption and atmospheric aerosol production by phytoplankton DMS fluxes. A more complete understanding of the complicated feedback processes controlling decadal variability, ocean ecosystems, and biogeochemical cycling requires a concerted and organized long-term observational and modeling effort. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
In order to evaluate the assimilation results from a global high resolution ocean model, the buoy observations from tropical atmosphere ocean(TAO) during August 2014 to July 2015 are employed. The horizontal resolution of wave-tide-circulation coupled ocean model developed by The First Institute of Oceanography(FIOCOM model) is 0.1°×0.1°, and ensemble adjustment Kalman filter is used to assimilate the sea surface temperature(SST), sea level anomaly(SLA) and Argo temperature/salinity profiles. The simulation results with and without data assimilation are examined. First, the overall statistic errors of model results are analyzed. The scatter diagrams of model simulations versus observations and corresponding error probability density distribution show that the errors of all the observed variables, including the temperature, isotherm depth of 20°C(D20), salinity and two horizontal component of velocity are reduced to some extent with a maximum improvement of 54% after assimilation. Second, time-averaged variables are used to investigate the horizontal and vertical structures of the model results. Owing to the data assimilation, the biases of the time-averaged distribution are reduced more than70% for the temperature and D20 especially in the eastern Pacific. The obvious improvement of D20 which represents the upper mixed layer depth indicates that the structure of the temperature after the data assimilation becomes more close to the reality and the vertical structure of the upper ocean becomes more reasonable. At last,the physical processes of time series are compared with observations. The time evolution processes of all variables after the data assimilation are more consistent with the observations. The temperature bias and RMSE of D20 are reduced by 76% and 56% respectively with the data assimilation. More events during this period are also reproduced after the data assimilation. Under the condition of strong 2014/2016 El Ni?o, the Equatorial Undercurrent(EUC) from the TAO is gradually increased during August to November in 2014, and followed by a decreasing process. Since the improvement of the structure in the upper ocean, these events of the EUC can be clearly found in the assimilation results. In conclusion, the data assimilation in this global high resolution model has successfully reduced the model biases and improved the structures of the upper ocean, and the physical processes in reality can be well produced.  相似文献   

15.
Simulation-based evaluations of HF radar ocean current algorithms   总被引:1,自引:0,他引:1  
A computer simulation is used to analyze errors in high-frequency (HF) radar ocean surface current measurements. Two pointing algorithms used for current extraction, a direction finding approach using MUltiple SIgnal Characterization (MUSIC) developed by Schmidt (1986), and conventional beam forming, are compared in terms of the effect of variations in sea state parameters on current measurement error. The radar system parameters used in the simulation were taken from the University of Michigan's multi-frequency coastal radar (MCR), which operates on four frequencies from 4.8 to 21.8 MHz and employs an eight-element linear phased array for its receive antenna. Results show MUSIC direction finding to be applicable to phased array systems and to have a better sensitivity to sharp current features, but larger random error than traditional beam forming methods. Also, for cases where beam forming errors are dominated by beam width or low signal to noise ratio, results show MUSIC to be a viable alternative to beam forming  相似文献   

16.
集合卡尔曼滤波(Ensemble Kalman filter, EnKF)是一种国内外广泛使用的海洋资料同化方案, 用集合成员的状态集合表征模式的背景误差协方差, 结合观测误差协方差, 计算卡尔曼增益矩阵, 有效地将观测信息添加到模式初始场中。由于季节、年际预测很大程度上受到初始场的影响, 因此资料同化可以提高模式的预测性能。本文在NUIST-CFS1.0预测系统逐日SST nudging的初始化方案上, 利用EnKF在每个月末将全场(full field)海表温度(sea surface temperature, SST)、温盐廓线(in-situ temperature and salinity profiles, T-S profiles)以及卫星观测海平面高度异常(sea level anomalies, SLA)观测资料同化到模式初始场中, 对比分析了无海洋资料同化以及加入同化后初始场的区别、加入海洋资料同化后模式提前1~24个月预测性能的差异以及对于厄尔尼诺-南方涛动(El Niño-southern oscillation, ENSO)预测技巧的影响。结果表明, 加入海洋资料同化能有效地改进初始场, 并且呈现随深度增加初始场改进越显著的特征。加入同化后, 对全球SST、次表层海水温度的平均预测技巧均有一定的提高, 也表现出随深度增加预测技巧改进越明显的特征。但加入海洋资料同化后, 模式对ENSO的预测技巧有所下降, 可能是由于模式误差的存在, 使得同化后的预测初始场从接近观测的状态又逐渐恢复到与模式动力相匹配的状态, 加剧了赤道太平洋冷舌偏西、中东部偏暖的气候平均态漂移。  相似文献   

17.
The seasonal variation of mixing layer depth(MLD) in the ocean is determined by a wind stress and a buoyance flux.A South China Sea(SCS) ocean data assimilation system is used to analyze the seasonal cycle of its MLD.It is found that the variability of MLD in the SCS is shallow in summer and deep in winter,as is the case in general.Owing to local atmosphere forcing and ocean dynamics,the seasonal variability shows a regional characteristic in the SCS.In the northern SCS,the MLD is shallow in summer and deep in winter,affected coherently by the wind stress and the buoyance flux.The variation of MLD in the west is close to that in the central SCS,influenced by the advection of strong western boundary currents.The eastern SCS presents an annual cycle,which is deep in summer and shallow in winter,primarily impacted by a heat flux on the air-sea interface.So regional characteristic needs to be cared in the analysis about the MLD of SCS.  相似文献   

18.
An observing system simulation experiment (OSSE) using an ensemble coupled data assimilation system was designed to investigate the impact of deep ocean Argo profile assimilation in a biased numerical climate system. Based on the modern Argo observational array and an artificial extension to full depth, “observations” drawn from one coupled general circulation model (CM2.0) were assimilated into another model (CM2.1). Our results showed that coupled data assimilation with simultaneous atmospheric and oceanic constraints plays a significant role in preventing deep ocean drift. However, the extension of the Argo array to full depth did not significantly improve the quality of the oceanic climate estimation within the bias magnitude in the twin experiment. Even in the “identical” twin experiment for the deep Argo array from the same model (CM2.1) with the assimilation model, no significant changes were shown in the deep ocean, such as in the Atlantic meridional overturning circulation and the Antarctic bottom water cell. The small ensemble spread and corresponding weak constraints by the deep Argo profiles with medium spatial and temporal resolution may explain why the deep Argo profiles did not improve the deep ocean features in the assimilation system. Additional studies using different assimilation methods with improved spatial and temporal resolution of the deep Argo array are necessary in order to more thoroughly understand the impact of the deep Argo array on the assimilation system.  相似文献   

19.
A technique for simultaneously improving resolution and signal-to-noise ratio gain, the directivity improved estimation technique (DIET) combined with the advanced WISPR summation (AWSUM), or DIET AWSUM, is introduced. The DIET AWSUM method combines a straightforward deconvolution technique with the highly fluctuation-sensitive AWSUM filter. DIET AWSUM results generated for ocean acoustic data are compared with estimates produced using the maximum entropy method (MEM), a well-tested standard. The DIET AWSUM method achieved superior results in both increased resolution and improved gain for stable signal identification chiefly because of its greater ability to discriminate between stable signals and fluctuating signals and noise  相似文献   

20.
As a key structure to understand the role of the ocean on the sea ice mass balance, the Arctic Ocean halocline and its spatiotemporal variability require serious attention. In this paper, we are proposing a new definition of the halocline, which is based on the salinity gradient structure, taking into account both the salinity amplitude and the thickness of the halocline. The Brunt Vaisala frequency is used as the halocline stratification index. CTD data collected from 1997 to 2008 and coming from various sources (icebreaker cruises, drifting buoys, etc.) are used to determine the halocline, and its time and space variability during three time periods, with a special focus on three main regions of the Arctic Ocean: the Canada basin, the Makarov basin and the Amundsen basin. Observations reveal that the halocline in the Amundsen basin was always present and rather stable over the three time periods. In contrast, the Canada and Makarov basins' halocline became more stratified during the IPY than before, mainly because of surface water freshening. In addition, observations also confirmed the importance of the halocline thickness for controlling the stratification variability. Observations suggest that both large scale and small scale processes affect the halocline. Changes in surface salinity observed in the Makarov basin are more likely due to atmospheric variability (AO, Dipole Anomaly), as previously observed. More locally, some observations point out that salt/heat diffusion from the Atlantic water underneath and brine rejection during sea ice formation from above could be responsible for salt content variability within the halocline and, as a consequence, being influential for the variability of the halocline. In spite of the existence of interannual variability, the Arctic Ocean main stratification, characterized by a stable and robust halocline until now, suggested that the deep ocean had a limited impact on the mixed layer and on sea ice in actual conditions. The drastic changes observed in Arctic sea ice during this period (1997-2008) cannot be attributed to a weakening of the halocline that could trigger an enhanced vertical heat flux from the deep ocean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号