首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
We examine the radio spectral indices of 23 Wolf–Rayet (WR) stars to identify the nature of their radio emission. We identify nine systems as non-thermal emitters. In seven of these systems the non-thermal emission dominates the radio spectrum, while in the remaining two it is of comparable strength to the thermal, stellar wind emission, giving 'composite' spectra. Among these nine systems, seven have known spectroscopic or visual binary companions. The companions are all massive O or early B-type stars, strongly supporting a connection between the appearance of non-thermal emission in WR stars and the presence of a massive companion. In three of these binaries, the origin of non-thermal emission in a wind-collision region between the stars has been well established in earlier work. The binary systems that exhibit only thermal emission are all short‐period systems where a wind-collision zone is deep within the opaque region of the stellar wind of the WR star. To detect non-thermal emission in these systems requires optically thin lines of sight to the wind-collision region.  相似文献   

2.
We review existing ROSAT detections of single Galactic Wolf–Rayet (WR) stars and develop wind models to interpret the X-ray emission. The ROSAT data, consisting of bandpass detections from the ROSAT All-Sky Survey (RASS) and some pointed observations, exhibit no correlations of the WR X-ray luminosity ( L X) with any star or wind parameters of interest (e.g. bolometric luminosity, mass-loss rate or wind kinetic energy), although the dispersion in the measurements is quite large. The lack of correlation between X-ray luminosity and wind parameters among the WR stars is unlike that of their progenitors, the O stars, which show trends with such parameters. In this paper we seek to (i) test by how much the X-ray properties of the WR stars differ from the O stars and (ii) place limits on the temperature T X and filling factor f X of the X-ray-emitting gas in the WR winds. Adopting empirically derived relationships for T X and f X from O-star winds, the predicted X-ray emission from WR stars is much smaller than observed with ROSAT . Abandoning the T X relation from O stars, we maximize the cooling from a single-temperature hot gas to derive lower limits for the filling factors in WR winds. Although these filling factors are consistently found to be an order of magnitude greater than those for O stars, we find that the data are consistent (albeit the data are noisy) with a trend of in WR stars, as is also the case for O stars.  相似文献   

3.
We report new radial velocity observations of V779 Cen, the optical companion to the X-ray pulsar Cen X-3. Two sets of results at two epochs yield very different radial velocity amplitudes. We demonstrate there are problems with the first set, not least that they are incompatible with the observed duration of the X-ray eclipse for all inclination angles. The anomalously high radial velocities are probably a result of changes in the outflow behaviour of the companion star. Although there is no reason to doubt the results from the second epoch when viewed in isolation, given the anomalous radial velocities of the first epoch, they must be treated with caution. Using these data, the semi-amplitude of the resulting radial velocity curve is found to be 24.4±4.1 km s−1. Given the accurately measured semi-amplitude of the orbit of the pulsar, 414.3±0.9 km s−1, the mass ratio of the system is 0.059±0.010. The inclination of the system is found to be 702±27, assuming that the optical component fills its Roche lobe, and that the system is in synchronous rotation. Hence the mass of the neutron star is 1.21±0.21 M, and the mass of the optical companion is 20.5±0.7 M. This is a smaller uncertainty than previously reported values, and is consistent with the canonical neutron star mass of 1.4 M.
In addition, we use our spectra to determine the spectral class of V779 Cen to be O6-7II-III.  相似文献   

4.
We have performed high-speed UBV photometric observations on the peculiar binary V Sagittae. Using three new eclipse timings we update the orbital ephemeris and convert it to a dynamical time-scale (TDB). We also searched for quasi-periodic oscillations but did not detect them. Using the Wilson–Devinney algorithm we have modelled the light curve to find the stellar parameters of V Sge. We find that the system is a detached binary but that the primary star is very close to filling its Roche lobe, while the secondary star fills 90 per cent of its Roche lobe volume. We find temperatures of the primary and the secondary star to be T 1=41 000 K and T 2=22 000 K. We find i =72° and masses of 0.8 M and 3.3 M for the primary and secondary stars respectively. De-archived Hubble Space Telescope ( HST ) spectroscopy of V Sge shows evidence of mass loss via a wind or winds. In addition we report radio observations of V Sge during an optical high state at 2 cm, 3.6 cm and 6 cm wavelengths. The 3.6 cm emission is increased by a factor of more than six compared with an earlier detection in a previous optical high state.  相似文献   

5.
A number of strong infrared forbidden lines have been observed in several evolved Wolf–Rayet (WR) star winds, and these are important for deriving metal abundances and testing stellar evolution models. In addition, because these optically thin lines form at large radius in the wind, their resolved profiles carry an imprint of the asymptotic structure of the wind flow. This work presents model forbidden line profile shapes formed in axisymmetric winds. It is well known that an optically thin emission line formed in a spherical wind expanding at constant velocity yields a flat-topped emission profile shape. Simulated forbidden lines are produced for a model stellar wind with an axisymmetric density distribution that treats the latitudinal ionization self-consistently and examines the influence of the ion stage on the profile shape. The resulting line profiles are symmetric about line centre. Within a given atomic species, profile shapes can vary between centrally peaked, doubly peaked, and approximately flat-topped in appearance depending on the ion stage (relative to the dominant ion) and viewing inclination. Although application to WR star winds is emphasized, the concepts are also relevant to other classes of hot stars such as luminous blue variables and Be/B[e] stars.  相似文献   

6.
The X-ray binary system GX 301−2 consists of a neutron star in an eccentric orbit accreting from the massive early-type star Wray 977. It has previously been shown that the X-ray orbital light curve is consistent with the existence of a gas stream flowing out from Wray 977 in addition to its strong stellar wind. Here, X-ray monitoring observations by the Rossi X-ray Timing Explorer ( RXTE )/All-Sky Monitor and pointed observations by the RXTE /Proportional Counter Array over the past decade are analysed. We analyse both the flux and column density dependence on orbital phase. The wind and stream dynamics are calculated for various system inclinations, companion rotation rates and wind velocities, as well as parametrized by the stream width and density. These calculations are used as inputs to determine both the expected accretion luminosity and the column density along the line-of-sight to the neutron star. The model luminosity and column density are compared to observed flux and column density versus orbital phase, to constrain the properties of the stellar wind and the gas stream. We find that the change between bright and medium intensity levels is primarily due to decreased mass loss in the stellar wind, but the change between medium and dim intensity levels is primarily due to decreased stream density. The mass-loss rate in the stream exceeds that in the stellar wind by a factor of ∼2.5. The quality of the model fits is better for lower inclinations, favouring a higher mass for Wray 977 in its allowed range of  40–60 M  .  相似文献   

7.
We have carried out BVR photometric and H spectroscopic observations of the star HD 61396 during 1998 March 20 to 1999 April 3. We have discovered regular optical photometric variability from this star, with an inferred period of 31.95±0.10 d, and an amplitude of 0.18 mag. A possible period of 35.34±0.12 d, as determined with Hipparcos , cannot be completely ruled out, however. Modelling of its photometric light curve with two circular spots indicates that 521 per cent of the stellar surface is covered by dark starspots which are 830 K cooler than the surrounding photosphere, and produce the observed rotational modulation of the optical flux. Optical spectroscopy reveals a variable H emission feature, indicating that it is an unusually active star.
In addition, we have analysed archival X-ray data of HD 61396, obtained from serendipitous observations with the ROSAT X-ray observatory, and we also discuss the radio properties of this star, based on both published Green Bank and unpublished VLA observations. The strong photometric variability and H emission, the relatively hard X-ray spectrum, and the high X-ray and radio luminosities imply that HD 61396 is most likely to be a member of the RS CVn class of evolved active binary stars. Its X-ray and radio luminosities place it among the five most luminous active binaries detected so far.  相似文献   

8.
In light of the recent suggestion that the nearby eclipsing binary star system V Puppis has a dark companion on a long orbit, we present the results of radio and X-ray observations of it. We find an upper limit on its radio flux of about 300 μJy and a detection of it in the X-rays with a luminosity of about  3 × 1031  erg s−1, a value much lower than what had been observed in some of the low angular resolution surveys of the past. These data are in good agreement with the idea that the X-ray emission from V Puppis comes from mass transfer between the two B stars in the system, but can still accommodate the idea that the X-ray emission comes from the black hole accreting stellar wind from one or both of the B stars.  相似文献   

9.
We present results of an ≈20-ks X-ray observation of the Wolf–Rayet (WR) binary system WR 147 obtained with XMM–Newton . Previous studies have shown that this system consists of a nitrogen-type WN8 star plus an OB companion whose winds are interacting to produce a colliding wind shock. X-ray spectra from the pn and MOS detectors confirm the high extinction reported from infrared studies and reveal hot plasma including the first detection of the Fe Kα line complex at 6.67 keV. Spectral fits with a constant-temperature plane-parallel shock model give a shock temperature   kT shock= 2.7  keV (   T shock≈ 31  MK), close to but slightly hotter than the maximum temperature predicted for a colliding wind shock. Optically thin plasma models suggest even higher temperatures, which are not yet ruled out. The X-ray spectra are harder than can be accounted for using 2D numerical colliding wind shock models based on nominal mass-loss parameters. Possible explanations include: (i) underestimates of the terminal wind speeds or wind abundances, (ii) overly simplistic colliding wind models or (iii) the presence of other X-ray emission mechanisms besides colliding wind shocks. Further improvement of the numerical models to include potentially important physics such as non-equilibrium ionization will be needed to rigorously test the colliding wind interpretation.  相似文献   

10.
Recently, a soft blackbody component was observed in the early X-ray afterglow of GRB 060218, which was interpreted as shock breakout from the thick wind of the progenitor Wolf–Rayet (WR) star of the underlying Type Ic supernova 2006aj. In this paper, we present a simple model for computing the characteristic quantities (including energy, temperature and time duration) for the transient event from the shock breakout in Type Ibc supernovae produced by the core-collapse of WR stars surrounded by dense winds. In contrast to the case of a star without a strong wind, the shock breakout occurs in the wind region rather than inside the star, caused by the large optical depth in the wind. We find that, for the case of a WR star with a dense wind, the total energy of the radiation generated by the supernova shock breakout is larger than that in the case of the same star without a wind by a factor of >10. The temperature can be either hotter or colder, depending on the wind parameters. The time duration is larger caused by the increase in the effective radius of the star due to the presence of a thick wind. Then, we apply the model to GRB 060218/SN 2006aj. We show that, to explain both the temperature and the total energy of the blackbody component observed in GRB 060218 by the shock breakout, the progenitor WR star has to have an unrealistically large core radius (the radius at optical depth of 20), larger than 100 R. In spite of this disappointing result, our model is expected to have important applications to the observations on Type Ibc supernovae in which the detection of shock breakout will provide important clues to the progenitors of Type Ibc supernovae.  相似文献   

11.
We present radio observations of the unique, recently formed, planetary nebula (PN) associated with a very long-period OH/IR variable star V1018 Sco that is unequivocally still in its asymptotic giant branch phase. Two regions within the optical nebula are clearly detected in non-thermal radio continuum emission, with radio spectral indices comparable to those seen in colliding-wind Wolf–Rayet binaries. We suggest that these represent shocked interactions between the hot, fast stellar wind and the cold nebular shell that represents the PN's slow wind moving away from the central star. This same interface produces both synchrotron radio continuum and the optical PN emission. The fast wind is neither spherical in geometry nor aligned with any obvious optical or radio axis. We also report the detection of transient H2O maser emission in this nebula.  相似文献   

12.
In this paper we report on optical spectroscopic observations of the low-mass X-ray binary 2S 0921–630 obtained with the Very Large Telescope. We found sinusoidal radial velocity variations of the companion star with a semi-amplitude of  99.1 ± 3.1 km s−1  modulated on a period of 9.006 ± 0.007 d, consistent with the orbital period found previously for this source, and a systemic velocity of  44.4 ± 2.4 km s−1  . Owing to X-ray irradiation, the centre of light measured by the absorption lines from the companion star is probably shifted with respect to the centre of mass. We try to correct for this using the so-called K -correction. Conservatively applying the maximum correction possible and using the previously measured rotational velocity of the companion star, we find a lower limit to the mass of the compact object in 2S 0921–630 of   MX sin3 i > 1.90 ± 0.25 M  (1σ errors). The inclination in this system is well constrained since partial eclipses have been observed in X-ray and optical bands. For inclinations in the range  60° < i < 90°  we find  1.90 ± 0.25 < MX < 2.9 ± 0.4 M  . However, using this maximum K -correction we find that the ratio between the mass of the companion star and that of the compact object, q , is 1.32 ± 0.37, implying super-Eddington mass-transfer rates; however, evidence for that has not been found in 2S 0921–630. We conclude that the compact object in 2S 0921–630 is either a (massive) neutron star or a low-mass black hole.  相似文献   

13.
We present spectra of the afterglow of the γ-ray burst GRB 021004 taken with the ISIS spectrograph on the William Herschel Telescope (WHT) and with the Focal Reducer/Low Dispersion Spectrograph 1 (FORS1) on the Very Large Telescope (VLT) at three epochs spanning 0.49–6.62 d after the burst. We observe strong absorption probably coming from the host galaxy, alongside absorption in H  i , Si  iv and C  iv with blueshifts of up to 2900 km s−1 from the explosion centre, which we assume originates close to the progenitor. We find no significant variability of these spectral features. We investigate the origin of the outflowing material and evaluate various possible progenitor models. The most plausible explanation is that these result in the fossil stellar wind of a highly evolved Wolf–Rayet (WR) star. However, ionization from the burst itself prevents the existence of H  i , Si  iv and C  iv close to the afterglow surface where the fast stellar wind should dominate, and large amounts of blueshifted hydrogen are not expected in a WR star wind. We propose that the WR star wind is enriched by a hydrogen-rich companion, and that the GRB has a structured jet geometry in which the γ-rays emerge in a small opening angle within the wider opening angle of the cone of the afterglow. This scenario is able to explain both the spectral-line features and the irregular light curve of this afterglow.  相似文献   

14.
We study the evolution of the circumstellar medium of massive stars. We pay particular attention to Wolf-Rayet stars that are thought to be the progenitors of some long gamma-ray bursts (GRBs). We detail the mass-loss rates we use in our stellar evolution models and how we estimate the stellar wind speeds during different phases. With these details we simulate the interactions between the wind and the interstellar medium to predict the circumstellar environment around the stars at the time of core-collapse. We then investigate how the structure of the environment might affect the GRB afterglow. We find that when the afterglow jet encounters the free-wind/stalled-wind interface, rebrightening occurs and a bump is seen in the afterglow light curve. However, our predicted positions of this interface are too distant from the site of the GRB to reach while the afterglow remains observable. The values of the final wind density,   A *  , from our stellar models are of the same order (≲1) as some of the values inferred from observed afterglow light curves. We do not reproduce the lowest   A *  values below 0.5 inferred from afterglow observations. For these cases, we suggest that the progenitors could have been a WO-type Wolf–Rayet (WR) star or a very low-metallicity star. Finally, we turn our attention to the matter of stellar wind material producing absorption lines in the afterglow spectra. We discuss the observational signatures of two WR stellar types, WC and WO, in the afterglow light curve and spectra. We also indicate how it may be possible to constrain the initial mass and metallicity of a GRB progenitor by using the inferred wind density and wind velocity.  相似文献   

15.
This paper presents calculations for forbidden emission-line profile shapes arising from colliding wind binaries. The main application is for systems involving a Wolf–Rayet (WR) star and an OB star companion. The WR wind is assumed to dominate the forbidden line emission. The colliding wind interaction is treated as an Archimedean spiral with an inner boundary. Under the assumptions of the model, the major findings are as follows. (i) The redistribution of the WR wind as a result of the wind collision is not flux conservative but typically produces an excess of line emission; however, this excess is modest at around the 10 per cent level. (ii) Deviations from a flat-toped profile shape for a spherical wind are greatest for viewing inclinations that are more nearly face-on to the orbital plane. At intermediate viewing inclinations, profiles display only mild deviations from a flat-toped shape. (iii) The profile shape can be used to constrain the colliding wind bow shock opening angle. (iv) Structure in the line profile tends to be suppressed in binaries of shorter periods. (v) Obtaining data for multiple forbidden lines is important since different lines probe different characteristic radial scales. Our models are discussed in relation to Infrared Space Observatory data for WR 147 and γ Vel (WR 11). The lines for WR 147 are probably not accurate enough to draw firm conclusions. For γ Vel, individual line morphologies are broadly reproducible but not simultaneously so for the claimed wind and orbital parameters. Overall, the effort demonstrates how lines that are sensitive to the large-scale wind can help to deduce binary system properties and provide new tests of numerical simulations.  相似文献   

16.
We have determined the spectral energy distribution at wavelengths between 6 cm and 850 μm for the prototypical S(stellar)-type symbiotic star, CI Cygni, during quiescence. Data were obtained simultaneously with the Very Large Array and the SCUBA submillimetre (sub-mm) camera on the James Clerk Maxwell Telescope. The data have allowed us to determine the free–free turnover frequency of the ionized component, facilitating a model-dependent estimate of the binary separation to compare with the known orbital parameters of CI Cyg and to critically test the known models for radio emission from symbiotic stars. In particular, our data rule out the two most popular models: ionization of the giant wind by Lyman continuum photons from its hot companion, and emission resulting from the interaction of winds from the two binary components.  相似文献   

17.
The effects of non-equilibrium ionization are explicitly taken into account in a numerical model which describes colliding stellar winds (CSW) in massive binary systems. This new model is used to analyse the most recent X-ray spectra of the WR+OB binary system WR 147. The basic result is that it can adequately reproduce the observed X-ray emission (spectral shape, observed flux) but some adjustment in the stellar wind parameters is required. Namely (i) the stellar wind velocities must be higher by a factor of 1.4–1.6 and (ii) the mass loss must be reduced by a factor of ∼2. The reduction factor for the mass loss is well within the uncertainties for this parameter in massive stars, but given the fact that the orbital parameters (e.g. inclination angle and eccentricity) are not well constrained for WR 147, even smaller corrections to the mass loss might be sufficient. Only CSW models with non-equilibrium ionization and equal (or nearly equal) electron and ion post-shock temperature are successful. Therefore, the analysis of the X-ray spectra of WR 147 provides evidence that the CSW shocks in this object must be collisionless .  相似文献   

18.
We present a new analysis of an archived Chandra HETGS X-ray spectrum of the WR+O colliding wind binary γ2 Velorum. The spectrum is dominated by emission lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a combination of broad-band spectral analysis and an analysis of line flux ratios we infer a wide range of temperatures in the X-ray-emitting plasma (∼4–40 MK). As in the previously published analysis, we find the X-ray emission lines are essentially unshifted, with a mean FWHM of  1240 ± 30 km s−1  . Calculations of line profiles based on hydrodynamical simulations of the wind–wind collision predict lines that are blueshifted by a few hundred  km s−1  . The lack of any observed shift in the lines may be evidence of a large shock-cone opening half-angle (>85°), and we suggest this may be evidence of sudden radiative braking. From the R and G ratios measured from He-like forbidden-intercombination-resonance triplets we find evidence that the Mg  xi emission originates from hotter gas closer to the O star than the Si  xiii emission, which suggests that non-equilibrium ionization may be present.  相似文献   

19.
Massive stars     
We describe the present state of massive star research seen from the viewpoint of stellar evolution, with special emphasis on close binaries. Statistics of massive close binaries are reasonably complete for the Solar neighbourhood. We defend the thesis that within our knowledge, many scientific results where the effects of binaries are not included, have an academic value, but may be far from reality. In chapter I, we summarize general observations of massive stars where we focus on the HR diagram, stellar wind mass loss rates, the stellar surface chemistry, rotation, circumstellar environments, supernovae. Close binaries can not be studied separately from single stars and vice versa. First, the evolution of single stars is discussed (chapter I). We refer to new calculations with updated stellar wind mass loss rate formalisms and conclusions are proposed resulting from a comparison with representative observations. Massive binaries are considered in chapter II. Basic processes are briefly described, i.e. the Roche lobe overflow and mass transfer, the common envelope process, the spiral-in process in binaries with extreme mass ratio, the effects of mass accretion and the merging process, the implications of the (asymmetric) supernova explosion of one of the components on the orbital parameters of the binary. Evolutionary computations of interacting close binaries are discussed and general conclusions are drawn. The enormous amount of observational data of massive binaries is summarized. We separately consider the non-evolved and evolved systems. The latter class includes the semi-detached and contact binaries, the WR binaries, the X-ray binaries, the runaways, the single and binary pulsars. A general comparison between theoretical evolution and observations is combined with a discussion of specially interesting binaries: the evolved binaries HD 163181, HD 12323, HD 14633, HD 193516, HD 25638, HD 209481, Per and Sgr; the WR+OB binary V444 Cyg; the high mass X-ray binaries Vela X-1, Wray 977, Cyg X-1; the low mass X-ray binaries Her X-1 and those with a black hole candidate; the runaway Pup, the WR+compact companion candidates Cyg X-3, HD 50896 and HD 197406. We finally propose an overall evolutionary model of massive close binaries as a function of primary mass, mass ratio and orbital period. Chapter III deals with massive star population synthesis with a realistic population of binaries. We discuss the massive close binary frequency, mass ratio and period distribution, the observations that allow to constrain possible asymmetries during the supernova explosion of a massive star. We focuss on the comparison between observed star numbers (as a function of metallicity) and theoretically predicted numbers of stellar populations in regions of continuous star formation and in starburst regions. Special attention is given to the O-type star/WR star/red supergiant star population, the pulsar and binary pulsar population, the supernova rates. Received 17 July 1998  相似文献   

20.
We analyse the distribution of the interstellar matter in the environs of the Wolf-Rayet star LSS 3982 (= WR 85, WN6+OB?) linked to the optical ring nebula RCW 118. Our study is based on neutral hydrogen 21-cm line data belonging to the Southern Galactic Plane Survey (SGPS).
The analysis of the H  i data allowed the identification of a neutral hydrogen interstellar bubble related to WR 85 and the 25-arcmin-diameter ring nebula RCW 118. The H  i bubble was detected at a systemic velocity of −21.5 km s−1, corresponding to a kinematical distance of 2.8 ± 1.1 kpc, compatible with the stellar distance. The neutral structure is about 25 arcmin in radius or 21 ± 8 pc, and is expanding at 9 ± 2 km s−1. The associated ionized and neutral masses amount to  3000 M  . The carbon monoxide (CO) emission distribution depicts a region lacking CO coincident in position and velocity with the H  i structure. The 9.3-arcmin-diameter inner optical nebula appears to be related to the approaching part of the neutral atomic shell. The H  i void and shell are the neutral gas counterparts of the optical bubble and have very probably originated in the action of the strong stellar wind of the central star during the O-type and WR phases on the surrounding interstellar medium. The H  i bubble appears to be in the momentum conserving stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号