首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The macroelement technique for modelling the nonlinear response of masonry panels is particularly efficient and suitable for the analysis of the seismic behaviour of complex walls and buildings. The paper presents a macroelement model specifically developed for simulating the cyclic in‐plane response of masonry walls, with possible applications in nonlinear static and dynamic analysis of masonry structures. The model, starting from a previously developed macroelement model, has been refined in the representation of flexural–rocking and shear damage modes, and it is capable of fairly simulating the experimental response of cyclic tests performed on masonry piers. By means of two internal degrees of freedom, the two‐node macroelement permits to represent the coupling of axial and flexural response as well as the interaction of shear and flexural damage. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
Seismic assessment of existing unreinforced masonry buildings represents a current challenge in structural engineering. Many historical masonry buildings in earthquake regions were not designed to withstand seismic loading; thus, these structures often do not meet the basic safety requirements recommended by current seismic codes and need to be strengthened considering the results from realistic structural analysis. This paper presents an efficient modelling strategy for representing the nonlinear response of unreinforced masonry components under in‐plane cyclic loading, which can be used for practical and accurate seismic assessment of masonry buildings. According to the proposed strategy, generic masonry perforated walls are modelled using an equivalent frame approach, where each masonry component is described utilising multi‐spring nonlinear elements connected by rigid links. When modelling piers and spandrels, nonlinear springs are placed at the two ends of the masonry element for describing the flexural behaviour and in the middle for representing the response in shear. Specific hysteretic rules allowing for degradation of stiffness and strength are then used for modelling the member response under cyclic loading. The accuracy and the significant potential of the proposed modelling approach are shown in several numerical examples, including comparisons against experimental results and the nonlinear dynamic analysis of a building structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
This paper presents a masonry panel model for the nonlinear static and dynamic analysis of masonry buildings suitable for the seismic assessment of new and existing structures. The model is based on an equivalent frame idealization of the structure and stems from previous research on force‐based frame elements. The element formulation considers axial, bending, and shear deformations within the framework of the Timoshenko beam theory. A phenomenological cyclic section law that accounts for the shear panel response is coupled, through equilibrium between shear and bending forces along the element, with a fiber‐section model that accounts for the axial and bending responses. The proposed panel model traces with a low computational burden and numerical stability the main aspects of the structural behavior of masonry panels and is suitable for analyses of multi‐floor buildings with a relatively regular distribution of openings and with walls and floors organized to grant a box‐like behavior under seismic loads. The model capabilities are validated though analyses of simple unreinforced masonry panels and comparisons with published experimental results. The model accuracy is strongly dependent on the fiber and shear constitutive laws used. However, the formulation is general, and laws different from those employed in this study are easily introduced without affecting the model formulation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
5.
The paper proposes a systematic comparison between two methods of analysis that are well established in the field of earthquake engineering: nonlinear dynamic analysis and nonlinear static procedure (NSP), applied to the out‐of‐plane seismic response of two masonry façades representative of many ancient Italian churches. The comparison is based on extensive numerical analyses, which focus on the flexural and torsional mechanisms, while the in‐plane damage mechanisms and the possible detachment between the façade and the lateral walls because of a poor connection have been presently disregarded. The computations, both in the static and in the dynamic field, are based on a rigid body and spring model specifically implemented for this issue, computationally efficient and equipped with a realistic model of damage and hysteresis at the mesoscale. An innovative aspect of this study is the heuristic modelling of three‐wythe masonry, to include some typical texture effects on the macroscale nonlinear response. For each façade, two different masonry textures were considered, performing extensive dynamic analyses that offered a detailed overview about the performance under earthquakes of different intensities. In parallel, NSP and the classical N2‐based seismic assessment were applied. A critical discussion and comparison of the results of the two methods is presented to rationally appraise limits and opportunities. In particular, flexural and twisting out‐of‐plane mechanisms were clearly appraised in the dynamic field, whereas NSPs were not always able to describe the collapse, because they missed the partial failures determined by higher vibration modes, as could be expected. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In modern unreinforced masonry buildings with stiff RC slabs, walls of the top floor are most susceptible to out‐of‐plane failure. The out‐of‐plane response depends not only on the acceleration demand and wall geometry but also on the static and kinematic boundary conditions of the walls. This paper discusses the influence of these boundary conditions on the out‐of‐plane response through evaluation of shake table test results and numerical modelling. As a novum, it shows that the in‐plane response of flanking elements, which are orthogonal to the wall whose out‐of‐plane response is studied, has a significant influence on the vertical restraint at the top of the walls. The most critical configuration exists if the flanking elements are unreinforced masonry walls that rock. In this case, the floor slabs can uplift, and the out‐of‐plane load‐bearing walls loose the vertical restraint at the top. Numerical modelling confirms this experimentally observed behaviour and shows that slab uplift and the difference in base and top excitation have a strong influence on the out‐of‐plane response of the walls analysed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Masonry buildings are often characterized by geometric irregularities. In many cases, such buildings meet global regularity requirements provided by seismic codes, but they are composed by irregular walls with openings. The latter are masonry walls characterized by (i) openings of different sizes, (ii) openings misaligned in the horizontal and/or vertical direction, or (iii) a variable number of openings per story. An irregular layout of openings can induce not only a nonuniform distribution of gravity loads among masonry piers but also unfavorable damage localizations resulting in a premature collapse of the wall and hence a higher seismic vulnerability. This paper is aimed at providing a simplified methodology to assess the effects of irregularities on the in‐plane seismic capacity of unreinforced masonry (URM) walls with openings. To this end, a macroelement method was developed and validated through experimental results available in the literature. The proposed methodology was based on the quantification of wall irregularities by means of geometric indices and their effects on seismic capacity of URM walls with openings through both sensitivity and regression analyses. Sensitivity analysis was based on a high number of static pushover analyses and allowed to assess variations in key seismic capacity parameters. Regression analysis let to describe each capacity parameter under varying irregularity index, providing empirical models for seismic assessment of irregular URM walls with openings. The in‐plane seismic capacity was found to be significantly affected by wall irregularities, especially in the case of openings with different heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Simplified seismic sidesway collapse analysis of frame buildings   总被引:1,自引:0,他引:1       下载免费PDF全文
This paper presents the development and assessment of a simplified procedure for estimating the seismic sidesway collapse margin ratio of building structures. The proposed procedure is based on the development of a robust database of seismic peak displacement responses of nonlinear single‐degree‐of‐freedom systems for various seismic intensities and uses nonlinear static (pushover) analysis without the need for nonlinear time history dynamic analysis. The proposed simplified procedure is assessed by comparing its collapse capacity predictions on 72 different building structures with those obtained by nonlinear incremental dynamic analyses. The proposed simplified procedure offers a simple, yet efficient, computational/analytical tool that is capable of predicting collapse capacities with acceptable accuracy for a wide variety of frame building structures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Most of the studies related to the modeling of masonry structures have by far investigated either the in‐plane (IP) or the out‐of‐plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load‐bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement‐controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the results of the tests on walls with different failure modes conducted by the authors. Afterward, the response of the wall systems is evaluated with increasing top displacement having different orientations. A set of 19 monotonic and three cyclic loading analyses are performed, and the results are discussed in terms of the variation of failure modes and load–displacement diagrams. Moreover, the results of wall capacity in each loading condition are compared with those of the ASCE41‐06 formulations. The results indicate that the direction of the resultant force, vectorial summation of IP and OP forces, of the wall is initially proportional to the ratio of stiffness in the IP and the OP directions. However, with the increase of damage, the resultant force direction inclines towards the wall's longitudinal direction regardless of the direction of the imposed displacement. Finally, recommendations are made for applicability of ASCE41‐06 formulations under different bidirectional loading conditions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
This work discusses the simplified estimation of earthquake‐induced nonlinear displacement demands as required by nonlinear static procedures, with particular attention on short‐period masonry structures. The study focuses on systems with fundamental periods between 0.1 and 0.5 s, for which inelastic amplification of the elastic displacement demand is more pronounced; hysteretic force‐displacement relationships characteristic of masonry structures are adopted, because these structures are more commonly found within the considered period range. Referring to the results of nonlinear dynamic analyses of single‐degree‐of‐freedom oscillators, some limitations of the Eurocode 8 and Italian Building Code formulations are first discussed, then an improved equation is calibrated that relates inelastic and elastic displacement demands. Numerical values of the equation parameters are obtained, considering the amount of hysteretic energy dissipation associated with various damage mechanisms observed in masonry structures. Safety factors are also calculated to determine several percentiles of the displacement demand. It is shown that the proposed equation can be extended to more dissipative systems. Finally, the same formulation is adapted to the estimation of seismic displacements when elastic analysis procedures are employed. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
The nonlinear behavior of reinforced concrete (RC) members represents a key issue in the seismic performance assessment of structures. Many structures constructed in the 1980s or earlier were designed based on force limits; thus they often exhibit brittle failure modes, strength and stiffness degradation, and severe pinching effects. Field surveys and experimental evidence have demonstrated that such inelastic responses affect the global behavior of RC structural systems. Efforts have been made to consider the degrading stiffness and strength in the simplified nonlinear static procedures commonly adopted by practitioners. This paper investigates the accuracy of such procedures for the seismic performance assessment of RC structural systems. Refined finite element models of a shear critical bridge bent and a flexure‐critical bridge pier are used as reference models. The numerical models are validated against experimental results and used to evaluate the inelastic dynamic response of the structures subjected to earthquake ground motions with increasing amplitude. The maximum response from the refined numerical models is compared against the results from the simplified static procedures, namely modified capacity spectrum method and coefficient method in FEMA‐440. The accuracy of the static procedures in estimating the displacement demand of a flexure‐critical system and shear‐critical system is discussed in detail. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Numerous research studies have proved that numerical models aiming at an accurate evaluation of the seismic response of RC framed buildings cannot ignore the inelastic behaviour of infills and the interaction between infill and frame elements. To limit the high computational burden of refined non-linear finite element models, in the latest decades, many researchers have developed simplified infill models by means of single or multiple strut-elements. These models are low time-consuming and thus adequate for static and dynamic analyses of multi-storey structures. However, their simulation of the seismic response is sometimes unsatisfying, particularly in the presence of infill walls with regular or (particularly) irregular distributions of openings. This paper presents a new 2D plane macro-element, which provides a refined simulation of the non-linear cyclic response of infilled framed structures at the expense of a limited computational cost. The macro-element consists of an articulated quadrilateral panel, a single 1D diagonal link, and eight 2D links and is able to model the shear and flexural behaviour of the infill and the non-linear flexural/sliding interaction between infill and surrounding frame. The proposed macro-element has been implemented into the open source software OpenSees and used to simulate the response of single-storey, single-span RC infilled frame prototypes tested by other authors. The above prototypes are selected as made of different masonry units and characterised by full or open geometric configuration.  相似文献   

13.
This paper addresses the problem of assessing the seismic resistance of brick masonry walls subject to out‐of‐plane bending. A simplified linearized displacement‐based procedure is presented along with recommendations for the selection of an appropriate substitute structure in order to provide the most representative analytical results. A trilinear relationship is used to characterize the real nonlinear force–displacement relationship for unreinforced brick masonry walls. Predictions of the magnitude of support motion required to cause flexural failure of masonry walls using the linearized displacement‐based procedure and quasi‐static analysis procedures are compared with the results of experiments and non‐linear time‐history analyses. The displacement‐based procedure is shown to give significantly better predictions than the force‐based method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
One of the main challenges in earthquake risk mitigation is the assessment of existing buildings not designed according to modern codes and the development of effective techniques to strengthen these structures. Particular attention should be given to RC frame structures with masonry infill panels, as demonstrated by their poor performance in recent earthquakes in Europe. Understanding the seismic behaviour of masonry‐infilled RC frames presents one of the most difficult problems in structural engineering. Analytical tools to evaluate infill–frame interaction and the failure mechanisms need to be further studied. This research intends to develop a simplified macro‐model that takes into account the out‐of‐plane behaviour of the infill panels and the corresponding in‐plane and out‐of‐plane interaction when subjected to seismic loadings. Finally, a vulnerability assessment of an RC building will be performed in order to evaluate the influence of the out‐of‐plane consideration in the building response. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A simplified numerical model was used to investigate the out‐of‐plane seismic response of vertically spanning unreinforced masonry (URM) wall strips. The URM wall strips were assumed to span between two flexible diaphragms and to develop a horizontal crack above the wall mid‐height. Three degrees of freedom were used to accommodate the wall displacement at the crack height and at the diaphragm connections, and the wall dynamic stability was studied. The equations of dynamic motion were obtained using principles of rocking mechanics of rigid bodies, and the formulae were modified to include semi‐rigid wall behaviour. Parametric studies were conducted that included calculation of the wall response for different values of diaphragm stiffness, wall properties, applied overburden, wall geometry and earthquake ground motions. The results of the study suggest that stiffening the horizontal diaphragms of typical low‐rise URM buildings will amplify the out‐of‐plane acceleration demand imposed on the wall and especially on the wall–diaphragm connections. It was found that upper‐storey walls connected to two flexible diaphragms had reduced stability for applied earthquake accelerograms having dominant frequency content that was comparable with the frequency of the diaphragms. It was also found that the applied overburden reduced wall stability by reducing the allowable wall rotations. The results of this study suggest that the existing American Society of Civil Engineers recommendations for assessment of vertically spanning walls overestimate the stability of top‐storey walls in multi‐storey buildings in high‐seismic regions or for walls connected to larger period (less stiff) diaphragms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
An analytical model describing the flexural response of vertically spanning out‐of‐plane loaded unreinforced masonry walls is presented in this paper. The model is based on the second‐order Euler‐Bernoulli beam theory and captures important characteristics of the out‐of‐plane response of masonry walls that have been observed in experimental tests and from numerical studies but for which an analytical solution was still lacking: the onset and the evolution of cracking, the peak strength of the out‐of‐plane loaded walls, and the softening of the response due to P ?Δ effects. The model is validated against experimental results, and the comparison shows that the model captures both the prepeak and postpeak response of the walls. From the analytical model of the force‐displacement curve, a formula for the maximum out‐of‐plane strength of the walls is derived, which can be directly applied in engineering practice.  相似文献   

17.
The seismic assessment of the local failure modes in existing masonry buildings is currently based on the identification of the so‐called local mechanisms, often associated with the out‐of‐plane wall behavior, whose stability is evaluated by static force‐based approaches and, more recently, by some displacement‐based proposals. Local mechanisms consist of kinematic chains of masonry portions, often regarded as rigid bodies, with geometric nonlinearity and concentrated nonlinearity in predefined contact regions (unilateral no‐tension behavior, possible sliding with friction). In this work, the dynamic behavior of local mechanisms is simulated through multi‐body dynamics, to obtain the nonlinear response with efficient time history analyses that directly take into account the characteristics of the ground motion. The amplification/filtering effects of the structure are considered within the input motion. The proposed approach is validated with experimental results of two full‐scale shaking‐table tests on stone masonry buildings: a sacco‐stone masonry façade tested at Laboratório Nacional de Engenharia Civil and a two‐storey double‐leaf masonry building tested at European Centre for Training and Research in Earthquake Engineering (EUCENTRE). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Seismic shocks occur sometimes as a sequence, close in space and time, of destructive events of comparable intensity. In these cases, a significant portion of the damage to historical buildings can be related with the cumulated damage on structures that become progressively more vulnerable. This research investigates the specific increase of damage determined by a sequence of strong ground motions, focusing the interest on the out‐of‐plane response of 2 church masonry façades. The dynamic analyses were performed by a specific rigid body and spring model RBSM, which only accounts for out‐of‐plane damage mechanisms. Two idealized models of façade, each made of 2 different masonry bonds, have been studied by applying various sequences of recorded accelerograms. The results highlighted a complex relationship between the spectral content of the seismic shocks and the characteristics of the structures that change in the course of the loading sequence due to the development of damage. The Housner spectral intensity proved to be a reliable scalar measure of the ground motion destructiveness for these façades. Moreover, when considering a design‐consistent accelerogram that causes a relevant damage pattern, ie, with a significant elongation of the effective first period of vibration, the numerical results indicated a possible spectral intensity threshold below which the occurrence of repeated seismic shocks, both before and after the reference design shock, can be considered as irrelevant. On the other hand, a catastrophic increase of damage should be expected when this threshold is overcome.  相似文献   

19.
The definition of adequate simplified models to assess the in‐plane load‐bearing capacity of masonry piers, in terms of both strength and displacement, plays a fundamental role in the seismic verification of masonry buildings. In this paper, a critical review of the most widespread strength criteria present in the literature and codes to interpret the failure modes of piers (rocking, crushing, bed joint sliding or diagonal cracking) are proposed. Models are usually based on an approximate evaluation of the stress state produced by the external forces in a few points/sections and on its assessment with reference to a limit strength domain. The aim of the review is to assess their reliability by discussing the hypotheses, which they are based on (assumed stress states; choice of reference points/sections on which to assess the pier strength; characteristics of the limit strength domain) and to verify the conditions for their proper use in practice, in terms of both stress fields (depending on the geometry of the pier, boundary conditions and applied loads) and types of masonry (i.e. regular brick masonry vs rubble stone masonry). In order to achieve these objectives, parametric nonlinear finite element analyses are performed and different experimental data available in the literature are analysed and compared. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
This paper describes the results of an experimental and numerical study that focused on multi‐directional behavior of unreinforced masonry walls and established the requisite of the related proposed design equations. The tests were conducted following several sets of multi‐directional loading combinations imposed on the top plane of the wall along with considering monotonic and cyclic quasi‐static loading protocols. Various boundary conditions, representing possible wall–roof connections, were also considered for different walls to investigate the influence of rotation of the top plane of the wall on the failure modes. The results of the tests were recorded with a host of high precision data acquisition systems, showing three‐dimensional displacements of a grid on the surface of the wall. Finite element models of the walls are developed using the commercial software package ABAQUS/Explicit compiled with a FORTRAN subroutine (VUMAT) written by the authors. The experimental results were then used to validate the finite element models and the developed user‐defined material models. With the utility of validated models, a parametric study was performed on a set of parameters with dominant influence on the behavior of the wall system under in‐plane and out‐of‐plane loading combinations. The experimental and numerical results are finally used to investigate the adequacy of ASCE 41 empirical equations, and some insights and recommendations are made. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号