首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 117 毫秒
1.
The random long wave runup on a beach of constant slope is studied in the framework of the rigorous solutions of the nonlinear shallow water theory. These solutions are used for calculation of the statistical characteristics of the vertical displacement of the moving shoreline and its horizontal velocity. It is shown that probability characteristics of the runup heights and extreme values of the shoreline velocity coincide in the linear and nonlinear theory. If the incident wave is represented by a narrow-band Gaussian process, the runup height is described by a Rayleigh distribution. The significant runup height can also be found within the linear theory of long wave shoaling and runup. Wave nonlinearity nearshore does not affect the Gaussian probability distribution of the velocity of the moving shoreline. However the vertical displacement of the moving shoreline becomes non-Gaussian due to the wave nonlinearity. Its statistical moments are calculated analytically. It is shown that the mean water level increases (setup), the skewness is always positive and kurtosis is positive for weak amplitude waves and negative for strongly nonlinear waves. The probability of the wave breaking is also calculated and conditions of validity of the analytical theory are discussed. The spectral and statistical characteristics of the moving shoreline are studied in detail. It is shown that the probability of coastal floods grows with an increase in the nonlinearity. Randomness of the wave field nearshore leads to an increase in the wave spectrum width.  相似文献   

2.
《Coastal Engineering》1999,36(3):219-242
This paper presents numerical simulations and analytical predictions of key aspects of swash oscillations on a steep beach. Simulations of the shoreline displacement based on bore run-up theory are found to give excellent agreement with recent experimental data for regular waves, wave groups and random waves. The theory is used to derive parameters that predict the onset of swash saturation and the spectral characteristics of the saturated shoreline motion. These parameters are again in good agreement with the measured laboratory data and are also consistent with previous experimental data. Simulation of irregular wave run-up using a series of overlapping monochromatic swash events is found to reproduce typical features of swash oscillations and can accurately describe both the low and high frequency spectral characteristics of the swash zone. In particular, the low frequency components of the run-up can be modelled directly using a sequence of incident short wave bores, with no direct long wave input to the numerical simulations. This suggests that wave groupiness must be accounted for when modelling shoreline oscillations.  相似文献   

3.
In this paper we investigate the propagation of tsunamis generated by landslides around the coast of an island to understand the propagation and trapping mechanisms of the waves. Records of shoreline displacement have been processed using the wavenumber–frequency analysis (k–f). We identify the dispersion relation followed by the waves that propagate alongshore. It appears that the 0th-order edge wave mode is the only one relevant for shoreline run-up. Furthermore, it is shown that the edge wave dispersion relation is a quantitative tool to estimate the phase and group wave celerities. A very good agreement is found when comparing the wave celerities as calculated from the experimental records, against those predicted by the edge wave theory. Furthermore the analysis of the tsunami around the island has been carried out by means of the two-dimensional k–f. Using as input data a high-space resolution dataset of free surface elevations it is found that other modes, both trapped (1st-order edge waves) and non-trapped (free radiating waves), occur during the propagation.  相似文献   

4.
This paper provides an overview of a new large scale laboratory data set on the kinematics of breaking tsunami wavefronts. The aim of the experiments was to provide an open access data set for model testing, calibration and verification, with particular emphasis on fluid kinematics in the wave breaking and run-up (swash) zones. The experiments were performed over a composite slope in the tsunami wave basin at the O. H. Hinsdale Wave Research Laboratory at Oregon State University. Data for ten different wave conditions were collected, including non-breaking and breaking waves, and both shore breaks and fully developed long bores.Surface elevation and fluid kinematics were measured with a closely spaced array of surface piercing wave gauges, non-contact ultrasonic wave gauges and four 3-D side-looking Acoustic Doppler Velocimeters. The array was traversed from the nearshore (depth = 0.2 m) to the middle and upper run-up zone, providing kinematic data at 30 cross-shore locations. Video was also recorded from 4 cameras covering the propagation, breaking and run-up zones. Surface elevation, flow velocities and the wave maker displacement were also recorded to provide offshore boundary conditions.The experiments include conditions with wave heights up to 0.55 m, notional wave periods up to 20 s and run-up lengths of up to 15.2 m on a 1/30 slope. In terms of the slope in the shoaling and breaker zones, the data correspond to Iribarren numbers in the range of 0.26–5.6. Raw, calibrated and processed data are stored with open access within the OSU Tsunami Wave Basin Experiment Notebook, which provides full access to all the wave maker control signals, data, instrument coordinates, and processing and plotting software. This paper serves as an introduction to the data set, demonstrates data quality and provides an initial analysis of some key parameters that govern the impact of tsunami events, including run-up versus offshore wave conditions and nearshore bore height, the maximum inundation depths at the original shoreline position, and the time to maximum inundation depth and flow reversal. Examples of temporal and convective accelerations and turbulent flow components are also presented to illustrate further details of the kinematics.  相似文献   

5.
Physical modeling of long waves in laboratories is still a valuable and trustworthy option to study long wave propagation, run-up and near-shore dynamics, and complex nonlinear interactions of approaching wave and macroroughness elements on the shore. Yet, problems develop if full-scale measured time series of real tsunami or numerically derived time series are to be adequately modeled in a timewise meaningful and scaled experiment. Hence, an in-depth review of the state-of-the-art long wave generation methods in laboratory wave flumes and basins is conducted. The study reveals that improved laboratory techniques could significantly contribute to enhance the accuracy and applicability of experimental tests. This would give important information on the interaction between the shoreline and infrastructures on land in order to deduce valuable information on the topic of tsunami inundation processes or wave-induced impacts on houses. In this light, a novel wave generation technique using high-capacity pipe pumps under some control and a loop-feedback control is meticulously developed and discussed. The wave generation facility is successfully tested for single sinusoidal leading depression waves as well as for prolonged solitary and leading depression N-waves of varying duration. The long wave generation technique is further assessed in terms of its capability to generate long waves abstracted from prototype conditions. The influence of controller settings on the resulting waves is discussed.  相似文献   

6.
张景新  刘桦 《海洋工程》2009,(3):553-564
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave run-up is further analyzed for various settings of barrier height and distance between the barrier and the wall, i.e. the chamber length. For nonlinear waves and random sea waves, a numerical model is extended to investigate the effect parameters of the barrier on the wave run-up against the seawall. Not only the numerical simulations, but also the analytical results illustrate that the wave run-up on the seawall depends very much on the distance between the barrier and the vertical seawall.  相似文献   

7.
The boundary integral equation method (BIEM) is developed as a tool for studying two-dimensional, nonlinear water wave problems, including the phenomena of wave generation, propagation and run-up. The wave motions are described by a potential flow theory. Nonlinear free-surface boundary conditions are incorporated in the numerical formulation. Examples are given for either a solitary wave or two successive solitary waves. Special treatment is developed to trace the run-up and run-down along a shoreline. The accuracy of the present scheme is verified by comparing numerical results with experimental data of maximum run-up.  相似文献   

8.
Articulated concrete block mattress revetment (ACB Mats) is an appropriate revetment for shore protection and breakwater. ACB Mats act as an integrated and flexible revetment against waves. There is a necessary need of investigation due to the lack of exact ACB Mat design relations in the estimation of hydrodynamic processes including wave run-up and run-down parameters. In the present study, using proper laboratory equipment, run-up and run-down processes were investigated under irregular waves and also granular and geotextile filters’ conditions. In this study, wave run-up and run-down estimation relations in ACB Mat revetment with the open area were explored for the first time. As the obtained results showed, relative maximum wave run-up and rundown are desirable for all conditions. Using a geotextile layer under ABC Mat caused a 14% increase in relative wave run-up values compared to granular filter. Further, in the run-down process, geotextile filter caused a 40% decrease in relative wave run-down values. The intensive decrease in run-down value occurred due to the outflow rate of the water from inside the filter with delay during water attack toward downward, which can be effective on structure stability significantly and should be considered in designs.  相似文献   

9.
Submerged barriers are constructed in coastal zones for shoreline or harbor protection or to prevent the beach erosion. In the present study, the wave run-up on a vertical seawall protected by a submerged barrier is analyzed. The physical configurations include a rigid barrier and a long channel of finite depth. For linear water waves, by matching the velocity along the barrier and along the gap, the systems of linear equations about the velocity potentials are obtained. The wave run-up is further analyzed ...  相似文献   

10.
We study the run-up of long solitary waves of different polarities on a beach in the case of composite bottom topography: a plane sloping beach transforms into a region of constant depth. We confirm that nonlinear wave deformation of positive polarity (wave crest) resulting in an increase in the wave steepness leads to a significant increase in the run-up height. It is shown that nonlinear effects are most strongly pronounced for the run-up of a wave with negative polarity (wave trough). In the latter case, the run-up height of such waves increases with their steepness and can exceed the amplitude of the incident wave.  相似文献   

11.
波浪的方向分布对波浪的传播及其与工程结构物的作用都具有明显影响,目前现有的研究大多是基于单向波浪进行的。为了研究方向分布对群墩结构上的爬高影响,基于规则波浪与群墩作用的理论解,结合多向不规则波浪的造波方法,建立了多向不规则波浪与群墩作用的计算模型,同时进行了物理模型试验对模型的有效性进行了验证。系统地对群墩周围及表面上的波浪爬高进行了计算分析,结果表明,方向分布对波浪爬高具有较大的影响,且不同位置处的影响并不相同,在实际的工程设计中如果按照单向波浪计算,可能低估或者高估群墩周围的爬高。  相似文献   

12.
Many low-lying tropical and sub-tropical atolls fringed by coral reefs are susceptible to coastal inundation during extreme wave events. Previous studies have shown that the infragravity (IG) wave is the dominant component of shoreline run-up compared to the sea and swell (SS) wave and the wave-induced setup. To better understand both the SS and IG wave dynamics over a fringing reef with various morphologies, a series of laboratory experiments were conducted in a wave flume based on an idealized fringing reef profile. The shoreline responses of waves to different reef morphologies with/without the reef crest, the lagoon and the reef surface roughness were examined. IG wave resonance on the reef flat was identified by a spectral analysis of the shoreline wave records. Subsequently, a numerical model based on the Boussinesq equations was validated by the experimental data. The model was then applied to investigate the impacts of varying reef morphologic features (fore-reef slope, reef-crest width, lagoon width, and reef roughness coefficient) on the shoreline wave motions.  相似文献   

13.
This paper presents new laboratory experiments carried out in a supertank (300 m × 5 m × 5.2 m) of breaking solitary waves evolution on a 1:60 plane beach. The measured data are employed to re-examine existing formulae that include breaking criterion, amplitude evolution and run-up height. The properties of shoreline motion, underwater particle velocity and scale effect on run-up height are briefly discussed. Based on our analyses, it is evidently found that there exist five zones during a wave amplitude evolution course on the present mild slope. A simple formula which is capable of predicting maximum run-up height for a breaking solitary wave on a uniform beach with a wide range of beach slope (1:15–1:60) is also proposed. The calculated results from the present model agree favorably with available laboratory data, indicating that our method is compatible with other predictive models.  相似文献   

14.
This work presents an experimental study of a submerged plate used as a breakwater for coastal areas protection. Questions addressed concern the influence of current on the reflective power of the plate, and its influence on the hydrodynamic loads exerted on it. Results concern both monochromatic and irregular waves. Generally speaking, an influence of the current is found, changing the reflecting power of the structure up to 50%. A homogenized behavior of the loads and moments is found in the presence of currents, meaning that the load values become less sensitive to the frequency. Furthermore, the influence of waves reflected by the wave absorber, representing partially reflective conditions at the shore, is found to be of same order in the absence of current. In any case, the linear behavior of the breakwater is emphasized through the irregular waves approach.  相似文献   

15.
Solitary waves have been commonly used as an initial condition in the experimental and numerical modelling of tsunamis for decades. However, the main component of a tsunami waves acts at completely different spatial and temporal scales than solitary waves. Thus, use of solitary waves as approximation of a tsunami wave may not yield realistic model results, especially in the coastal region where the shoaling effect restrains the development of the tsunami wave. Alternatively, N-shaped waves may be used to give a more realistic approximation of the tsunami wave profile. Based on the superposition of the sech2(*) waves, the observed tsunami wave profile could be approximated with the N-shaped wave method, and this paper presents numerical simulation results based on the tsunami-like wave generated based on the observed tsunami wave profile measured in the Tohoku tsunami. This tsunami-like wave was numerically generated with an internal wave source method based on the two-phase incompressible flow model with a Volume of Fluid (VOF) method to capture the free surface, and a finite volume scheme was used to solve all the governing equations. The model is first validated for the case of a solitary wave propagating within a straight channel, by comparing its analytical solutions to model results. Further, model comparisons between the solitary and tsunami-like wave are then made for (a) the simulation of wave run-up on shore and (b) wave transport over breakwater. Comparisons show that use of these largely different waveform shapes as inputs produces significant differences in overall wave evolution, hydrodynamic load characteristics as well as velocity and vortex fields. Further, it was found that the solitary wave uses underestimated the total energy and hence underestimated the run-up distance.  相似文献   

16.
The unsteady shallow-water vorticity equation dominating nearshore flow on a gently sloping plane beach has been solved by using the implicit finite difference technique under the assumption of constant viscosity over the flow field. The result of computation showed that pairs of nearshore circulation cells are generated through the nonlinear effect of flow in the boundary layer formed by the run-up movement of a standing edge wave along a shoreline and the paired cell has the spacing of half a wavelength of the edge wave. When the leaky-mode standing wave of Lamb with the same wave period as the edge wave and the wave crest parallel to a shoreline was superposed on the edge wave field, the alongshore spacing of circulation cell doubled and seaward flow in the cell concentrated in the narrow zone like a ‘rip current’. Although no effect of breaking waves is considered in the computation, such a mechanism may also generate some kinds of nearshore circulation systems observed in a sea.  相似文献   

17.
Sea-level is one of the principal determinants of shoreline position. Sea-level rise induces or accelerates on-going shore retreat since deeper water decreases wave refraction, thus increasing littoral drift, and also allowing waves to arrive closer to shore before breaking. Tidal records from the US East and Gulf coasts indicate a relative sea-level rise of approximately 0.3m has occurred during the past century. Concomitantly, erosion has been prevalent almost everywhere along these sandy shorelines. Ocean City, Maryland, was selected as a case study site to determine historical shoreline changes and to project future beach erosion based on accelerated rates of sea-level rise. During the past 130 years (1850–1980), this shore has retreated approximately 75m and many highrise buildings at Ocean City are now threatened during storm conditions. Accelerated sea-level rise is expected to increase the rate of retreat by a factor of 2 to 5 based on analysis of present trends. This significantly reduces the planning time available for mitigating the hazard and increases the vulnerability of this urbanised barrier through time.  相似文献   

18.
This paper describes the application of Canonical Correlation Analysis (CCA) to derive forcing–response relations between the wave climate and shoreline position on a macrotidal gravel barrier located in the southwest of the U.K., and to develop a tool to determine shoreline positions from wave records. The data sequences comprise wave climate recorded by a nearshore directional wave buoy and video-derived shorelines over a time span of one year and a half. The hydrodynamic conditions are used to determine the probability density function of wave heights and alongshore energy fluxes. These are then related to shoreline change through a CCA analysis. The CCA analysis identifies patterns of behaviour of the wave conditions and the shoreline position, and the relation between both patterns is found to provide useful information about the beach response to wave action. The analysis shows that the movement of sediment is greater at the southern end of the study area and that there is an immediate shoreline response to the wave action. In the case of coastal management it is more often the case that wave forecasts are available on a routine basis. The ability of the CCA to provide useful estimates of shorelines from wave conditions was tested by using measured waves to calculate the corresponding shoreline position from additional data at the end of the sequences. Shoreline positions determined with the CCA agreed well with the measured ones. Thus, the CCA is found to be a useful tool to determine unknown shoreline positions and support effective coastal management if good quality hydrodynamic and morphological data are available to input into the initial set-up of the technique.  相似文献   

19.
An array of large concentric porous cylinder arrays is mounted in shallow water exposed to cnoidal waves. The interactions between waves and cylinders are studied theoretically using an eigenfunction expansion approach. Semi-analytical solutions of hydrodynamic loads and wave run-up on each cylinder are obtained using first approximation to cnoidal waves. The square array configuration of four-legged identical concentric porous cylinder is investigated in present study. Numerical results reveal the variation of dimensionless wave force and wave run-up on individual cylinder with angle of incidence, porosity parameter, spacing between outer and inner cylinders, spacing between concentric porous cylinders and wave parameter. Different mechanism of wave force is found under different range of scattering parameter.  相似文献   

20.
Extreme value statistics for wave run-up on a natural beach   总被引:1,自引:0,他引:1  
Statistics of wave run-up maxima have been calculated for 149 35-minutes data runs from a natural beach. During the experiment incident wave height varied from 0.4 to 4.0 m, incident wave period from 6 to 16 s, and beach face slope from 0.07 to 0.20. Four extreme statistics were calculated; the maximum run-up height during each run, the 2% exceedence level of shoreline elevation, the 2% exceedence height for individual run-up peaks, and the 2% exceedence level for swash height as determined by the zero-upcrossing method. These statistics were best parameterized when normalized by the incident significant wave height and plotted against the Iribarren number, ξ = β/(H/L0)1/2. The swash data (with set-up removed) showed less scatter than total run-up (with set-up included). For Iribarren number greater than 1.5 the run-up was dominated by the incident frequencies, for lower Iribarren number longer period motions dominated the swash. A reasonable value of wave steepness for a fully developed storm sea is 0.025 so that a storm Iribarren number can be estimated as 6.3 times the beach slope. Using this and an offshore design wave height, the included graphs may provide guidance in determining a design run-up height.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号