首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The shortwave radiative forcings of smoke aerosol in the cloudless atmosphere during the summer fires of 2010 in European Russia were quantitatively estimated for the land surface and the atmospheric upper boundary from measurement data obtained at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics (OIAP ZSS), Russian Academy of Sciences. Variations in the temperature of the surface air layer due to the smoke-induced attenuation of incoming solar radiation were estimated. The most intensive smoke generation in the atmosphere was observed on August 7–9, 2010, when the maximum aerosol optical thickness amounted to more than 4.0 at a wavelength of 550 nm. In this case, the albedo of single aerosol scattering amounted to ∼0.95–0.96 and the asymmetry factor amounted to ∼0.69–0.70. The maximum shortwave radiative forcing of aerosol amounted to about −360 W/m2 for the land surface and almost −150 W/m2 for the atmospheric upper boundary. During the period of intensive smoke generation, the cooling of the atmospheric surface layer over daylight hours (12 h) amounted, on average, to ∼6°C. The power character of the dependence of the shortwave radiative forcing of aerosol for the land surface on aerosol optical thickness up to its values exceeding 4.0, which was revealed earlier on the basis of data on aerosol optical thickness (up to 1.5) obtained at the OIAP ZSS during the summer forest and peatbog fires of 2002 in the region of Moscow, was supported.  相似文献   

2.
Peculiarities of the formation of carbon gas and fine aerosol emissions into the atmosphere during wildfires are analyzed. A prompt satellite monitoring system and technique for the assessment of burnt areas and volumes of CO2, CO, and PM2.5 emissions from wildfires are described. The results of satellite monitoring of the Russian Federation and some Russian regions for different months over 2010–2014 are given; burnt areas and volumes of carbon gas and aerosol emissions throughout the entire territory are assessed. The peculiarities of seasonal frequencies of wildfires and volumes of hazardous gas and fine aerosol emissions in the regions under study are identified.  相似文献   

3.
The emissions from fires in the boreal zone of northern Eurasia significantly contribute to the global emissions of greenhouse gases, their precursors, and aerosols. These emissions are an important component of the global carbon balance, and they significantly affect both seasonal and long-term variations in the chemical composition and radiation properties of the atmosphere on both regional and global scales. The atmospheric emissions of carbon monoxide (CO) from biomass burning have systematically been estimated for the entire territory of northern Eurasia over the period of 2000–2008 on the basis of satellite (MODIS MCD45A1) data on burned vegetation and the Seiler-Crutzen emission model with consideration for both regional and seasonal features. On the whole, for Russia, the annual emissions of CO from biomass burning ranged from 10.6 to 88.2 Mt/y over the indicated period. Depending on fire activity, the atmospheric emissions of CO from natural fires and agricultural work may yield from 25 to 200% of the total technogenic emissions according to the EDGAR-2000 model. In this case, the dominant contribution is made by boreal forest fires (8–57 Mt/y), whose portion amounts to 63–76% of the total emissions from biomass burning. This relatively short observational series does not allow one to reliably estimate long-term variations; however, on the whole, a stable increase in burned areas has been observed in forest, steppe, and agricultural regions over the last decade. Our analysis suggests significant spatial and seasonal variations in the large-scale fields of fire emissions, which are determined by the physical, geographic, and climatic features of individual regions. The calculated fields of emissions can be used in transport-chemical models, studies of the regional transport and quality of air, and climate models.  相似文献   

4.
This study is devoted to estimation of carbon monoxide (CO) emissions during the wildfires of the anomalously hot 2010 summer in the central part of the Russian Plain. CO emissions from the forest wildfires have been estimated with use of the Active Fires (AF) (MODIS MCD14ML) and Burned Areas (BA) (MODIS MCD45) methods for AVHRR/UDM, Global Land Cover 2000 (GLC 2000), GlobCover, and MCD12Q1 vegetation maps. A comparison of the vegetation maps and investigation of forest structure dynamics for the period from 2005 to 2009 have been carried out. It is shown that the major uncertainties during the estimation of CO in decreasing order are the following: distinctions in emission-calculation methods, differences in the vegetation maps used, differences in satellite data from Terra and Aqua, and the insufficient registration of forest structure dynamics. For additional comparison of estimations obtained by an independent method with the use of orbital (MOPITT, AIRS, and IASI) and ground-based (Moscow and Zvenigorod) spectroscopic measurements of CO content were presented.  相似文献   

5.
The spatial and temporal variabilities of the aerosol optical thickness (AOT) and the total carbon monoxide content (CO) in the period of development and weakening of mass forest and peatbog fires in the European Russia territory (ERT) in the summer of 2010 are investigated from data of the AOT and CO satellite observations. The intensities of aerosol and CO emissions in the period of mass fires and the ratio of the emission factors of aerosol particles and CO are estimated on the basis of calculations of the smoke and CO masses over the ERT. The interrelation between variations in the levels of the regional pollution by combustion products and the variability of meteorological parameters is investigated. Various aspects of the manifestation of radiation effects of aerosols are discussed. The synchronization of weekly signals of the AOT, CO, and meteorological parameters in the period of mass fires is noted.  相似文献   

6.
Satellite instruments for the routine global monitoring of NO2 in the atmosphere—the Global Ozone Monitoring Experiment (GOME) on the ERS-2 satellite, the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) on the ENVISAT satellite, the Ozone Monitoring Instrument (OMI) on the AURA satellite, and the GOME-2 on the MetOp satellite—are briefly described. It is shown that the error of measuring the NO2 total column amount (∼10% for the background conditions in the troposphere) substantially increases in regions subject to anthropogenic pollution. Examples of practically using multiyear satellite measurements for the regional monitoring of NO2 in the troposphere are presented, including mapping the tropospheric NO2 in Russia, identifying the weekly and annual cycles in tropospheric NO2 variations for megalopolises (St. Petersburg, Moscow, Paris), and estimating the long-term linear trend in 1995–2007.  相似文献   

7.
Relations between short-term variations in the concentrations of aerosol (PM10) and carbon monoxide (CO) and meteorological characteristics are considered for the episodes of severe atmospheric pollution in the region of Moscow in the summer of 2010. The assumption is made and substantiated that the observed (in late June) severe aerosol pollution of the atmosphere over Moscow was caused by air masses arrived from soil-drought regions of southern Russia. In August, during the episodes of advection of forest-fire products, the maximum surface concentrations of pollutants were observed in Moscow mainly at 11:00–12:00 under a convective burst into the atmospheric boundary layer and at night in the presence of local wind-velocity maxima or low-level jet streams within the inversion layer. On the basis of results from an analysis of these air-pollution episodes before and after fires, it is concluded that the shearing instability of wind velocity favors the surface-air purification under ordinary conditions and an increase in the surface concentrations of pollutants during their advection (long-range transport, natural-fire plumes, etc.). It is shown that the pollution of the air basin over the megapolis with biomass-combustion products in 2010 led to an increase in the thermal stability of the atmospheric surface layer and in the duration of radiation inversions, as well as to an attenuation of the processes of purification in the urban heat island.  相似文献   

8.
We investigate the air pollution in the central European part of Russia during the 2010 summer fires. The results of ground-based (Institute of Atmospheric Physics (IAP), Moscow State University (MSU), and Zvenigorod Scientific Station (ZSS)) and satellite (MOPITT, AIRS, of Terra and Aqua satellites) measurements of the total content and concentration of carbon monoxide (CO), as well as MODIS data on the spatial and temporal distribution of forest and peat fires obtained from Terra and Aqua satellites, are presented. A comparison between similar situations in 2010 and 2002 revealed the causes of higher pollution levels in 2010. The use of trajectory analysis, detailed space imagery, and model calculations made it possible to reveal the location of peat fires and their contribution to the air pollution over the Moscow megalopolis. Fireemission estimates were obtained using two independent methods.  相似文献   

9.
The evolution of smoke plume over European Russia (ER) during the massive forest and peatbog fires of summer 2010 has been studied using observations of aerosol optical depth (AOD) from MODIS instruments (both Aqua and Terra platforms), objective analysis of meteorological fields performed at the Russian Hydrometeorological Research Center, NCEP/NCAR reanalysis, as well as upper air data. A relation between the structure inhomogeneities of the AOD field and regional atmospheric circulation has been found. It is shown that, on August 5–9, 2010, the maximum of smoke pollution did complete turn around Moscow, while remaining at a distance of 200 to 650 km from the megacity. Both regionally averaged shortwave aerosol radiative forcings (ARFs) at the top and the bottom of the atmosphere are estimated for the period of extreme smoke pollution over ER. The spatial distributions of ARF values over the territory of the region and the estimates of the local and spatially distributed thermal effects of smoke aerosol are given. It is shown that, on August 5–9, 2010, the spatial distribution of AOD and the calculated thermal effects of smoke aerosol were in agreement with the spatial distributions of air-temperature anomalies observed in the lower 1.5-km layer of the atmosphere. MODIS’s AOD data obtained during the wildfires were validated by AOD observations from the CIMEL sun photometer operated at the AERONET station Zvenigorod.  相似文献   

10.
Based on online wildfire satellite-monitoring data, distributions of burned-out areas, as well as emission volumes of carbon-containing gases (СО and СО2) and fine aerosols (РМ2.5), for different regions and months in 2005–2016 (across the territory of Russia) and in 2010–2016 (northern Eurasia) are analyzed. Distinctive features of the seasonal behavior of wildfires and emission volumes of carbon-containing gases and fine aerosols for different regions of northern Eurasia are determined. It is shown that between 2005 and 2016 the annual area of territories burned out during wildfires in Russia decreased by almost a factor of 2.6 owing to early detection and suppression of fire sources. It is determined that in 2014–2016 the relative size of burned-out areas in Ukraine increased 6–9-fold and volumes of СО, СО2, and РМ2.5 emissions by more than a factor of 6.5–7.5 times when compared to earlier years and these characteristics for other European countries.  相似文献   

11.
The prediction results of large-scale forest fire development are given for Siberia. To evaluate the fire risks, the Canadian Forest Fire Weather Index System (CFFWIS) and the Russian moisture indices (MI1 and MI2) were compared on the basis of the data of a network of meteorological stations as input weather parameters. Parameters of active fires were detected daily from the NOAA satellite data for the period of 1996–2008. To determine the length of the fire danger season, the snow cover fractions from Terra/MODIS data (2001–2008) were used. The features of fire development on territories with different types of flammable fuel are considered. The statistical analysis of the areas and number of fires typical of each vegetation class is made with the use of the GLC2000 vegetation map. A positive correlation (∼0.45, p < 0.05) between the cumulative area of local fires and the MI1 and Canadian BUI and DMC indices is revealed. The Canadian ISI and FWI indices describe best the diurnal dynamics of fire areas. The above correlations are higher (∼0.62, p < 0.05) when we select the fires larger than 2000–10000 ha in size for the forested areas. Other cases point to the lack of a linear relation between the fire area and the values of all indices, because the fire spread depends on many natural and anthropogenic factors.  相似文献   

12.
Temperature records for the Russian territory in summer 2010 are presented. The potential role that the current global warming plays in the formation of abnormally hot summers in the European part of Russia is discussed. Although the main reason for the extreme heat wave in 2010 was a quasi-stationary anticyclone blocking westerlies, global warming could also contribute to the observed temperature extremums adversely affecting the biota.  相似文献   

13.
The results of measurements of the concentration of carbon oxide (CO) in the atmospheric surface layer over the town of Obninsk (in European Russia, 105 km to the southwest of Moscow) are presented. Air samples were analyzed with the aid of a measuring system consisting of a Fourier-spectrometer and an optic multipass cell. The CO concentration was measured simultaneously with the measurements of air temperature up to a height of 300 m. The measurement data obtained from February 1998 to January 2009 suggest the presence of variations within the range 100–450 ppb (∼80% of all the data) and nonperiodic relatively short-term and anomalously high CO concentrations that reach several ppm. The highest concentrations are due to CO accumulated in the surface air in the presence of temperature inversion and during forest fires. The measurements of the concentration of CO throughout a day revealed its morning and evening maxima, which coincide in time with the increased traffic current. The maxima and minima of seasonal variations in the monthly mean concentrations of CO, which are due to variations in the sources and sinks of CO that happen within a year, are observed in January and June, respectively. The amplitudes of seasonal variations amounted to (53 ± 10)% of the annual mean. The annual mean concentration of CO decreased by ∼12% over the measurement period. A comparison was made with observational data obtained at five monitoring stations located in the latitudes that are close to the latitude of Obninsk. Over the European continent, the concentration of CO tends to decrease with a longitude decrease as it goes from east to west.  相似文献   

14.
We analyze spatial variations in the air turbidity factor T obtained from the interpolation of ground-based solar radiometry data within the territory (40°–70° N, 30°–60° E) in summer 2010. The abnormal heat and connected fires of summer 2010 changed the mean values of air turbidity and the character of its spatial variations. As a result, a “tongue” of increased values of the turbidity factor was observed in the south-to-north direction in July, and a closed region of anomalous high T was formed over the territory (48°–55° N, 37°–42° E) to the south of Moscow and partly covered the Moscow region in August. Such a pattern resulted from blockage preventing from ingress of air masses from the west and producing closed air circulation over the European Part of Russia (EPR).  相似文献   

15.
Specific features of the extreme summer heat of 2010 in the European part of Russia are analyzed against the background of global and regional climate changes taking into account antropogenic influences and natural anomalies related, in particular, to the El Niño/La Niña phenomena. The tendencies of the characteristics of the activity of blocking anticyclones (blockings) responsible for the formation of drought regimes and the increase in the fire hazard at midlatitudes are estimated in connection with climate changes.  相似文献   

16.
On the basis of processing of the oceanographic data accumulated for the water area of the North Atlantic in 1950–1999 (∼500,000 stations), we study seasonal and interannual variations of the principal characteristics of pycnocline within the range of σt = 25.5–27.5 conventional density units. It is shown that the interannual oscillations of these characteristics in the entire analyzed layer can be regarded as a superposition of fluctuations with periods from 2–3 to 10–12 yr. The typical ranges of these fluctuations for the depths of occurrence of isopycnic surfaces and the corresponding temperature and salinity are equal to 20–25 m, 1–1.5°C, and 0.25‰, respectively. The intensification of atmospheric circulation at middle latitudes is accompanied by the simultaneous deepening of the pycnocline and its heating in the central part of the North Subtropical Anticyclonic Gyre. At the same time, the process of weakening of the atmospheric circulation leads to the rise of the pycnocline and its cooling. The complete cycle of interaction of the North-Atlantic Oscillation with the anomalies of isopycnic characteristics (with regard for the period of their advection) is equal to ∼6–8 yr. __________ Translated from Morskoi Gidrofizicheskii Zhurnal, No. 2, pp. 29–48, March–April, 2007.  相似文献   

17.
It has been shown by numerical simulation that the rate of formation of secondary organic aerosols (SOAs) in smoke plumes caused by vegetation and peat fires under real conditions can significantly depend on the aerosol optical thickness (AOT). The AOT determines the photodissociation rate and hydroxyl radical concentration, which in turn determines the rate of SOA generation as a result of oxidation of semivolatile organic compounds. Quantitative analysis has been carried out for the situation that took place in European Russia during the 2010 Russian wildfires. The state-of-the-art 3D chemical transport model is used in this study; the simulations are optimized and validated using the data of monitoring of the particulate matter in the Moscow region and Finland. The findings indicate that it is important to allow for this effect in studies focused on the analysis and prediction of air pollution due to wildfires, as well as climate and weather studies, whose results may depend on the assumptions about the content and properties of atmospheric carbon-containing aerosol.  相似文献   

18.
The blocking anticyclone (BA) observed in the summer of 2010 over the European part of Russia led to enormous economical damage, substantially increased the mortality of the population, and had serious negative consequences for human health. Dynamic processes in the troposphere, i.e., wave trains, which could contribute to anticyclone formation and sustenance, are investigated. In order to study these wave trains, three-dimensional Plumb vectors have been calculated and analyzed. It is shown that, in June 2010, three wave trains propagated eastward in the troposphere over the Atlantics. The first two wave trains, having reached Europe, continued to propagate in eastern and southeastern directions. Only the third wave train, upon reaching Europe, continued to propagate toward the northeast and, on June 17–19, entered northwestern Russia. The anticyclone, which started to form on June 18 precisely in this region, subsequently developed into a stable BA observed over European Russia up to mid-August. The propagation direction of the wave trains could change due to the formation of a double structure of the zonal flow in the troposphere. The wave trains are revealed in the middle of June in regions with increased cloudiness over the northwestern part of the Atlantic Ocean and over the northwestern and northern parts of the central United States. Eastwardpropagating wave trains, which could contribute to the intensification of the corresponding BAs that brought anomalously high temperatures to European Russia, were also revealed in July and August of 2010 and 1972. The calculated 10-day backward trajectories are analyzed to determine the character of motions of air particles that penetrated into the anticyclone over the region of Moscow during the 2010 summer in the period of its development.  相似文献   

19.
20.
Carbon monoxide (CO) total columns over European Russia (ER) and western Siberia (WS) have been analyzed using MOPITT (V5, TIR/NIR, L3) IR-radiometer data obtained in 2000–2014. High CO contents are revealed over large urban and industrial agglomerations and over regions of oil-and-gas production. A stable local CO maximum is observed over the Moscow agglomeration. Statistical characteristics of CO total columns observed in the atmosphere over ER and WS in 2000–2014 are presented. An analysis of long-term changes in CO content reveals nonlinear changes in the CO total column over northern Eurasia in 2000–2014. Results of a comparative analysis of annual variations in atmospheric CO contents over ER and WS are given. Based on Fourier analysis, empirical models of annual variations in total CO contents over ER and WS are proposed. Relations between regional CO contents and fire characteristics and between spatial CO distributions and features of large-scale atmospheric dynamics under conditions of weather and climate anomalies in the summers of 2010 in ER and 2012 in WS are analyzed. Data on total CO contents measured with a MOPITT satellite radiometer and a ground-based spectrometer operating at the Zvenigorod Scientific Station of the Obukhov Institute of Atmospheric Physics are compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号