首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The evolution of shorelines composed of consolidated cohesive sediments is dominated by irreversible erosion. In this note, measurements, under laboratory conditions, of bottom velocities, wave heights, and breaking characteristics over an actively eroding consolidated cohesive sediment shore are reported. Erosion is enhanced under breaking conditions, and plunging breakers are markedly more erosive than spilling breakers. The turbulence at the outer edge of the breaking zone has the −5/3 power high frequency dependence indicative of the inertial subrange.  相似文献   

3.
Beach based and in-situ observations of plunging and spilling breakers, with associated localised wind data, have isolated important characteristics regarding breaking waves in the surf zone. Offshore winds enhance the development of plunging breakers; onshore winds, the development of spilling breakers. Extremely strong offshore, or onshore winds, may re-introduce more spilling or plunging breaker-type characteristics, respectively.  相似文献   

4.
New laboratory data are presented on the influence of free long waves, bound long waves and wave groups on sediment transport in the surf and swash zones. As a result of the very significant difficulties in isolating and identifying the morphodynamic influences of long waves and wave groups in field conditions, a laboratory study was designed specifically to enable measurements of sediment transport that resolve these influences. The evolution of model sand beaches, each with the same initial plane slope, was measured for a range of wave conditions, firstly using monochromatic short waves. Subsequently, the monochromatic conditions were perturbed with free long waves and then substituted with bichromatic wave groups with the same mean energy flux. The beach profile changes and net cross-shore transport rates were extracted and compared for the different wave conditions, with and without long waves and wave groups. The experiments include a range of wave conditions, e.g. high-energy, moderate-energy, low-energy waves, which induce both spilling and plunging breakers and different turbulent intensities, and the beaches evolve to form classical accretive, erosive, and intermediate beach states. The data clearly demonstrate that free long waves influence surf zone morphodynamics and promote increased onshore sediment transport during accretive conditions and decreased offshore transport under erosive conditions. In contrast, wave groups, which can generate both forced and free long waves, generally reduce onshore transport during accretive conditions and increase offshore transport under erosive conditions. The influence of the free long waves and wave groups is consistent with the concept of the relative fall velocity, H/wsT, as a dominant parameter controlling net beach erosion or accretion. Free long waves tend to reduce H/wsT, promoting accretion, while wave groups tend to increase the effective H/wsT, promoting erosion.  相似文献   

5.
In this paper we present a process-based numerical model for the prediction of storm hydrodynamics and hydrology on gravel beaches. The model comprises an extension of an existing open-source storm-impact model for sandy coasts (XBeach), through the application of (1) a non-hydrostatic pressure correction term that allows wave-by-wave modelling of the surface elevation and depth-averaged flow, and (2) a groundwater model that allows infiltration and exfiltration through the permeable gravel bed to be simulated, and is referred to as XBeach-G. Although the model contains validated sediment transport relations for sandy environments, transport relations for gravel in the model are currently under development and unvalidated. Consequently, all simulations in this paper are carried out without morphodynamic feedback. Modelled hydrodynamics are validated using data collected during a large-scale physical model experiment and detailed in-situ field data collected at Loe Bar, Cornwall, UK, as well as remote-sensed data collected at four gravel beach locations along the UK coast during the 2012–2013 storm season. Validation results show that the model has good skill in predicting wave transformation (overall SCI 0.14–0.21), run-up levels (SCI < 0.12; median error < 10%) and initial wave overtopping (85–90% prediction rate at barrier crest), indicating that the model can be applied to estimate potential storm impact on gravel beaches. The inclusion of the non-hydrostatic pressure correction term and groundwater model is shown to significantly improve the prediction and evolution of overtopping events.  相似文献   

6.
In this paper, the performance of a 1-D Boussinesq model is evaluated against laboratory data for its ability to predict surf zone velocity moments. Wave evolution over a plane beach and a complex bathymetry both extending into the surf-zone is examined for six cases. For the plane beach, these comprise two cases, a spilling and a plunging cnoidal wave. For the complex bathymetry, these comprise four cases of longer and short wavelengths (spilling and plunging breakers), with regular and irregular periodicity. The model evaluation places emphasis on parameters of the wave field that could be used for the prediction of sediment transport; orbital velocity, undertow, velocity skewness, kurtosis and asymmetry. It is found that, despite an overestimation of the depth-averaged horizontal velocity in the regular waves cases, the predicted higher order velocity moments and undertow are in good agreement with the laboratory data. A bispectral analysis demonstrates that the nonlinear transfers of energy amongst the low order harmonics are well reproduced, but energy exchanges with the higher harmonics are less well predicted. As a result, the model handles velocity moments better in the shorter wave tests than in the long wave cases where triad interactions are stronger. Of the four parameters describing wave breaking, the model behaviour is most sensitive to the critical wave front slope φB, especially with regard to velocity skewness and kurtosis predictions. It is also found that increasing the thickness of the surface roller for the case of plunging breakers improves the model's performance.  相似文献   

7.
Coastal groundwater systems can have a considerable impact on sediment transport and foreshore evolution in the surf and swash zones. Process-based modeling of wave motion on a permeable beach taking into account wave-aquifer interactions was conducted to investigate the effects of the unconfined coastal aquifer on beach profile evolution, and wave shoaling on the water table. The simulation first dealt with wave breaking and wave runup/rundown in the surf and swash zones. Nearshore hydrodynamics and wave propagation in the cross-shore direction were simulated by solving numerically the two-dimensional Navier–Stokes equations with a k–ε turbulence closure model and the Volume-Of-Fluid technique. The hydrodynamic model was coupled to a groundwater flow model based on SEAWAT-2000, the latter describing groundwater flow in the unconfined coastal aquifer. The combined model enables the simulation of wave-induced water table fluctuations and the effects of infiltration/exfiltration on nearshore sediment transport. Numerical results of the coupled ocean/aquifer simulations were found to compare well with experimental measurements. Wave breaking and infiltration/exfiltration increase the hydraulic gradient across the beachface and enhance groundwater circulation inside the porous medium. The large hydraulic head gradient in the surf zone leads to infiltration across the beachface before the breaking point, with exfiltration taking place below the breaking point. In the swash zone, infiltration occurs at the upper part of the beach and exfiltration at the lower part. The simulations confirm that beaches with a low water table tend to be accreted while those with a high water table tend to be eroded.  相似文献   

8.
Beach cusps with a longshore spacing of 20 to 150 cm have been built by the continuous action of incident waves on a steep laboratory beach floor covered uniformly with a thin bed of glass beads. Breaking of incident waves was observed to induce vortices on the bed by interacting with swash motion along the beach face. Beach cusps formed when the value of a dimensionless parameter Hb/sgTi2 became smaller than 0.042; Hb is the breaking height of the incident waves, Ti their period, s the beach slope and g the acceleration due to gravity. This critical value occurred at a nearly central part of the generation region 0.003 < Hb/sgTi2 < 0.068 for plunging breakers presented by Galvin (1968). Breaking-wave-induced vortices rather than breaker types controlled the movement of bed material in the nearshore zone. Most of the measured spacings of beach cusps, including previous observations, were in good agreement with half a wavelength of the zero-mode subharmonic edge wave, which is generated on the beach by the refraction of incident waves and has twice the period of the waves. The role of edge waves at each stage of cusp formation still remains as an important problem to be clarified.  相似文献   

9.
The characteristics of turbulence created by a plunging breaker on a 1 on 35 plane slope have been studied experimentally in a two-dimensional wave tank. The experiments involved detailed measurements of fluid velocities below trough level and water surface elevations in the surf zone using a fibre-optic laser-Doppler anemometer and a capacitance wave gage. The dynamical role of turbulence is examined making use of the transport equation for turbulent kinetic energy (the k-equation). The results show that turbulence under a plunging breaker is dominated by large-scale motions and has certain unique features that are associated with its wave condition. It was found that the nature of turbulence transport in the inner surf zone depends on a particular wave condition and it is not similar for different types of breakers. Turbulent kinetic energy is transported landward under a plunging breaker and dissipated within one wave cycle. This is different from spilling breakers where turbulent kinetic energy is transported seaward and the dissipation rate is much slower. The analysis of the k-equation shows that advective and diffusive transport of turbulence play a major role in the distribution of turbulence under a plunging breaker, while production and dissipation are not in local equilibrium but are of the same order of magnitude. Based on certain approximate analytical approaches and experimental measurements it is shown that turbulence production and viscous dissipation below trough level amount to only a small portion of the wave energy loss caused by wave breaking. It is suggested that the onshore sediment transport produced by swell waves may be tied in a direct way to the unique characteristics of turbulent flows in these waves.  相似文献   

10.
Two exposed, high‐energy beaches on the Kaikoura coast of New Zealand are composed of sand and gravel derived from a greywacke terrain. Both beaches can be classified as mixed beaches although the sediment varies from dominantly gravel at the ends of the beach to dominantly sand at the centre, through transition zones in which sand and gravel are mixed. Sixty‐four surface samples were analysed for grain size; two sediment parameters, mean grain size (Mz) and sorting (σI), were calculated.

A striking feature of the cumulative frequency curves is that both unimodai and bimodal distributions include median sizes over the whole range of sampled material, even though bimodal samples display two strong modes in the sand and gravel grades. The general deficiency lof sediment dn the very coarse sand and granule classes (0 to — 2 F ) noted by numerous authors in many parts of the world is apparent in the poorly‐sorted bimodal samples. However, the best‐sorted samples also occur in these two classes.

Mean grain size of samples ranges from medium sand (1.820) to medium pebbles (—4.7 F ), and sorting ranges from very well sorted (0.250) to very poorly sorted (2.69 F ). Mean erain size on the northern beach is significantly greater than on the southern beach, but values of sorting are comparable. The greater mean size on one beach compared with the other is thought to be a function of the grade of material supplied by local rivers; the similarity in sorting presumably reflects the similarity of the processes acting on the two beaches.

Mixed sand‐shingle beaches are relatively rare on a world scale but common in New Zealand. Sediment distributions along the Kaikoura beaches do not reveal a regular decrease in size away from the rivers which supply material to shore at present. Instead, the beaches are differentiated into a number of sediment zones composed of either sand, or mixed sand‐gravel, or gravel. On each beach a gravel zone is located furthest from the river outlets. Sorting generally improves toward the Kaikoura Peninsula. Explanations for these trends are not given. Variations in size and sorting across the two beaches do not show a well developed zonation because of the high level of wave energy which continually mixes the material across the beach.  相似文献   

11.
As a fully developed (Airy) wave propagates from deep into shallow water, its crest becomes more peaked while the trough flattens out. The median crest diameter MCD, defined as the distance between the wave flanks under the crest at a level halfway between the crest and trough, therefore decreases relative to the similarly defined median trough diameter MTD, which remains constant up to the breaking point. The MCD is directly related to other wave characteristics, which enables water particle velocities to be calculated for any water depth without having to recur to more complex, higher-order Stokes, cnoidal or Fenton theories. Over a nearly horizontal bottom, most fully developed wave characteristics can be expressed as functions of the wave period Tw. It is shown that the horizontal particle velocity at the bottom under the breaker crest is at least 9 times faster than under the breaker trough, which explains why sediment is transported landward under fair weather conditions. The proposed equations also shed new light on the formation of spilling, plunging and surging/collapsing breakers.  相似文献   

12.
The characteristics of wave and turbulence velocities created by a broad-banded irregular wave train breaking on a 1:35 slope were studied in a laboratory wave flume. Water particle velocities were measured simultaneously with wave elevations at three cross-shore locations inside the surf zone. The measured data were separated into low-frequency and high-frequency time series using a Fourier filter. The measured velocities were further separated into organized wave-induced velocities and turbulent velocity fluctuations by ensemble averaging. The broad-banded irregular waves created a wide surf zone that was dominated by spilling type breakers. A wave-by-wave analysis was carried out to obtain the probability distributions of individual wave heights, wave periods, peak wave velocities, and wave-averaged turbulent kinetic energies and Reynolds stresses. The results showed that there was a consistent increase in the kurtosis of the vertical velocity distribution from the surface to the bottom. The abnormally large downward velocities were produced by plunging breakers that occurred from time to time. It was found that the mean of the highest one-third wave-averaged turbulent kinetic energy values in the irregular waves was about the same as the time-averaged turbulent kinetic energy in a regular wave with similar deep-water wave height to wavelength ratio. It was also found that the correlation coefficient of the Reynolds stress varied strongly with turbulence intensity. Good correlation between u′ and w′ was obtained when the turbulence intensity was high; the correlation coefficient was about 0.3–0.5. The Reynolds stress correlation coefficient decreased over a wave cycle, and with distance from the water surface. Under the irregular breaking waves, turbulent kinetic energy was transported downward and landward by turbulent velocity fluctuations and wave velocities, and upward and seaward by the undertow. The undertow in the irregular waves was similar in vertical structure but lower in magnitude than in regular waves, and the horizontal velocity profiles under the low-frequency waves were approximately uniform.  相似文献   

13.
《Coastal Engineering》2002,46(2):139-157
At plunging breakers, air bubbles are entrained at the impingement of the water jet, formed at the top of the wave, with the water free surface in front. During the present study, air bubble entrainment at a pseudo-plunging breaker was investigated at near full-scale and further experimental work studied the bubble detrainment process. Experimental observations included the generation and propagation of waves downstream of the plunge point. Experimental results highlighted a number of unsteady air–water flow patterns and emphasise high levels of aeration: i.e., depth-averaged void fraction of more than 10% next to jet impact in shallow waters. Unsteady bubble injection experiments showed a strong vortical motion induced by the rising bubbles. Altogether, the results suggest that a dominant time scale is the bubble rise time d1/ur, which cannot be scaled properly with an undistorted Froude model. The study contributes to a better understanding of unsteady bubble entrainment at a pseudo-plunging breaker and the associated vortical circulation.  相似文献   

14.
Nowadays, beach nourishment is widely considered as a better alternative compared to the construction of hard structures to protect a sandy coast against detrimental erosive effects, both from an ecological and an engineering perspective. The rare studies conducted on the ecological impact of beach nourishment are short-term, post hoc monitoring investigations of the benthic macrofauna. Little is known of the biological processes during and after nourishment. To allow swift recolonization after nourishment, the characteristics of the nourished beach have to match the habitat demands of the benthic macrofauna. The sediment preference of the key intertidal species Scolelepis squamata, Eurydice pulchra, Bathyporeia pilosa and Bathyporeia sarsi, which dominate many West European sandy beaches, was investigated through laboratory experiments, both in single-species as well as combined-species treatments. While the former aimed at developing guidelines for impact mitigation of beach nourishment, the latter aimed at elucidating the role of biotic interactions in sediment preference. Results of the experiments indicated that B. pilosa and E. pulchra prefer the finest sediment, while B. sarsi had a broader preference and also occurred in medium-coarse sediments. However, the sediment preference of E. pulchra for fine sediments was not confirmed by other field and experimental studies. The polychaete S. squamata had the broadest preference and even showed a high occurrence in coarse sediments that are not naturally occurring on the sandy beaches where the animals were caught for this experiment. However, this polychaete is a cosmopolitan species, not only occurring on fine-grained beaches, but also on coarse-grained beaches worldwide. The preferences imply that beach nourishment with coarse sediment will have a major effect on B. pilosa while effects of coarse sediments on S. squamata will be minor. Finally, interspecific competition with the sympatrically occurring amphipod B. sarsi was found to change the sediment selection of the amphipod B. pilosa towards the coarser sediments where B. sarsi occurred in lower frequencies.  相似文献   

15.
16.
《Coastal Engineering》2006,53(1):39-48
This paper describes a simple method for modelling wave breaking over submerged structures, with the view of using such modelling approach in a coastal area morphodynamic modelling system.A dominant mechanism for dissipating wave energy over a submerged breakwater is depth-limited wave breaking. Available models for energy dissipation due to wave breaking are developed for beaches (gentle slopes) and require further modifications to model wave breaking over submerged breakwaters.In this paper, wave breaking is split into two parts, namely: 1) depth-limited breaking modelled using Battjes and Janssen's (1978) theory [Battjes, J.A. and Jannsen, J.P.F.M. (1978). Energy loss and setup due to breaking of random waves. Proceedings of the 16th Int. Conf. Coast. Eng., Hamburg, Germany, pp. 569-587.] and 2) steepness limited breaking modelled using an integrated form of the Hasselmann's whitecapping dissipation term, commonly used in fully spectral wind–wave models. The parameter γ2, governing the maximum wave height at incipient breaking (Hmax = γ2d) is used as calibration factor to tune numerical model results to selected laboratory measurements. It is found that γ2 varies mainly with the relative submergence depth (ratio of submergence depth at breakwater crest to significant wave height), and a simple relationship is proposed. It is shown that the transmission coefficients obtained using this approach compare favourably with those calculated using published empirical expressions.  相似文献   

17.
《Coastal Engineering》2006,53(4):349-362
This paper provides information on the experimental set-up, data collection methods and results to date for the project “Large scale modelling of coarse grained beaches”, undertaken at the Large Wave Channel (GWK) of FZK in Hannover by an international group of researchers in Spring 2002. The main objective of the experiments was to provide full scale measurements of cross-shore processes on gravel and mixed beaches for the verification and further development of cross-shore numerical models of gravel and mixed sediment beaches. Identical random and regular wave tests were undertaken for a gravel beach and a mixed sand/gravel beach set up in the flume. Measurements included profile development, water surface elevation along the flume, internal pressures in the swash zone, piezometric head levels within the beach, run-up, flow velocities in the surf-zone and sediment size distributions.The purpose of the paper is to present to the scientific community the experimental procedure, a summary of the data collected, some initial results, as well as a brief outline of the on-going research being carried out with the data by different research groups. The experimental data is available to all the scientific community following submission of a statement of objectives, specification of data requirements and an agreement to abide with the GWK and EU protocols.  相似文献   

18.
Experimental investigation is made on the boundary layers of the transformation zone (i.e. the region between the last symmetrical wave profile depth and the breaking point) of plunging breakers propagating on a smooth beach with 1/12 uniform slope. Using a laser anemometer, the particle velocities are measured at four verticals along the transformation zone for three different steepnesses of waves within the plunging breaker range. The boundary layer flow in the transformation zone is found mostly of turbulent character and vertical distribution of particle velocities does not seem to conform to the classical law of the wall distribution given for steady-flow boundary layers. The results show that free-stream particle velocities, in the boundary layer of the breaker under the crest phase, increase considerably as the wave progresses towards the breaking point. The boundary layer thickness, defined as the velocity-affected region, remains constant throughout the transformation zone but it decreases with increasing deep-water wave steepness for the particular beach slope tested.  相似文献   

19.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

20.
A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, ac expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline kω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号