首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Laterally extensive sand sheets deposited by the 26th December 2004 Asian tsunami provide a valuable modern analogue for comparison with wash over deposits of unknown origin. In many places on the east coast of India, distinct deposits of marine sand drape the landscape and overlie the muddy soils of the coastal plain. This paper discusses detailed measurements of coastal topography, tsunami flow height, and deposit thickness made at Kalpakkam, India. Five transects were examined in detail to assess the sedimentology and spatial distribution of the tsunami deposit. Near the mean water line, the tsunami eroded approximately 10–25 cm of sand from the beach and berm. At Kalpakkam the sand sheet deposited by the tsunami begins 25 m from the shore extending 420 m inland where it becomes thin and patchy approximately 30 m from the limit of inundation. In some cases, the deposit consists of 2 to 4 normally graded units, with coarse sand near the base and fine sand at the top, a characteristic observed in many tsunami deposits worldwide. In many places, the deposits also contain numerous thin laminated units, a characteristic usually associated with storm over wash. The presence of the laminated beds is indicative of the complexity of tsunami sedimentation on the coast. Such observations are essential to the formation of definitive facies models for palaeo-overwash studies that are capable of distinguishing between sediments deposited by storms or tsunami.  相似文献   

2.
The ∼8.15 ka Storegga submarine slide was a large (∼3000 km3), tsunamigenic slide off the coast of Norway. The resulting tsunami had run-up heights of around 10–20 m on the Norwegian coast, over 12 m in Shetland, 3–6 m on the Scottish mainland coast and reached as far as Greenland. Accurate numerical simulations of Storegga require high spatial resolution near the coasts, particularly near tsunami run-up observations, and also in the slide region. However, as the computational domain must span the whole of the Norwegian-Greenland sea, employing uniformly high spatial resolution is computationally prohibitive. To overcome this problem, we present a multiscale numerical model of the Storegga slide-generated tsunami where spatial resolution varies from 500 m to 50 km across the entire Norwegian-Greenland sea domain to optimally resolve the slide region, important coastlines and bathymetric changes. We compare results from our multiscale model to previous results using constant-resolution models and show that accounting for changes in bathymetry since 8.15 ka, neglected in previous numerical studies of the Storegga slide-tsunami, improves the agreement between the model and inferred run-up heights in specific locations, especially in the Shetlands, where maximum run-up height increased from 8 m (modern bathymetry) to 13 m (palaeobathymetry). By tracking the Storegga tsunami as far south as the southern North sea, we also found that wave heights were high enough to inundate Doggerland, an island in the southern North Sea prior to sea level rise over the last 8 ka.  相似文献   

3.
Tsunami hazard in the Makran Subduction Zone (MSZ), off the southern coasts of Iran and Pakistan, was studied by numerical modeling of historical tsunami in this region. Although the MSZ triggered the second deadliest tsunami in the Indian Ocean, among those known, the tsunami hazard in this region has yet to be analyzed in detail. This paper reports the results of a risk analysis using five scenario events based on the historic records, and identifies a seismic gap area in western Makran off the southern coast of Iran. This is a possible site for a future large earthquake and tsunami. In addition, we performed numerical modeling to explain some ambiguities in the historical reports. Based on the modeling results, we conclude that either the extreme run-up of 12–15 m assigned for the 1945 Makran tsunami in the historical record was produced by a submarine landslide triggered by the parent earthquake, or that these reports are exaggerated. The other possibility could be the generation of the huge run-up heights by large displacements on splay faults. The results of run-up modeling reveal that a large earthquake and tsunami in the MSZ is capable of producing considerable run-up heights in the far field. Therefore, it is possible that the MSZ was the source of the tsunami encountered by a Portuguese fleet in Dabhul in 1524.  相似文献   

4.
As a first step towards the development of inundation maps for the northwestern Indian Ocean, we simulated the near-field inundation of two large tsunami in the Makran subduction zone (MSZ). The tsunami scenarios were based on large historical earthquakes in the region. The first scenario included the rupture of about 500 km of the plate boundary in the eastern MSZ, featuring a moment magnitude of Mw 8.6. The second scenario involved the full rupture of the plate boundary resulting from a Mw 9 earthquake. For each scenario, the distribution of tsunami wave height along the coastlines of the region is presented. Also, detailed runup modeling was performed at four main coastal cities in the region for the second scenario. To investigate the possible effect of splay fault branching on tsunami wave height, a hypothetical splay fault was modeled which showed that it can locally increase the maximum wave height by a factor of 2. Our results showed that the two tsunami scenarios produce a runup height of 12-18 m and 24-30 m, respectively. For the second scenario, the modeled inundation distance was between 1 and 5 km.  相似文献   

5.
This paper presents new laboratory experiments carried out in a supertank (300 m × 5 m × 5.2 m) of breaking solitary waves evolution on a 1:60 plane beach. The measured data are employed to re-examine existing formulae that include breaking criterion, amplitude evolution and run-up height. The properties of shoreline motion, underwater particle velocity and scale effect on run-up height are briefly discussed. Based on our analyses, it is evidently found that there exist five zones during a wave amplitude evolution course on the present mild slope. A simple formula which is capable of predicting maximum run-up height for a breaking solitary wave on a uniform beach with a wide range of beach slope (1:15–1:60) is also proposed. The calculated results from the present model agree favorably with available laboratory data, indicating that our method is compatible with other predictive models.  相似文献   

6.
The tsunami similar to the one that has occurred in December 26, 2004 (Boxing Day Tsunami) in the Indian Ocean is simulated using the expression derived from Modified Weibull Distribution (for maximum wave height simulation) for extreme wave height predictions. The tuning coefficient plays a significant role in estimating the tsunami heights at various stages. It follows well defined mathematical laws at different stages. It is time dependent in the first three stages and depth dependent in the last two stages. The beach run-up heights estimated by the expression derived from the work-energy relation are comparable with observed values with reasonable accuracy.  相似文献   

7.
The tsunami similar to the one that has occurred in December 26, 2004 (Boxing Day Tsunami) in the Indian Ocean is simulated using the expression derived from Modified Weibull Distribution (for maximum wave height simulation) for extreme wave height predictions. The tuning coefficient plays a significant role in estimating the tsunami heights at various stages. It follows well defined mathematical laws at different stages. It is time dependent in the first three stages and depth dependent in the last two stages. The beach run-up heights estimated by the expression derived from the work-energy relation are comparable with observed values with reasonable accuracy.  相似文献   

8.
Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on field observations, we found that the survival rate of mangroves increased with increasing stem diameter. Specifically, we found that 72% of Rhizophora trees with a 25–30 cm stem diameter survived the tsunami impact, whereas only 19% with a 15–20 cm stem diameter survived. We simulated the 2004 Indian Ocean tsunami using the nonlinear shallow-water wave theory to reproduce the tsunami inundation flow and investigated the bending moment acting on the mangrove trees. Results of the numerical model showed that the tsunami inundated areas along the mangrove creeks, and its current velocity reached 5.0 m s−1. Based on the field measurements and numerical results, we proposed a fragility function for mangroves, which is the relationship between the probability of damage and the bending stress caused by the maximum bending moment. We refined the numerical model to include the damage probability of mangrove forests using the obtained fragility function to investigate the tsunami reduction effect of mangrove forest. Under simple numerical conditions related to the mangrove forest, ground level, and incident wave, the model showed that a mangrove forest of Rhizophora sp. with a density of 0.2 trees m−2 and a stem diameter of 15 cm in a 400 m wide area can reduce the tsunami inundation depth by 30% when the incident wave is assumed to have a 3.0 m inundation depth and a wave period of 30 min at the shoreline. However, 50% of the mangrove forest is destroyed by a 4.5 m tsunami inundation depth, and most of the mangrove forest is destroyed by a tsunami inundation depth greater than 6 m. The reduction effect of tsunami inundation depth decreased when the tsunami inundation depth exceeded 3 m, and was mostly lost when the tsunami inundation depth exceeded 6 m.  相似文献   

9.
Field experiments were conducted on a low-gradient, high-energy sandy beach (Truc Vert, France) and a steep, low-energy gravel beach (Slapton, UK) to examine alongshore-directed currents within the swash zone. At Truc Vert, data were collected over 33 tidal cycles with offshore significant wave heights of 1–4 m and periods of 5–12 s. At Slapton data were collected during 12 tides with wave heights of 0.3–1 m and periods of 4–9 s. The swash motion was predominantly at infragravity frequencies at Truc Vert and incident frequencies at Slapton.  相似文献   

10.
Catastrophic failures of many tsunami barriers along the affected coasts during the 2011 Tohoku earthquake tsunami has prompted extensive investigation into improving and revising design codes for tsunami defence structures. To date, researchers and coastal engineers are investigating to understand the failure mechanisms and to find solutions so that the structures merely remain intact in the extreme event such as tsunami. Thus, the present work is motivated to experimentally study tsunami-induced bore pressures exerted on vertical seawalls; a solid vertical wall and a porous vertical seawall that consisted of a perforated front wall and a solid rear wall. Bores with various heights and velocities were generated by using the dam-break method. A porous seawall with 20% porosity of perforated front wall was used in this study. Bore pressures exerted on the solid rear wall and chamber oscillations that occurred in the experiments were also discussed. The experimental results showed that multiple peak pressures were observed during bore run-up phase in the time series of bore impacts. A predictive equation to estimate the maximum bore pressure on a perforated seawall was developed using multiple regression analysis. The proposed equation was also compared with previous empirical formulas.  相似文献   

11.
In this paper we review and re-examine the classical analytical solutions for run-up of periodic long waves on an infinitely long slope as well as on a finite slope attached to a flat bottom. Both cases provide simple expressions for the maximum run-up and the associated flow velocity in terms of the surf-similarity parameter and the amplitude to depth ratio determined at some offshore location. We use the analytical expressions to analyze the impact of tsunamis on beaches and relate the discussion to the recent Indian Ocean tsunami from December 26, 2004. An important conclusion is that extreme run-up combined with extreme flow velocities occurs for surf-similarity parameters of the order 3–6, and for typical tsunami wave periods this requires relatively mild beach slopes. Next, we compare the theoretical solutions to measured run-up of breaking and non-breaking irregular waves on steep impermeable slopes. For the non-breaking waves, the theoretical curves turn out to be superior to state-of-the-art empirical estimates. Finally, we compare the theoretical solutions with numerical results obtained with a high-order Boussinesq-type method, and generally obtain an excellent agreement.  相似文献   

12.
植被斜坡岸滩海啸波消减数值模拟研究   总被引:1,自引:0,他引:1  
An explicit one-dimensional model based on the shallow water equations(SWEs) was established in this work to simulate tsunami wave propagation on a vegetated beach. This model adopted the finite-volume method(FVM)for maintaining the mass balance of these equations. The resistance force caused by vegetation was taken into account as a source term in the momentum equation. The Harten–Lax–van Leer(HLL) approximate Riemann solver was applied to evaluate the interface fluxes for tracing the wet/dry transition boundary. This proposed model was used to simulate solitary wave run-up and long-periodic wave propagation on a sloping beach. The calibration process suitably compared the calculated results with the measured data. The tsunami waves were also simulated to discuss the water depth, tsunami force, as well as the current speed in absence of and in presence of forest domain. The results indicated that forest growth at the beach reduced wave energy loss caused by tsunamis. A series of sensitivity analyses were conducted with respect to variable parameters(such as vegetation densities, wave heights, wave periods, bed resistance, and beach slopes) to identify important influences on mitigating tsunami damage on coastal forest beach.  相似文献   

13.
Signals from the tsunami waves induced by the March 11, 2011 moment magnitude (Mw) 9.0 Tohoku-Oki earthquake and from subsequent resonances were detected as radial velocity variability by a high-frequency ocean surface radar (HF radar) installed on the eastern coast of the Kii Channel, at a range of about 1000 km from the epicenter along the eastern to southern coasts of Honshu Island. A time–distance diagram of band-passed (9–200 min) radial velocity along the beam reveals that the tsunami waves propagated from the continental shelf slope to the inner channel as progressive waves for the first three waves, and then natural oscillations were excited by the waves; and that the direction of the tsunami wave propagation and the axis of the natural oscillations differed from that of the radar beam. In addition, spectral analyses of the radial velocities and sea surface heights obtained in the channel and on the continental shelf slope suggest complex natural oscillation modes excited by the tsunami waves.  相似文献   

14.
This paper provides an overview of a new large scale laboratory data set on the kinematics of breaking tsunami wavefronts. The aim of the experiments was to provide an open access data set for model testing, calibration and verification, with particular emphasis on fluid kinematics in the wave breaking and run-up (swash) zones. The experiments were performed over a composite slope in the tsunami wave basin at the O. H. Hinsdale Wave Research Laboratory at Oregon State University. Data for ten different wave conditions were collected, including non-breaking and breaking waves, and both shore breaks and fully developed long bores.Surface elevation and fluid kinematics were measured with a closely spaced array of surface piercing wave gauges, non-contact ultrasonic wave gauges and four 3-D side-looking Acoustic Doppler Velocimeters. The array was traversed from the nearshore (depth = 0.2 m) to the middle and upper run-up zone, providing kinematic data at 30 cross-shore locations. Video was also recorded from 4 cameras covering the propagation, breaking and run-up zones. Surface elevation, flow velocities and the wave maker displacement were also recorded to provide offshore boundary conditions.The experiments include conditions with wave heights up to 0.55 m, notional wave periods up to 20 s and run-up lengths of up to 15.2 m on a 1/30 slope. In terms of the slope in the shoaling and breaker zones, the data correspond to Iribarren numbers in the range of 0.26–5.6. Raw, calibrated and processed data are stored with open access within the OSU Tsunami Wave Basin Experiment Notebook, which provides full access to all the wave maker control signals, data, instrument coordinates, and processing and plotting software. This paper serves as an introduction to the data set, demonstrates data quality and provides an initial analysis of some key parameters that govern the impact of tsunami events, including run-up versus offshore wave conditions and nearshore bore height, the maximum inundation depths at the original shoreline position, and the time to maximum inundation depth and flow reversal. Examples of temporal and convective accelerations and turbulent flow components are also presented to illustrate further details of the kinematics.  相似文献   

15.
An experimental study was carried out to determine the effects of a coastal forest on tsunami run-up heights. The beach was built as a natural sandy beach at laboratory scale. The coastal forest model was constructed using artificial trees (FM–I) and cylindrical timber sticks (FM–II). Artificial trees were placed on a 1:5 slope in three different layouts: rectilinear, staggered, and dense rectilinear. It was shown that in the case when the trees were placed in the dense rectilinear pattern and close to the still water level (SWL), the run-up height was reduced by approximately 45% compared with the case without trees. After evaluation of the experimental results, the parameters that affect the run-up height were determined. These parameters were written as a dimensionless group using Buckingham's Pi theorem. An extensive regression analysis was carried out and equations proposed. Furthermore, all experiments were repeated with a slope of 1:3.5 to verify the proposed equations. The experimental results were compared with the results of the proposed equations, and it was shown a good agreement between the results.  相似文献   

16.
Scenarios of tsunami effects represent a very useful technique for the definition and evaluation of tsunami hazard and risk for the Egyptian coast. This paper is an attempt to develop different worst scenarios of tsunamigenesis toward the Egyptian Coast for five segment localities along three different sub-regions (Hellenic Arc, Cyprean Arc and Levantine Coast) in the eastern Mediterranean Sea. These segments are the southwest Hellenic Arc, southeast Hellenic Arc, northeast Hellenic Arc, west of Cyprean Arc and Levantine. For each of them, the scenario takes into account a seismic fault capable of generating an earthquake with magnitude equal to or larger than the highest magnitude registered in that region in historical times. Then the ensuing tsunamis are simulated numerically, highlighting the basic features of the wave propagation and roughly identifying the coastal sectors that are expected to suffer the heaviest tsunami effects. The output data indicated that the first wave of tsunamis from different segments attacked the nearest reference localities (city located nearest each segment) along the Egyptian shore between 28 and 50 min after an earthquake. Tsunamis from these earthquake scenarios produced maximum run-up heights ranging from 1.7 to 9.4 m at the shore. A Beirut Thrust scenario (Levantine segment) included the fact that only a small portion of the fault extended out into the sea, leading to a small effective tsunami source area. In contrast, the southwest Hellenic Arc segment (as in the A.D. 365 earthquake) has high displacement (15 m) and a long extensional fault, forming a highly effective tsunami source area.  相似文献   

17.
We perform the numerical analysis of the intensification of tsunami waves in the course of their propagation from the open part of the Black Sea to the shelf zone. For this purpose, we use a one-dimensional model of nonlinear long waves taking into account the effect of bottom friction. We study four profiles of the bottom corresponding to the south coast of the Crimean Peninsula and establish the predominant role of the bottom pattern and insignificant contribution of nonlinearity to the transformation of waves in the process of their propagation in the direction of the coast. Down to depths of 50 m, all changes in the height of waves are described by the Green law. For the evaluation of vertical run-up of waves, it is important to take into account nonlinear effects. The highest vertical run-ups of waves are observed in the parts of the shelf zone located near Yalta and Alushta. Translated by Peter V. Malyshev and Dmitry V. Malyshev  相似文献   

18.
Shandong province is located on the east coast of China and has a coastline of about 3100 km. There are only a few tsunami events recorded in the history of Shandong Province, but the tsunami hazard assessment is still necessary as the rapid economic development and increasing population of this area. The objective of this study was to evaluate the potential danger posed by tsunamis for Shandong Province. The numerical simulation method was adopted to assess the tsunami hazard for coastal areas of Shandong Province. The Cornell multi-grid coupled tsunami numerical model (COMCOT) was used and its efficacy was verified by comparison with three historical tsunami events. The simulated maximum tsunami wave height agreed well with the observational data. Based on previous studies and statistical analyses, multiple earthquake scenarios in eight seismic zones were designed, the magnitudes of which were set as the potential maximum values. Then, the tsunamis they induced were simulated using the COMCOT model to investigate their impact on the coastal areas of Shandong Province. The numerical results showed that the maximum tsunami wave height, which was caused by the earthquake scenario located in the sea area of the Mariana Islands, could reach up to 1.39 m off the eastern coast of Weihai city. The tsunamis from the seismic zones of the Bohai Sea, Okinawa Trough, and Manila Trench could also reach heights of >1 m in some areas, meaning that earthquakes in these zones should not be ignored. The inundation hazard was distributed primarily in some northern coastal areas near Yantai and southeastern coastal areas of Shandong Peninsula. When considering both the magnitude and arrival time of tsunamis, it is suggested that greater attention be paid to earthquakes that occur in the Bohai Sea. In conclusion, the tsunami hazard facing the coastal area of Shandong Province is not very serious; however, disasters could occur if such events coincided with spring tides or other extreme oceanic conditions. The results of this study will be useful for the design of coastal engineering projects and the establishment of a tsunami warning system for Shandong Province.  相似文献   

19.
On February 6th, 1783, a landslide of about 5 × 10m3 triggered by a 5.8 M earthquake occurred near the village of Scilla (Southern Calabria, Italy). The rock mass fell into the sea as a rock avalanche, producing a tsunami with a run-up as high as 16 m. The tsunami killed about 1,500 people, making it one of the most catastrophic tsunamis in Italian history. A combined landslide-tsunami simulation is proposed in this paper. It is based on an already performed reconstruction of the landslide, derived from subaerial and submarine investigation by means of geomorphological, geological and geomechanical surveys. The DAN3D model is used to simulate the landslide propagation both in the subaerial and in the submerged parts of the slope, while a simple linear shallow water model is applied for both tsunami generation and propagation. A satisfying back-analysis of the landslide propagation has been achieved in terms of run-out, areal distribution and thickness of the final deposit. Moreover, landslide velocities comparable to similar events reported in the literature are achieved. Output data from numerical simulation of the landslide are used as input parameters for tsunami modelling. It is worth noting that locations affected by recordable waves according to the simulation correspond to those ones recorded by historical documents. With regard to run-up heights a good agreement is achieved at some locations (Messina, Catona, Punta del Faro) between computed and real values, while in other places modelled heights are overestimated. The discrepancies, which were most significant at locations characterized by a very low slope gradient in the vicinity of the landslide, were probably caused by effects such as wave breaking, for which the adopted tsunami model does not account, as well as by uncertainties in the historical data.  相似文献   

20.
This paper describes the development of tsunami scenarios from the National Seismic Hazard Maps for design of coastal infrastructure in the Pacific Northwest. The logic tree of Cascadia earthquakes provides four 500-year rupture configurations at moment magnitude 8.8, 9.0, and 9.2 for development of probabilistic design criteria. A planar fault model describes the rupture configurations and determines the earth surface deformation for tsunami modeling. A case study of four bridge sites at Siletz Bay, Oregon illustrates the challenges in modeling of tsunamis on the Pacific Northwest coast. A nonlinear shallow-water model with a shock-capturing scheme describes tsunami propagation across the northeastern Pacific as well as barrier beach overtopping, bore formation, and detailed flow conditions at Siletz Bay. The results show strong correlation with geological evidence from the six paleotsunamis during the last 2800 years. The proposed approach allows determination of tsunami loads that are consistent with the seismic loads currently in use for design of buildings and structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号