首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Quaternary Science Reviews》2007,26(17-18):2152-2166
High-resolution modern climate data for the Southern and Central Rocky Mountains provide a starting point for analysis of climate changes necessary to produce regional Late Pleistocene glaciation. A GIS-based model was used to assess the sensitivity of glaciation in different ranges to climatic change and the combinations of temperature and precipitation change necessary to sustain the last glacial maximum (LGM) extent of glaciation in each range. Extensive glaciation initiates first in the Wind River Range of Wyoming under every climate change scenario tested. In absence of precipitation change a summer temperature depression of 6–8 °C would be necessary to maintain LGM ice extents in Colorado and Wyoming. If precipitation was halved, necessary summer temperature depression would be 8–10 °C; if precipitation was doubled, a depression of 3.5–5.5 °C would suffice. Given model uncertainties, these values may underestimate necessary temperature depression by as much as 2 °C. Under all scenarios tested, LGM glaciation in Utah, particularly the Wasatch Range, requires either more temperature depression for given precipitation change, or more precipitation for a given temperature depression than is required in the Colorado/Wyoming Rockies. A summer temperature depression of 7 °C, which would suffice to sustain LGM ice extent with little change from modern precipitation in the Colorado/Wyoming Rockies, would need to be coupled with a near doubling of precipitation to maintain LGM ice extent in the Wasatch Range. This difference appears to reflect LGM precipitation enhancement in the Wasatch Range, and to a lesser degree the Uinta Mountains, resulting from the presence of Lake Bonneville immediately upwind of these ranges.  相似文献   

2.
《Quaternary Science Reviews》2003,22(5-7):581-593
During Pleistocene mountain glaciation of the Bavarian Forest, south Germany, the Wurmian Kleiner Arbersee glacier left behind glacial landforms and sediments which are described, classified and interpreted using a combination of geomorphological, sedimentological, pedological, surveying and absolute dating methods. The latest Kleiner Arbersee glacier with a maximum length of 2600 m, a minimum width of 800 m and a thickness of 115 m formed an elongated cirque, four lateral moraines, one divided end moraine, one recessional moraine, a proglacial lake and a basin in which lake Kleiner Arbersee was established after deglaciation. Beyond the glacial limit the landscape is denuded by periglacial slope deposits which are differentiated from the glacigenic sediments based upon clast fabrics, clast shapes and sediment consolidation. Within the glacial limit sandy–gravelly to silty–gravelly tills are widely distributed, whereas glaciolacustrine sediments are restricted to a small area north of the lake. Small variations in the sand and silt fraction of the tills are explained by melt-out processes. Quartz, mica and chlorite derived from gneiss bedrock are dominant in the clay mineral spectrum of tills, but also gibbsite as a product of pre-Pleistocene weathering is present giving evidence of glacially entrained saprolites. An IRSL-date of glaciolacustrine sediments (32.4±9.4 ka BP) confirms the Wurmian age for the glaciation and radiocarbon ages of the basal sediments (12.3±0.4 and 12.5±0.2 ka BP uncalibrated) in the lake Kleiner Arbersee prove that the basin was ice-free before the Younger Dryas.  相似文献   

3.
Fingerprinting glacial silt in last glacial-age sediments from Upper Klamath Lake (UKL) and Bear Lake (BL) provides continuous radiocarbon-dated records of glaciation for the southeastern Cascade Range and northwestern Uinta Mountains, respectively. Comparing of these records to cosmogenic exposure ages from moraines suggests that variations in glacial flour largely reflect glacial extent. The two areas are at similar latitudes and yield similar records of glacial growth and recession, even though UKL lies less than 200 km from the ocean and BL is in the continental interior. As sea level began to fall prior to the global Last Glacial Maximum (LGM), existing glaciers in the UKL area expanded. Near the beginning of the global LGM (26.5 ka), the BL record indicates onset of glaciation and UKL-area glaciers underwent further expansion. Both records indicate that local glaciers reached their maximum extents near the end of the global LGM, remained near their maxima for ~ 1000 yr, and underwent two stages of retreat separated by a short period of expansion.  相似文献   

4.
During the last glacial interval, the North Atlantic ice sheets expanded and contracted in approximate synchronicity with orbitally forced global climate change. Variation in ice rafted detritus content in North Atlantic marine sediment cores record the waxing and waning of glaciers, as well as the abrupt temperature changes at millennial time scales. The background variations of ice rafting are punctuated by Heinrich layers, which appear to record the catastrophic collapse of the Laurentide ice sheet through the Hudson Strait. The objective of this paper is to document the evolution of glaciation on Laurentia during the last 43 14C kyr. We present a provenance study based on 40Ar/39Ar dates of individual hornblende grains from 57 samples taken at 2 cm spacing between 4 and 134 cm from core V23-14 (43.4°N, 45.25°W, 3177 m). Sedimentation rates outside of the Heinrich layers are very low in this core, but the Heinrich layers are easily identified. Laurentide glaciation did not extend into the ocean south of 55°N until about 26 14C kyr, and retreated to the coastline or beyond by 14 14C kyr. Documenting the history of this major ice sheet has significant implications for understanding ice rafting sources in more distal locations where mixing among different ice sheets is likely.  相似文献   

5.
《Quaternary Science Reviews》2003,22(5-7):437-444
A long-standing debate regarding the reconstruction of former ice sheets revolves around the use of relative weathering of landscapes, i.e., the assumption that highly weathered landscapes have not been recently glaciated. New cosmogenic isotope measurements from upland bedrock surfaces and erratics along the northeastern margin of the Laurentide Ice Sheet (LIS) shed light on this debate. 10Be and 26Al concentrations from three perched erratics, yielding cosmogenic exposure ages of 17–11 ka, are much lower than those measured in two unmodified, highly weathered tors upon which they lie, which yield cosmogenic exposure ages of >60 ka. These findings suggest that non-erosive ice covered weathered upland surfaces along the northeastern margin of the LIS during the last glacial maximum. These data challenge the use of relative weathering to define the margins of Pleistocene ice sheets. The juxtaposition of non-erosive ice over upland plateaus and erosive ice in adjacent fiords requires strong gradients in basal thermal regimes, suggestive of an ice-stream mode of glaciation.  相似文献   

6.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

7.
Digital elevation models of the area around the Solway Lowlands reveal complex subglacial bedform imprints relating the central sector of the LGM British and Irish Ice Sheet. Drumlin and lineation mapping in four case studies show that glacier flow directions switched significantly through time. These are summarised in four major flow phases in the region: Phase I flow was from a dominant Scottish dispersal centre, which transported Criffel granite erratics to the Eden Valley and forced Lake District ice eastwards over the Pennines at Stainmore; Phase II involved easterly flow of Lake District and Scottish ice through the Tyne Gap and Stainmore Gap with an ice divide located over the Solway Firth; Phase III was a dominant westerly flow from upland dispersal centres into the Solway lowlands and along the Solway Firth due to draw down of ice into the Irish Sea basin; Phase IV was characterised by unconstrained advance of Scottish ice across the Solway Firth. Forcing of a numerical model of ice sheet inception and decay by the Greenland ice core record facilitates an assessment of the potential for rapid ice flow directional switching during one glacial cycle. The model indicates that, after fluctuations of smaller radially flowing ice caps prior to 30 ka BP, the ice sheet grows to produce an elongate, triangular-shaped dome over NW England and SW Scotland at the LGM at 19.5 ka BP. Recession after 18.5 ka BP displays a complex pattern of significant ice flow directional switches over relatively short timescales, complementing the geomorphologically-based assessments of palaeo-ice dynamics. The palaeoglaciological implications of this combined geomorphic and modelling approach are that: (a) the central sector of the BIIS was as a major dispersal centre for only ca 2.5 ka after the LGM; (b) the ice sheet had no real steady state and comprised constantly migrating dispersal centres and ice divides; (c) subglacial streamlining of flow sets was completed over short phases of fast flow activity, with some flow reversals taking place in less than 300 years.  相似文献   

8.
We report cosmogenic surface exposure 10Be ages of 21 boulders on moraines in the Jeullesh and Tuco Valleys, Cordillera Blanca, Peru (~10°S at altitudes above 4200 m). Ages are based on the sea-level at high-latitude reference production rate and scaling system of Lifton et al. (2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications. Earth and Planetary Science Letters 239, 140–161) in the CRONUS-Earth online calculator of Balco et al. (2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quaternary Geochronology 3, 174–195). Using the Lifton system, large outer lateral moraines in the Jeullesh Valley have a 10Be exposure age of 12.4 ka, inside of which are smaller moraine systems dated to 10.8, 9.7 and 7.6 ka. Large outer lateral moraines in the Tuco Valley have a 10Be exposure age of 12.5 ka, with inner moraines dated to 11.3 and 10.7 ka. Collectively, these data indicate that glacier recession from the Last Glacial Maximum (LGM) in the Cordillera Blanca was punctuated by three to four stillstands or minor advances during the period 12.5–7.6 ka, spanning the Younger Dryas Chronozone (YDC; ~12.9–11.6 ka) and the cold event identified in Greenland ice cores and many other parts of the world at 8.2 ka. The inferred fluctuations of tropical glaciers at these times, well after their withdrawal from the LGM, indicate an increase in precipitation or a decrease in temperature in this region. Although palaeoenvironmental records show regional and temporal variability, comparison with proxy records (lacustrine sediments and ice cores) indicate that regionally this was a cold, dry period so we ascribe these glacier advances to reduced atmospheric temperature rather than increased precipitation.  相似文献   

9.
Recent estimates of the timing of the last glaciation in the southern and western Uinta Mountains of northeastern Utah suggest that the start of ice retreat and the climate-driven regression of pluvial Lake Bonneville both occurred at approximately 16 cal. ka. To further explore the possible climatic relationship of Uinta Mountain glaciers and the lake, and to add to the glacial chronology of the Rocky Mountains, we assembled a range-wide chronology of latest Pleistocene terminal moraines based on seventy-four cosmogenic 10Be surface-exposure ages from seven glacial valleys. New cosmogenic-exposure ages from moraines in three northern and eastern valleys of the Uinta Mountains indicate that glaciers in these parts of the range began retreating at 22–20 ka, whereas previously reported cosmogenic-exposure ages from four southern and western valleys indicate that ice retreat began there between 18 and 16.5 ka. This spatial asynchrony in the start of the last deglaciation was accompanied by a 400-m east-to-west decline in glacier equilibrium-line altitudes across the Uinta Mountains. When considered together, these two lines of evidence support the hypothesis that Lake Bonneville influenced the mass balance of glaciers in southern and western valleys of the range, but had a lesser impact on glaciers located farther east. Regional-scale variability in the timing of latest Pleistocene deglaciation in the Rocky Mountains may also reflect changing precipitation patterns, thereby highlighting the importance of precipitation controls on the mass balance of Pleistocene mountain glaciers.  相似文献   

10.
The Bayan Har Shan, a prominent upland area in the northeastern sector of the Tibetan Plateau, hosts an extensive glacial geological record. To reconstruct its palaeoglaciology we have determined 10Be exposure ages based on 67 samples from boulders, surface pebbles, and sediment sections in conjunction with studies of the glacial geology (remote sensing and field studies) and numerical glacier modelling. Exposure ages from moraines and glacial sediments in Bayan Har Shan range from 3 ka to 129 ka, with a large disparity in exposure ages for individual sites and within the recognised four morphostratigraphical groups. The exposure age disparity cannot be explained by differences in inheritance without using unrealistic assumptions but it can be explained by differences in post-depositional shielding which produces exposure ages younger than the deglaciation age. We present a palaeoglaciological time-slice reconstruction in which the most restricted glaciation, with glaciers less than 10 km long, occurred before 40–65 ka. More extensive glaciations occurred before 60–100 ka and 95–165 ka. Maximum glaciation is poorly constrained but probably even older. The Bayan Har Shan exposure age dataset indicates that glaciers on the northeastern Tibetan Plateau have remained surprisingly restricted for at least 40 ka, including the global last glacial maximum (LGM). This case of a missing LGM is further supported by high-resolution glacier modelling experiments.  相似文献   

11.
Improved chronological control on the penultimate advance of the Cordilleran Ice Sheet in northwest Canada (the Reid glaciation) is required for a better understanding of late Quaternary palaeoclimatic and palaeoenvironmental change in eastern Beringia. However, reliable dating of glaciation events beyond the last glacial maximum is commonly hindered by a lack of directly dateable material. In this study we (i) provide the first combined minimum and maximum age constraint on the Reid glaciation at Ash Bend, its reference locale in the Stewart River valley, northwestern Canadian Cordillera, using single-grain optically stimulated luminescence dating of quartz; and (ii) compare the timing of the Reid glaciation with other penultimate ice sheet advances in the region with the aim of establishing improved glacial reconstructions in eastern Beringia. We obtain ages of 158 ± 18 ka and 132 ± 18 ka for glaciofluvial sands overlying and underlying the Reid till, respectively. These ages indicate that the Reid advance, at its reference locale, occurred during MIS 6. This precludes an earlier MIS 8 age, and suggests that the Reid advance may have been synchronous with the Delta glaciation of central Alaska, and is likely correlative with the Mirror Creek glaciation in southern Yukon.  相似文献   

12.
Surface exposure dating has become a helpful tool for establishing numeric glacial chronologies, particularly in arid high-mountain regions where radiocarbon dating is challenging due to limited availability of organic material. This study presents 13 new 10Be surface exposure ages from the Kitschi-Kurumdu Valley in the At Bashi Range, Tien Shan. Three moraines were dated to ~ 15, 21 and > 56 ka, respectively, and corroborate previous findings that glacial extents in the Tien Shan during Marine Oxygen Isotope Stage (MIS) 2 were limited compared to MIS 4. This likely documents increasingly arid conditions in Central Asia during the last glacial cycle. Morphological evidence in the Kitschi-Kurumdu Valley and a detailed review of existing numeric glacial chronologies from the Tien Shan indicate that remnants of the penultimate glaciation (MIS 6) are preserved, whereas evidence for MIS 5 glacier advances remains equivocal. Reviewed and recalculated exposure ages from the Pamir mountains, on the other hand, reveal extensive MIS 5 glacial extents that may indicate increased monsoonal precipitation. The preservation of MIS 3 moraines in the Tien Shan and the southern Pamir does not require any monsoonal influence and can be explained alternatively with increased precipitation via the westerlies.  相似文献   

13.
《Quaternary Science Reviews》2007,26(5-6):627-643
Buried submarine landforms mapped on 3D reflection seismic data sets provide the first glacial geomorphic evidence for glacial occupation of the central North Sea by two palaeo-ice-streams, between 58–59°N and 0–1°E. Streamlined subglacial bedforms (mega-scale glacial lineations) and iceberg plough marks, within the top 80 m of the Quaternary sequence, record the presence and subsequent break-up of fast-flowing grounded ice sheets in the region during the late Pleistocene. The lengths of individual mega-scale glacial lineations vary from ∼5 to ∼20 km and the distance between lineations typically ranges from 100 to 1000 m. The lineations incise to a depth of 10–12 m, with trough widths of ∼100 m. The most extensive and best-preserved set of lineations, is attributed to the action of a late Weichselian ice stream which either drained the NE sector of the British–Irish ice sheet or was sourced from the SW within the Fennoscandian ice sheet. The 30–50 km wide palaeo ice-stream is imaged along its flow direction for 90 km, trending NW–SE. An older set of less well-preserved lineations is interpreted as an earlier Weichselian or Saalian ice-stream, and records ice flow in an SW–NE orientation. Cored sedimentary records, tied to 3D seismic observations, support grounded ice sheet coverage in the central North Sea during the last glaciation and indicate that ice flowed over a muddy substrate that is interpreted as a deformation till. The identification of a late Weichselian ice stream in the Witch Ground area of the North Sea basin provides independent geomorphic evidence in support of ice-sheet reconstructions that favour complete ice coverage of the North Sea between Scotland and Norway during the Last Glacial Maximum.  相似文献   

14.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

15.
Forty-four boulders from moraines in two glacial valleys of Mount Erciyes (38.53°N, 35.45°E, 3917 m), central Turkey, dated with cosmogenic chlorine-36 (36Cl), indicate four periods of glacial activity in the past 22 ka (1 ka = 1000 calendar years). Last Glacial Maximum (LGM) glaciers were the most extensive, reaching 6 km in length and descending to an altitude of 2150 m above sea level. These glaciers started retreating 21.3 ± 0.9 ka (1σ) ago. They readvanced and retreated by 14.6 ± 1.2 ka ago (Lateglacial), and again by 9.3 ± 0.5 ka ago (Early Holocene). The latest advance took place 3.8 ± 0.4 ka ago (Late Holocene). Using glacier modeling together with paleoclimate proxy data from the region, we reconstructed the paleoclimate at these four discrete times. The results show that LGM climate was 8–11 °C colder than today and moisture levels were somewhat similar to modern values, with a range between 20% more and 25% less than today. The analysis of Lateglacial advance suggests that the climate was colder by 4.5–6.4 °C based on up to 1.5 times wetter conditions. The Early Holocene was 2.1–4.9 °C colder and up to twice as wet as today, while the Late Holocene was 2.4–3 °C colder and its precipitation amounts approached to similar conditions as today. Our paleoclimate reconstructions show a general trend of warming for the last 22 ka, and an increase of moisture until Early Holocene, and a decrease after that time. The recent glacier terminates at 3450 m on the northwest side of the mountain. It is a remnant from the last advance (possibly during the Little Ice Age). Repeated measurements of glacier length between 1902 and 2008 reveal a retreat rate of 4.2 m per year, which corresponds to a warming rate of 0.9–1.2 °C per century.  相似文献   

16.
Isla de los Estados is a mountainous island southeast of Tierra del Fuego, in southernmost South America. Its central and eastern parts have an alpine topography, transected by U-shaped valleys, small, partly over-deepened fjords, and a multitude of abandoned cirques, all associated with extensive former local glaciations. Traces of glacial erosion generally reach 400–450 m a.s.l., and above that trimline a distinct sharp-edged nunatak derived landscape is present. The westernmost part of the island has a lower, more subdued topography, reflecting its “softer” geology but possibly also over-running and erosion by mainland-derived ice streams. The present study concentrated on glacigenic sediment sequences exposed along coastal erosional cliffs. A combination of OSL and 14C datings show that these sediments mostly date from the latest (Wisconsinan/Weichselian) glacial cycle, i.e. from the last ca. 100 ka with the oldest (glaciolacustrine) deposits possibly as old as 90–80 ka. The upper parts of overlying tills, with associated lateral and terminal moraines from glaciers that expanded onto an eustatically exposed dry shelf north of the island, date from the last global glacial maximum (LGM). Radiocarbon ages of peat and lake sediments indicate that deglaciation began 17–16 cal ka BP.  相似文献   

17.
Recent changes along the margins of the Antarctic Peninsula, such as the collapse of the Wilkins Ice Shelf, have highlighted the effects of climatic warming on the Antarctic Peninsula Ice Sheet (APIS). However, such changes must be viewed in a long-term (millennial-scale) context if we are to understand their significance for future stability of the Antarctic ice sheets. To address this, we present nine new cosmogenic 10Be exposure ages from sites on NW Alexander Island and Rothschild Island (adjacent to the Wilkins Ice Shelf) that provide constraints on the timing of thinning of the Alexander Island ice cap since the last glacial maximum. All but one of the 10Be ages are in the range 10.2–21.7 ka, showing a general trend of progressive ice-sheet thinning since at least 22 ka until 10 ka. The data also provide a minimum estimate (490 m) for ice-cap thickness on NW Alexander Island at the last glacial maximum. Cosmogenic 3He ages from a rare occurrence of mantle xenoliths on Rothschild Island yield variable ages up to 46 ka, probably reflecting exhumation by periglacial processes.  相似文献   

18.
Woolly rhinoceros bones, from a number of sites in Britain, have been AMS radiocarbon dated following ultrafiltration pre-treatment. These determinations give a coherent set of ages between >50 and c. 35 cal ka BP. The youngest (35,864–34,765 cal BP) come from the area around Bishopbriggs in western central Scotland and are derived from glaciofluvial sand and gravel overlain by till, both deposited during the Last Glacial Maximum (LGM) glaciation. A previous radiocarbon date from the site suggested that woolly rhinoceros lived c. 27 14C ka BP and the region was ice-free at the time. This date has had significant influence on the timing of extinction of woolly rhinoceros and the onset of glaciation over Britain during the LGM. The new dates revise this earlier determination and confirm that woolly rhinoceros became extinct in Britain after c. 35 cal ka BP, that central Scotland was ice-free at this time, and glaciation extended across this region sometime after 35 cal ka BP.  相似文献   

19.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

20.
Quaternary glaciation of Mount Everest   总被引:1,自引:0,他引:1  
The Quaternary glacial history of the Rongbuk valley on the northern slopes of Mount Everest is examined using field mapping, geomorphic and sedimentological methods, and optically stimulated luminescence (OSL) and 10Be terrestrial cosmogenic nuclide (TCN) dating. Six major sets of moraines are present representing significant glacier advances or still-stands. These date to >330 ka (Tingri moraine), >41 ka (Dzakar moraine), 24–27 ka (Jilong moraine), 14–17 ka (Rongbuk moraine), 8–2 ka (Samdupo moraines) and ~1.6 ka (Xarlungnama moraine), and each is assigned to a distinct glacial stage named after the moraine. The Samdupo glacial stage is subdivided into Samdupo I (6.8–7.7 ka) and Samdupo II (~2.4 ka). Comparison with OSL and TCN defined ages on moraines on the southern slopes of Mount Everest in the Khumbu Himal show that glaciations across the Everest massif were broadly synchronous. However, unlike the Khumbu Himal, no early Holocene glacier advance is recognized in the Rongbuk valley. This suggests that the Khumbu Himal may have received increased monsoon precipitation in the early Holocene to help increase positive glacier mass balances, while the Rongbuk valley was too sheltered to receive monsoon moisture during this time and glaciers could not advance. Comparison of equilibrium-line altitude depressions for glacial stages across Mount Everest reveals asymmetric patterns of glacier retreat that likely reflects greater glacier sensitivity to climate change on the northern slopes, possibly due to precipitation starvation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号