首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
山东乳山地区震群特征及发震背景再研究   总被引:1,自引:1,他引:0  
2013年10月1日在山东省威海市乳山市发生M3.2级地震,之后发生了一系列震群活动。截至2016年5月,山东台网已经记录到了1万多次余震,其中3级以上地震9次,4级以上地震3次。频繁的地震构造活动引起了乳山市及周边地区强烈震感。为研究乳山震群的发震机理,本文利用山东台网数字化地震波资料和新建的乳山台阵资料,通过双差精定位方法重新确定了震中位置。研究结果表明:余震序列呈现出NW向的条带分布;采用CAP方法(Cut and Paste)反演震群中9次3级以上地震的震源机制解,结果显示几次较大地震的震源深度平均约为5km,与台网编目定位的结果基本相同。从得到的精定位结果并结合震源机制解的结果来看,震群的走向是NW向,倾角是NE向,与最近的乳山断裂有一定距离。由此推断该区域可能是乳山断裂的分支,或者有一条或多条隐伏断裂。  相似文献   

2.
Since the earthquake of ML3.8 occurring on October 1, 2013 in Ruishan, Weihai City, Shandong Province, the sequence has lasted for about 4 years(Aug. 31, 2017). Seismicity is enhanced or weakened and fluctuated continuously. More than 13250 aftershocks have been recorded in Shandong Seismic Network. During this period, the significant earthquake events were magnitude 4.2(ML4.7)on January 7, 4.0(ML4.5)on April 4, M3.6(ML 4.1)on September 16 in 2014 and M4.6(ML5.0)on May 22, 2015. The earthquake of ML5.0 was the largest one in the Rushan sequence so far. In order to strengthen the monitoring of aftershocks, 18 temporary stations were set up near the epicenter at the end of April, 2014(official recording began on May 7)by Shandong Earthquake Agency, which constitutes an intensified network in Rushan that surrounds the four quadrants of the small earthquake concentration area together with 12 fixed stations nearby, and provides an effective data foundation for the refinement of Rushan earthquake sequence. The velocity structure offers important information related to earthquake location and the focal medium, providing an important basis for understanding the background and mechanism of the earthquake. In this paper, double-difference tomography method is used to relocate the seismic events recorded by more than six stations of Rushan array from May 7, 2014 to December 31, 2016, and the inversion on the P-wave velocity structure of the focal area is conducted. The Hyposat positioning method is used to relocate the absolute position. Only the stations with the first wave arrival time less than 0.1 second are involved in the location. A total of 14165 seismic records are obtained, which is much larger than that recorded by Shandong Seismic Network during the same period with 7708 earthquakes and 2048 localizable ones. A total of 1410 earthquakes with ML ≥ 1.0 were selected to participate in the inversion. Precise relocation of 1376 earthquakes is obtained by using double-difference tomography, in which, there are 14318 absolute traveltime P waves and 63162 relative travel time P waves. The epicenters are located in distribution along NWW-SEE toward SEE and tend to WS, forming a seismic belt with the length about 3km and width about 1km. The focal depths are mainly concentrated between 4km and 9km, occurring mainly at the edge of the high velocity body, and gradually dispersing with time. It has obvious temporal and spatial cluster characteristics. Compared with the precise relocation of Shandong network, the accuracy of the positioning of Rushan array is higher. The main reason is that the epicenter of Rushan earthquake swarm is near the seaside, and the fixed stations of Shandong Seismic Network are located on the one side of the epicenter. The nearest three stations(RSH, HAY, WED)from the epicenter are Rushan station with epicentral distance about 13km, the Haiyang station with epicentral distance about 33km, and Wendeng station with epicentral distance about 42km. The epicentral distance of the rest stations are more than 75km. In addition, the magnitude of most earthquakes in Rushan sequence is small. The accuracy of phase identification is relatively limited due to the slightly larger epicentral distance of the station HAY and station WED in Shandong Seismic Network. Furthermore, the one-dimensional velocity model used in network location is simple with only the depth and velocity of Moho surface and Conrad surface. The epicentral distances of the 18 temporary stations in Rushan are less than 10km, and the initial phase is clear. The island station set up on the southeast side and the Haiyangsuo station on the southwest side form a comprehensive package for the epicenter. Compared with the double-difference algorithm method, the double-difference tomography method used in this paper is more accurate for the velocity structure, thus can obtain the optimal relocation result and velocity structure. the velocity structure shows that there are three distinct regions with different velocities in the vicinity of the focal area. The earthquakes mainly occur in the intersection of the three regions and on the side of the high velocity body. With the increase of depth, P wave velocity increases gradually and there are two distinct velocity changes. The aftershock activities basically occur near the dividing line to the high velocity side. The south side is low velocity abnormal body and the north side is high velocity abnormal body. High velocity body becomes shallower from south to north, which coincides with the tectonic conditions of Rushan. Considering the spatial relationships between the epicenter distribution and the high-low velocity body and different lithology of geological structure, and other factors, it is inferred that the location of the epicenter should be the boundary of two different rock bodies, and there may be a hidden fault in the transition zone between high velocity abnormal body and low velocity abnormal body. The interface position of the high-low velocity body, the concentrating area of the aftershocks, is often the stress concentration zone, the medium is relatively weak, and the intensity is low. There is almost no earthquake in the high velocity abnormal body, and the energy accumulated in the high velocity body is released at the peripheral positions. It can be seen that the existence of the high-low velocity body has a certain control effect on the distribution of the aftershocks.  相似文献   

3.
王鹏  郑建常 《中国地震》2021,37(2):400-414
对震群活动特征的深入研究可以为区域地震危险性分析和地震活动趋势判断提供有效的依据,但受台网布局和震群位置的影响,地震目录中往往会遗漏一些地震,而地震目录的完整性将会影响震群活动特征分析的可靠性.因此,本文利用基于GPU加速的模板匹配方法对山东乳山震群2014年5月至2015年6月期间固定台站和流动台阵记录的连续波形进行...  相似文献   

4.
乳山地震序列区域台网及台阵定位结果对比   总被引:2,自引:0,他引:2  
精确定位的活动图像为了解断层产状和深部构造提供了重要基础信息。本文采用2014年5月7日至2015年12月31日期间山东地震台网及乳山台阵记录的乳山地震序列ML ≥ 1.5级地震进行双差定位对比研究。定位结果显示:山东地震台网记录的地震经精定位后,震源位置呈现北西向(约315°)展布,剖面上地震分布较为均匀,震源深度3-11km。乳山台阵记录的地震经精定位后,震源位置呈现北西西向(约290°)展布,在空间上多处相对集中,体现了序列空间分布的丛集特征;剖面中心位置地震明显较少,此处似乎存在一凹凸体,序列地震基本发生在凹凸体的周围,震源深度集中分布在4-8km。从已有震源机制解、台站布局、精定位残差、现场调查等多方面综合分析认为,乳山台阵精定位结果更加准确。  相似文献   

5.
In this paper, we developed a specialized method to locate small aftershocks using a small-aperture temporary seismic array. The array location technique uses the first P arrival times to determine the horizontal slowness vector of the incoming P wave, then combines it with SP times to determine the event location. In order to reduce the influence of lateral velocity variation on the location determinations, we generated slowness corrections using events well-located by the permanent broadband network as calibration events, then we applied the corrections to the estimated slownesses. Applications of slowness corrections significantly improved event locations. This method can be a useful tool to locate events recorded by temporary fault-zone arrays in the near field but unlocated by the regional permanent seismic network. As a test, we first applied this method to 64 well-located aftershocks of the 1992 Landers, California, earthquake, recorded by both the Caltech/USGS Southern California Seismic Network and a small-aperture, temporary seismic array. The average horizontal and vertical separations between our locations and the well-determined catalogue locations are 1.35 and 1.75 km, respectively. We then applied this method to 132 unlocated aftershocks recorded only by the temporary seismic array. The locations show a clear tendency to follow the surface traces of the mainshock rupture.  相似文献   

6.
An extraordinary earthquake swarm occurred at Rushan on the Jiaodong Peninsula from October 1, 2013, onwards, and more than 12,000 aftershocks had been detected by December 31, 2015. All the activities of the whole swarm were recorded at the nearest station, RSH, which is located about 12 km from the epicenter. We examine the statistical characteristics of the Rushan swarm in this paper using RSH station data to assess the arrival time difference, \(t_{{{\text{S}} \,-\, {\text{P}}}}\), of Pg and Sg phases. A temporary network comprising 18 seismometers was set up on May 6, 2014, within the area of the epicenter; based on the data from this network and use of the double difference method, we determine precise hypocenter locations. As the distribution of relocated sources reveals migration of seismic activity, we applied the mean-shift cluster method to perform clustering analysis on relocated catalogs. The results of this study show that there were at least 16 clusters of seismic activities between May 6, 2014, and June 30, 2014, and that each was characterized by a hypocenter spreading process. We estimated the hydraulic diffusivity, D, of each cluster using envelope curve fitting; the results show that D values range between 1.2 and 3.5 m2/d and that approximate values for clusters on the edge of the source area are lower than those within the central area. We utilize an epidemic-type aftershock sequence (ETAS) model to separate external triggered events from self-excited aftershocks within the Rushan swarm. The estimated parameters for this model suggest that α = 1.156, equivalent to sequences induced by fluid-injection, and that the forcing rate (μ) implies just 0.15 events per day. These estimates indicate that around 3% of the events within the swarm were externally triggered. The fact that variation in μ is synchronous with swarm activity implies that pulses in fluid pressure likely drove this series of earthquakes.  相似文献   

7.
We relocated a seismic swarm, which started in a mass from 31 October, 2013 in Qianguo County of Jilin Province, by using double difference location method, based on the phase data of regional digital seismic network and the crustal velocity model of Sunliao Basin. The characteristics of seismogenic fault have been investigated based on the spatial distribution image of the seismic swarm and the geophysical data near the epicenter area. The relocated epicenters of the swarm earthquakes have a precision of 0.9km in E-W, 0.7km in N-S and 1.2km in U-D direction, and show an apparent concentrated seismic belt trending N-W, with a length and width of 12km and 6km, respectively. The source depths of all events are shallow, with 80%in a range of 6~8km, and the events are apparently crowded together on the depth cross section. According to the relocated spatial distribution characteristics of the seismic swarm, the features that the medium size events happened successively, and the focal mechanism of the large size events in the swarm, we infer that the seismogenic tectonics of Qianguo seismic swarm is the thrust nappe structure inside the Keshan-Da'an fault zone. The fault plane inclines to the East direction, and is steep when close to the ground surface, which shows the typical characteristics of a listric thrust fault. The longitudinal length of the rupture plane is greater than the transverse length. According to the features of seismogenic tectonics, we infer that the three MS ≥ 5.0 earthquakes occurred at the lower layer of the thrust rupture surface of the fault, while the aftershocks were triggered by the three events and occurred mainly at the upper layer of the rupture surface.  相似文献   

8.
玉树地震震源区速度结构与余震分布的关系   总被引:14,自引:5,他引:9       下载免费PDF全文
利用玉树震区21个应急流动地震台站和青海省地震台网固定地震台站的观测数据,采用双差层析成像方法,对2010年4月14日至6月15期间发生的地震进行了重定位,并反演得到了玉树地震震源区的三维速度结构.重定位结果揭示余震主要沿NW向成窄带状分布在断层的两侧,表明脆性破裂应力释放主要集中于一个狭窄的区域内.在西北端,余震偏离玉树—甘孜断裂分布,在SW向也有分布,推测可能与南西向次级断裂有关.双差层析成像得到的速度结构在浅部与地表地质构造相一致,中上地壳的速度结构显示巴颜喀拉地块为高速异常,羌塘地块为低速异常.玉树地震余震分布与特定的速度结构存在相关性:主震发生在高低速过渡带偏高速体的一侧,余震主要分布在高速体外围,高速体内部几乎没有余震分布.一般说来,中上地壳的高速体通常具有较高的强度,可以积累较强的孕震能量.主震发生后,高速体内积累的弹性能量向周边释放,可能是导致高速体周边余震发生的主要原因.  相似文献   

9.
Many small earthquakes occurred intensively and continuously and formed an earthquake sequence after the ML3.8 earthquake happened at Rushan County, Shandong Province on October 1, 2013. Up to March, 2017, more than 13 000 events have been recorded, with 3 429 locatable shocks, of which 31 events with ML ≥ 3.0. This sequence is rarely seen in East China for its extraordinary long duration and the extremely high frequency of aftershocks. To track the developing tendency of the earthquake sequence accurately, 20 temporary seismometers were arranged to monitor the sequence activities around the epicenter of the sequence since May 6, 2014. Firstly, this paper adopts double difference method to relocate the 1 418 earthquakes of ML ≥ 1.0 recorded by temporary seismometers in the Rushan earthquake sequence (May 7, 2014 to December 31, 2016), the result shows that the Rushan earthquake sequence mainly extends along NWW-SEE and forms a rectangular activity belt of about 4km long and 3km wide. In addition, the seismogenic fault of Rushan earthquake sequence stretches along NWW-SEE with nearly vertical strike-slip movement and a small amount of thrust component. Then we apply the P-wave initial motion and CAP to invert the focal mechanism of earthquakes with ML ≥ 1.5 in the study area. The earthquakes can be divided into several categories, including 3 normal fault earthquakes (0.9%), 3 normal-slip earthquakes (0.9%), 229 strike-slip earthquakes (65.8%), 18 thrust fault earthquakes (5.2%), 37 thrust-slip earthquakes (10.6%)and 58 undefined (16.6%). Most earthquakes had a strike-slip mechanism in Rushan (65.8%), which is one of the intrinsic characteristics of the stress field. According to the focal mechanism solutions, we further utilized the LSIB method (Linear stress inversion bootstrap)to invert the stress tensor of Rushan area. The result shows that the azimuth and plunge of three principal stress (σ1, σ2, σ3) axes are 25°, 10°; 286°, 45°; 125°, 43°, respectively. Based on the stress field inversion results, we calculated the focal mechanism solutions consistency parameter (θ)and the angle (θ1)between σ1 and P axis. The trend lines of θ and θ1 were relatively stable with small fluctuation near the average line over time. Furthermore, the earthquake sequence can be divided into three stages based on θ and θ1 values. The first stage is before September 16, 2014, and the variation of the θ and θ1 values is relatively smooth with short period. All focal mechanism solutions of the three ML ≥ 3.0 earthquakes exhibited consistence. The second stage started from September 16, 2014 to July 1, 2015, the fluctuation range of θ and θ1 values is larger than that of the first stage with a relative longer period. The last stage is after July 1, 2015, values of θ and θ1 gradually changed to a periodic change, three out of the four ML ≥ 3.0 earthquakes (strike-slip type)displayed a good consistency. Spatially, earthquakes occurred mainly in green, yellow-red regions, and the focal mechanism parameters consistency θ was dominant near the green region (around the average value), which presents a steady state, and the spatial locations are concordant with the distribution of θ value. Moreover, all of ML ≥ 3.0 earthquakes are located in the transitional region from the mean value to lower value area or region below the mean value area, which also indicates the centralized stress field of the region.  相似文献   

10.
An earthquake with local magnitude (ML) 5.2 occurred February 18, 1996 in the eastern Pyrenees (France) near the town of Saint-Paul de Fenouillet. This event is the first of this magnitude in France to be well recorded instrumentally. Less than 24 hours after the main shock, we installed a temporary network of 30 seismological stations in the epicentral area to record the aftershock sequence. In this paper, we analyse the main shock and present the 37 largest aftershocks (1.8 Ml 3.4) in the two months following the main shock. These events are located using data from the permanent Pyrenean seismological network and the temporary network when available. We also determined eight fault plane solutions using the P-wave first motions. The main shock and the aftershocks are located inside the small Agly massif. This Hercynian structure sits some 8 km north of the North Pyrenean Fault, which is usually considered to be the suture between the Iberian and Eurasian plates. The mechanism of the main shock is a left-lateral strike-slip on an E–W trending fault. The fault plane solutions of the aftershocks are mostly E–W striking reverse faults, in agreement with the general north-south shortening of the Pyrenees. The aftershocks located down to 11 km depth, indicating that the Agly massif is deeply fractured. The main interpretations of these results are: (i) The main shock involved an E–W trending fault inside the highly fractured Agly massif, relaying the North Pyrenean Fault which had, at least in the last 35 years, a poor seismic activity along this segment; (ii) The Saint-Paul de Fenouillet syncline to the north and the North Pyrenean Fault to the south delimit a 15 km wide senestral shear zone. Such a structure is also suggested by the highly fractured pattern of the Agly massif and by small en echelon faults and secondary folds in the Saint-Paul de Fenouillet syncline; (iii) we suggest that the North Pyrenean Frontal Thrust, located less than 10 km north of the Agly massif, has a ramp geometry at depth below the Agly massif.  相似文献   

11.
基于新疆区域数字地震台网震相观测报告,采用双差定位方法对2011—2014年阿尔金断裂带西南端NE向张性剪切段附近的3次于田MS≥5.0地震序列进行了重定位,并对其余震分布及发震构造等进行了分析. 结果表明: 2011年于田MS5.5地震的发震构造为阿尔金断裂,该地震同时触发了阿尔金山前普鲁断裂的中小震活动,地震序列呈近NS向长条带状分布; 2012年于田MS6.2地震序列沿NNE向分布,发震构造为苦牙克断裂; 2014年于田MS7.3地震序列沿NE和NNE方向展布,其中NE走向的余震序列沿阿尔金断裂走向有3处余震丛集分布,由此推测该余震低活动区是由于断层内存在一较大凹凸体,终止了破裂的传播所致,发震构造为阿什库勒断裂和苦牙克断裂. 此外,地震序列截面特征显示,2011—2014年3次于田MS≥5.0地震序列基本贯通了阿尔金断裂带西南端的次级断裂和普鲁断裂.   相似文献   

12.
震群活动时,短时间发生大量地震,不同地震事件的记录波形相互交叠影响,易造成地震目录的遗漏,对震群发震构造分析等研究带来不利的影响.本文针对2013年3月3日至5日在河北涿鹿发生的微震震群,利用匹配滤波技术,以地震台网观测目录所记录地震事件的波形为模板,在连续波形记录中搜索与模板相似的信号,从而检测台网目录遗漏的地震.利用波形互相关标定新检测到地震事件的P波和S波到时,进而对其震中位置和震级做出估计.计算结果显示,通过互相关扫描检测到52个地震台网常规分析遗漏的地震,约为地震目录给出的45个事件的1.16倍.检测到的遗漏地震震级估算为ML0.1~0.9,通过震级-频次统计分析,加入遗漏地震后地震目录的完整性在ML0.3~0.8范围内有较明显的改善.根据地震事件精定位结果,推测此次震群的发震构造为北西走向倾角较大的断层,施庄断裂为发震构造的可能性较大.  相似文献   

13.
历史资料和前人研究表明,462年山东省滕州西发生6*1/2级地震。该地震震中附近有已探究发现的凫山断裂、峄山断裂和孙氏店断裂等。本文利用物探、钻探、形貌测量、地质考察和测年等多种手段,进一步鉴定凫山断裂和峄山断裂,得出前者最新活动时代为晚更新世早期,后者最新活动时代为中更新世早期。前人研究表明,462年滕州西地震烈度等震线近SN走向,因此,SN走向的峄山断裂和孙氏店断裂均可能是此次地震的发震断裂。  相似文献   

14.
使用双差定位方法,对2013年4月20日08时02分芦山 M 7.0地震后近10天的余震进行重新定位,获得精度较高的重定位结果;在此基础上,对余震空间分布特征进行研究,推测芦山主震的发震断层可能为大川-双石主断裂东侧的一条次级隐伏逆冲断层。  相似文献   

15.
使用汇集在四川台网中心的固定台站、震后架设的流动台站、周边水库台站等震中距150 km以内的震相数据,选用分层速度模型,对芦山7.0级地震及震后9天内的余震利用双差定位法进行了重新定位.给出了芦山7.0级地震的发震时刻为2013-04-20 08:02:46.8,震中位置30.278°N,102.989°E,震源深度16.67 km,给出了3324次余震的双差定位结果,并对发震构造进行了分析.结果表明:芦山地震主破裂长度约40 km,下倾宽度约20 km,破裂视面积约800 km2,主破裂沿南西走向,倾角约40°.余震震源优势深度为10~22 km.余震沿南西走向,主要集中于大邑-名山断裂上盘.  相似文献   

16.
利用基于GPU加速的匹配定位法和双差定位法,对江苏盐城及邻区18个台站记录的2009~2018年共10年的连续地震资料进行分析。首先从台网目录中挑选211个地震事件作为模板事件,使用匹配定位技术对江苏盐城附近连续10年的地震进行检测和识别,共识别出1349个地震事件,约为台网目录地震事件的3倍,最小完备震级由台网目录的ML1.9降为ML1.2。然后利用双差定位法对检测到的地震事件进行精定位,精定位的结果揭示:建湖地区的地震密集带与洪泽-沟墩断裂有关,震源深度优势分布为5~20km,断裂两侧震源深度有显著差异,断裂带倾向NW;射阳震群震源深度比建湖震群有所加深,优势分布为10~25km,震源深度由南东向西北逐渐变浅;宝应地区地震丛集分布;东台地区由于模板事件相对较少,扫描定位后,地震事件在陈家堡-小海断裂带附近零星分布。研究结果为研究盐城地区的地震活动性、发震断层的深部构造提供了基础数据支撑。  相似文献   

17.
张珂  张帆  张晖  王鑫  郝美仙  翟浩 《地震学报》2022,44(4):594-607
内蒙古敖汉旗地区在2018—2019年间曾发生多次小震丛集活动,不同地震事件的波形记录易相互交叠,导致地震目录缺失。针对以上问题,采用匹配定位(Match&Locate)方法,对台网遗漏地震进行识别、检测与定位,并通过CAP方法反演敖汉旗震群最大地震的震源机制解,利用匹配定位后的小震分布定量地拟合发震断层面参数,从而综合判定敖汉旗震群的发震断层面几何形态和发震构造。结果显示:通过匹配定位方法共识别、定位405个小震事件,是原有地震目录事件的5.4倍,震群主体沿NW-SE向展布于红山—八里罕断裂与赤峰—开源断裂相交区域的东侧,震源深度集中于8—10 km。断层拟合结果和最大地震震源机制解表明敖汉旗震群的发震构造应是一条左旋走滑型隐伏正断层,断层面走向为157°,倾角为84°。综合分析红山—八里罕断裂和赤峰—开源断裂的断层性质和活动特征,认为敖汉旗震群的发震断层可能是这两条深大断裂在不断活动中相互作用而形成。  相似文献   

18.
利用云南东川地区10个宽频带流动台站的连续波形数据,采用基于深度学习的自动震相拾取方法和震相关联技术,对2020年东川ML4.2地震序列分别进行绝对定位和相对定位,获得了该地震序列的高精度地震定位结果,得到东川ML4.2地震序列的212个余震事件,约为中国地震台网目录给出的余震数目的5倍,丰富了ML≤3.0余震;精定位结果表明东川ML4.2主震震源深度为5.19 km,余震震源深度集中在3~6 km,余震序列分布长轴呈NNE向展布;此次地震发生在小江断裂带西支,发震构造与乌龙拉分盆地的构造演化有关。  相似文献   

19.
汶川8.0级地震序列重新定位及其发震构造初探   总被引:10,自引:1,他引:9  
采用双差定位方法对汶川8.0级地震及其2,216次余震进行了重新定位,得到2,061次地震的震源位置,定位结果在水平向和垂直向的估算误差大致为1~2km和2~3km。8.0级主震的震中位置大致为北纬31.00°,东经103.38°,震源深度13km左右,发震构造为龙门山中央断裂。余震震中沿走向分布的总长度为330km左右,震源深度优势分布在3~20km,表现出明显的分段活动特征。南段以龙门山中央断裂活动为主,后山断裂和前山断裂也有地震发生,这3条断裂自西向东倾角似乎逐渐变缓,形成叠瓦状的破裂分布。北段龙门山中央断裂、平武-青川断裂等多条断裂参与了发震过程,地震破裂既有逆冲推覆,也有右旋走滑方式  相似文献   

20.
徐旭  徐锦承  张伟 《中国地震》2020,36(2):324-332
采用特定震源台站校正定位方法对九寨沟MS7.0地震及其余震进行了精定位研究,结果显示九寨沟地震主震深度为19km左右,余震主要分布于5~15km深度范围;与单事件定位方法相比,其余震展布和断层的线性特征更吻合,更具有平面特征;与双差定位法相比,精定位事件覆盖范围更广。精定位结果显示,断层整体为虎牙断裂西北向的延伸,根据余震分布和特定震源区的校正项分布,认为此发震断层应分南、北两段;余震区长度为40km左右,西北段宽度为10km左右,东南段宽度为6.5km左右。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号