首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ice cap Ulugh Muztagh in the central Kunlun Shan at the northern fringe of the Tibetan Plateau is a very isolated region with arid cold conditions. No observational, meteorological or glaciological ground truth data is available. Using the Moderate-resolution Imaging Spectroradiometer(MODIS) Level 1 radiance Swath Data(MOD02QKM) with a spatial resolution of 250 m, transient snow lines during the months of July to September in 2001 to 2014 are derived. Results are used to calibrate the physical based Coupled Snowpack and Ice surface energy and Mass balance model(COSIMA). The model runs on a representative detail region of Ulugh Muztagh(UM) on a digital elevation model with the same spatial resolution as the MODIS bands. In the absence of field observations, the model is driven solely by dynamically downscaled global analysis data from the High Asia Refined analysis(HAR). We compare remote sensing derived and modelled mean regional transient snow line altitudes in the course of consecutive summer seasons in 2008 to 2010. The resulting snow line altitude(SLA) and annual equilibrium line altitude(ELA) proxy of both methods coincide very well in their interannual variability in accordance with interannual variability of climatic conditions. Since SLAs of both methods do notconsistently agree on a daily basis a usage of remote sensing derived SLAs for model calibration in the absence of field observation data is only limitedly feasible for daily analysis. ELA approximation using the highest SLA at the end of ablation period may not be applied to UM because the negative winter mass balance(MB) is not reflected in the summer SLA. The study reveals moderate negative MB for UM throughout the modelling period. The mean regional MB of UM accounts for-523±410 mm w.e. a-1 in the modelling period. Hence UM seems not to belong to the area of the ‘Karakorum anomaly' comprising a region of positive mass balances in recent years which has its centre presumably in the Western Kunlun Shan.  相似文献   

2.
This study addressed the floral component traits and biomass allocation patterns of Gentiana hexaphylla as well as the relationships of these parameters along an elevation gradient(approximately 3700 m, 3800 m, 3900 m, and 4000 m) on the eastern Qinghai-Tibet Plateau. The plant height, floral characteristics, and biomass allocation of G. hexaphylla were measured at different altitudes after field sampling, sorting, and drying. Plant height was significantly greater at 3700 m than that at other elevations. Flower length was significantly greater at 4000 m than that at other elevations, whereas the flower length at low elevations showed no significant differences. Corolla diameter increased with altitude, although the difference was not significant between 3800 m and 3900 m. Variations in biomass accumulation, including the aboveground, photosynthetic organ, flower and belowground biomasses, showed non-linear responses to changes in altitude. The aboveground and photosynthetic organ biomasses reached their lowest values at 4000 m, whereas the belowground and flower biomassreached minimum values at 3700 m. The sexual reproductive allocation of G. hexaphylla also increased with altitude, with a maximum observed at 4000 m. These results suggest that external environmental factors and altitudinal gradients as well as the biomass accumulation and allocation of G. hexaphylla play crucial roles in plant traits and significantly affect the ability of this species to adapt to harsh environments. The decreased number of flowers observed at higher altitudes may indicate a compensatory response for the lack of pollinators at high elevations, which is also suggested by the deformed flower shapes at high altitudes. In addition, the individual plant biomass(i.e., plant size) had significantly effect on flower length and corolla diameter. Based on the organ biomass results, the optimal altitude for G. hexaphylla in the eastern Qinghai-Tibet Plateau is 3800 m, where the plant exhibits minimum propagule biomass and asexual reproductive allocation.  相似文献   

3.
This study addressed the floral component traits and biomass allocation patterns of Gentiana hexaphylla as well as the relationships of these parameters along an elevation gradient (approximately 3700 m, 3800 m, 3900 m, and 4000 m) on the eastern Qinghai-Tibet Plateau. The plant height, floral characteristics, and biomass allocation of G. hexaphylla were measured at different altitudes after field sampling, sorting, and drying. Plant height was significantly greater at 3700 m than that at other elevations. Flower length was significantly greater at 4000 m than that at other elevations, whereas the flower length at low elevations showed no significant differences. Corolla diameter increased with altitude, although the difference was not significant between 3800 m and 3900 m. Variations in biomass accumulation, including the aboveground, photosynthetic organ, flower and belowground biomasses, showed non-linear responses to changes in altitude. The aboveground and photosynthetic organ biomasses reached their lowest values at 4000 m, whereas the belowground and flower biomass reached minimum values at 3700 m. The sexual reproductive allocation of G. hexaphylla also increased with altitude, with a maximum observed at 4000 m. These results suggest that external environmental factors and altitudinal gradients as well as the biomass accumulation and allocation of G. hexaphylla play crucial roles in plant traits and significantly affect the ability of this species to adapt to harsh environments. The decreased number of flowers observed at higher altitudes may indicate a compensatory response for the lack of pollinators at high elevations, which is also suggested by the deformed flower shapes at high altitudes. In addition, the individual plant biomass (i.e., plant size) had significantly effect on flower length and corolla diameter. Based on the organ biomass results, the optimal altitude for G. hexaphylla in the eastern Qinghai-Tibet Plateau is 3800 m, where the plant exhibits minimum propagule biomass and asexual reproductive allocation.  相似文献   

4.
A study has been carried out in part of Chenab basin,Himalaya to understand the relationship between glacio-morphological factors and change in glacial area. Initially change in areal extent of glaciers was derived for two time frames(1962-2001/02 and 2001/02-2010/11). The study comprised of 324 glaciers for the monitoring period of 1962-2001/02 for,which 11% loss in glacial area was observed. Two hundred and thirty-eight glaciers were further monitored between 2001/02 and 2010/11. These glaciers showed an area loss of 1.1%. The annual deglaciation has been found to be higher during the period of 1962-2001/02 compared to 2001/02-2010/11. The spatial and temporal variability in deglaciation was also addressed usingglacio-morphic parameters. Area,length,percentage of debris cover,and various elevation parameters of glaciers were observed to have significant controls on relationships to the rate of glacial shrinkage. Largerarea and longer glaciers show a lower percentage of retreat than smaller and shorter ones. Moreover,glaciers located at lower altitudes and having gentle slopes show more area retreat. The results of area retreat in debris covered and debris free glaciers supports that the glaciers covered by debris retard ice melting at some extent. 158 glaciers were observed having no debris cover,and these exhibit 14% of loss in surface area. In glaciers having 40% debris cover,8% of deglaciation was observed. The glaciers located below equilibrium line altitude(ELA) have experienced 4.6% of deglaciation for the time frame 2001/02 – 2010/11 whereas it was found to be 1.1% for the glaciers occurring above ELA. However,theorientation of glaciers did not show any considerable influence on glacial change based on hypothesis.  相似文献   

5.
A crucial region for China's ‘Grain-forGreen Policy' is located within a traditional farmpastoral area, between 2000 to 3000 m above sea level, on the eastern Qinghai-Tibetan Plateau.However, the responses of soil organic carbon(SOC) to different land-use patterns in this region are unclear. Here, we determined the SOC(0–20 cm) content of grasslands and forests that are being converted from farmlands, as well as in abandoned arable land and arable land in this region. The factors influencing the reclaimed lands were analyzed along altitudes from 2030 to 3132 m. Our results showed that SOC content was higher for grassland and abandoned arable land than forest and arable land. The SOC content increased with the increase in altitude for total land-use patterns. Further, the grassland and abandoned arable land had higher SOC content than the forest with almost parallel trends along the increase in altitude. However, the proportion of regulated factors of altitude and species richness varied among forest, grassland, and abandoned arable land. Our results indicated that the land-use pattern of returning farmland to grassland and abandoned arable land was more effective in terms of the SOC storage in the superficial layer in this altitude range in the Qinghai-Tibetan Plateau, thereby being beneficial to optimizing land management in this region.  相似文献   

6.
The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range(SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field(SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift,which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum(LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations.This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26m Equilibrium Line Altitude(ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio(AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.  相似文献   

7.
For the reconstruction of past climate variations,investigations on the history of glaciers are necessary.In the Himalaya,investigations like these have a rather short tradition in comparison with other mountains on earth.At the same time,this area on the southern margin of Tibet is of special interest because of the question as to the monsoon-influence that is connected with the climate-development.Anyhow,the climate of High Asia is of global importance.Here for the further and regionally intensifying answer to this question,a glacial glacier reconstruction is submitted from the CentralHimalaya,more exactly from the Manaslu-massif.Going on down-valley from the glacial-historical investigations of 1977 in the upper Marsyandi Khola(Nadi) and the partly already published results of field campaigns in the middle Marsyandi Khola and the Damodar- and Manaslu Himal in the years 1995,2000,2004 and 2007,new geomorphological and geological field- and laboratory data are introduced here from the Ngadi(Nadi) Khola and the lower Marsyandi Nadi from the inflow of the Ngadi(Nadi) Khola down to the southern mountain foreland.There has existed a connected ice-stream-network drained down to the south by a 2,100-2,200 m thick and 120 km long Marsyandi Nadi main valley glacier.At a height of the valley bottom of c.1,000 m a.s.l.the Ngadi Khola glacier joined the still c.1,300 m thick Marsyandi parent glacier from the Himalchuli-massif(Nadi(Ngadi) Chuli) – the south spur of the Manaslu Himal.From here the united glacier tongue flowed down about a further 44 km to the south up to c.400 m a.s.l.(27°57'38 "N/84°24'56" E) into the Himalaya fore-chains and thus reached one of or the lowest past ice margin position of the Himalayas.The glacial(LGP(Last glacial period),LGM(Last glacial maximum) Würm,Stage 0,MIS 3-2) climatic snowline(ELA = equilibrium line altitude) has run at 3,900 to 4,000 m a.s.l.and thus c.1,500 altitude meters below the current ELA(Stage XII) at 5,400-5,500 m a.s.l.The reconstructed,maximum lowering of the climatic snowline(ΔELA = depression of the equilibrium line altitude) about 1,500 m corresponds at a gradient of 0.6°C per 100 altitude meters to a High Glacial decrease in temperature of 9°C(0.6 × 15 = 9).At that time the Tibetan inland ice has caused a stable cold high,so that no summer monsoon can have existed there.Accordingly,during the LGP the precipitation was reduced,so that the cooling must have come to more than only 9°C.  相似文献   

8.
Soft types, humus types and vegetation as well as their hypsometric variation were analysed in terms of sequences in the northern part of the high mountains of the Pirin National Park at altitudes between 1000 and 2400 m a.s.l. The study area is characterised by a large variety of natural parameters like petrology (mainly marble and granite), morphology (different slope deposits, exposition) and the orographic climate gradient. Statistical analyses using these parameters provided a basis for the soil group classification of the sites. Based on a Digital Terrain Model (DTM) and a geological map of the Pirin National Park, the results of these statistical analyses were used to generate a "map of potential soft groups" (regionalisation using GIS). Six potential soil groups could be determined. The resulting map exhibits a confidence level of 68% on 74.4% of the covered area. Rendzic Leptosols, in combination with Folio Histosols and Histi-lithic Leptosols occur in the alpine and subalpine regions on calcareous substrates. With decreasing altitude they are replaced by a mosaic of Rendzic Leptosols, Phaeozems and an increasing occurrence of Cambic Umbrisols. Umbrisols found on silicatic substrates in the alpine region are replaced by Cambic Umbrisols with decreasing altitude as well. Hence, pedogenesis is characterised by increasing browning and depth of the soil profiles with decreasing altitude. The pH-level is slightly acidic to neutral in lower zones and on calcareous rocky bases. Acidification increases in the subalpine zone. Soft pH decreases down to 4 on silicate subtrates. Typical humic values in mineral topsoils are 10 to 12%, and in organic layers of the softs above 2000 m a.s.l, they are even more. The C:N ratio closely ranges around 20 (median).  相似文献   

9.
Soil types, humus types and vegetation as well as their hypsometric variation were analysed in terms of sequences in the northern part of the high mountains of the Pirin National Park at altitudes between looo and 2400 m a.s.1. The study area is characterised by a large variety of natural parameters like petrology (mainly marble and granite), morphology (different slope deposits, exposition) and the orographic climate gradient. Statistical analyses using these parameters provided a basis for the soil group classification of the sites. Based on a Digital Terrain Model (DTM) and a geological map of the Pirin National Park, the results of these statistical analyses were used to generate a "map of potential soil groups" (regionalisation using GIS). Six potential soil groups could be determined. The resulting map exhibits a confidence level of 68 % on 74.4 % of the covered area. Rendzic Leptosols, in combination with Folic Histosols and Histi-lithic Leptosols occur in the alpine and subalpine regions on calcareous substrates. With decreasing altitude they are replaced by a mosaic of Rendzic Leptosols, Phaeozems and an increasing occurrence of Cambic Umbrisols. Umbrisols found on silicatic substrates in the alpine region are replaced by Cambic Umbrisols with decreasing altitude as well. Hence, pedogenesis is characterised by increasing browning and depth of the soil profiles with decreasing altitude. The pH-level is slightly acidic to neutral in lower zones and on calcareous rocky bases. Acidification increases in the subalpine zone. Soil pH decreases down to 4 on silicate subtrates. Typical humic values in mineral topsoils are 10 to 12 %, and in organic layers of the soils above 2000 m a.s.1, they are even more. The C:N ratio closely ranges around 20 (median).  相似文献   

10.
Recent changes occurred in terminus of the debris-covered Bilafond Glacier in the Karakoram Range in the Himalayas, Northern Pakistan was investigated in this research. Landsat MSS, TM and ETM+ images were used for this study. Digital elevation models derived from ASTER GDEM and SRTM were also utilized. Visible, infrared and thermal infrared channels were utilized in order to get accurate glacier change maps. Three methods were tried to map this debris-covered glacier in this research. The glacier has been mapped successfully and the changes in the glacier terminus from 1978 to 2011 have been calculated. Manual, semi-automatic and thermal methods were found to give similar results. It was found that the glacier has undergone serious ablation during this period despite of the fact that many of the larger glaciers in the Hindu Kush and Karakoram mountain regions in the Upper Indus Basin were reported to be expanding. The terminus has been moved back about 600 meters during this period and there was an abrupt change in the glacier terminus during 1990-2002. We propose that debris thickness is not the only factor that influences the glacier ablation but the altitude of the debris-covered glacier as well. Many glaciers in the Karakoram region reported to be expanding were having higher altitudes compared to the study area.  相似文献   

11.
The relationship between cross-regional cultural landscapes does not currently receive enough attention in cultural landscape conservation. Cultural landscapes in China are faced with the crisis of fragmentation and islanding, which makes it necessary to strengthen the idea of integrated conservation. The Great Wall cultural belt in Beijing is a cross-regional linear cultural landscape in the northwest mountainous area of Beijing. With the Great Wall as a link connecting the surrounding natural, social, and cultural resources to form a banded structure, it has the typical and practical significance of integrated conservation. Based on the theory of the cultural landscape security pattern and its ‘node – setting – connection' model, this research studies the spatial structure and shaping mechanism of the Great Wall cultural belt in Beijing from the perspective of tourist flow, using Flickr geo-tagged photos and Wikiloc tracks. The results identify the core nodes and intermediate nodes of the Great Wall cultural belt in Beijing and show that it has a multicore, multi-group hierarchical nesting structure differing from the geographic space, which has groups following the evolution orbit of ‘linear string – circumnuclear star – complete network.' To explain the differences between the cultural association network(CAN) and the geospatial network(GSN), we find that the cultural associations between nodes rely on geophysical channels, including heritage corridors and traffic passages, as physical carriers, but the nodes' attraction and their setting elements, containing natural geography environments, settlements, administrative divisions, etc., change the channel resistance, so CAN and GSN present different characteristics. From the perspective of systematic and spatial network thoughts, this study has made an attempt to adopt new analysis and research methods to achieve the integrated conservation and inheritance of linear cultural landscapes in mountainous areas.  相似文献   

12.
Topography, especially altitude, will influence the way, process and characteristics of land cover changes in mountainous area, simultaneously, the vertical difference of land cover changes will affect soil quality and regional ecological environment. Therefore, the gradient relationship analysis between land cover changes and altitude is very important for regional sustainability. This study investigated land cover dynamics based on land cover data from a typical mountainous area in the Guizhou-Guangxi karst mountain area, China, in 2000 and 2010, then explored the relationship between altitude and land cover change and analyzed different drivers of land cover change at different altitudes. Our findings are as follows. 1) From 2000 to 2010, the total area of land cover transition was 7167.04 km~2 or 2.8% of the region. The increasing area of build-up land(926.23 km~2) was larger than that of forest(859.38 km~2), suggesting that the urban construction speed was higher than that of reforestation. 2) Intensity of land cover transition in northwestern Guizhou-Guangxi karst mountain area was much larger than that of southeast part and their transition trend was also significantly different, which was consistent with regional population and economy. 3) Human activity was the most dramatic at altitudes between 0–500 m. For 500–1000 m, grassland mainly converted to forest and build-up land. Area of land cover transition was the greatest between 1000–1500 m, while above 1500 m, the transition of grassland was the most obvious. 4) The drivers of land cover change varied. Land cover change was positively correlated with gross domestic product and population density but was inversely related to relief amplitude. There were correlations between land cover change and distance to roads and rivers, and their correlations varied with altitude. By revealing patterns and causes of land cover changes in different altitudes, we hope to understand the vertical dependence of land cover changes, so as to improve land productivity and protect land ecological environment scientifically.  相似文献   

13.
Global climate change during the twentieth century had a significant impact on the glaciers that resulted in creation of new lakes and expansion of existing ones, and ultimately an increase in the number of glacial lake outburst floods(GLOFs) in the Himalayan region. This study reports variation of the end-moraine dammed lakes in the high altitude Hindukush-Karakoram-Himalaya(HKH) region of Pakistan to evaluate future floods hazard under changing climate in this region. An integrated temporal remote sensing and Geographic information system(GIS) based approach using satellite images of Landsat-7 and 8 was adopted to detect 482 endmoraine dammed lakes out of which 339 lakes(0.02 km2) were selected for temporal change analysis during the 2001-2013 period. The findings of the study revealed a net expansion in the end-moraine dammed lakes area in the Karakoram(about 7.7%) and in the Himalayas(4.6%), while there was a net shrinkage of about 1.5% in the lakes area in the Hindukush range during this period. The percentage increase in the lakes' area was highest above 4500 m asl in the Hindukush, within 3500-4000 m asl in the Himalayas and below 3500 m asl in the Karakoram range. The overall positive change in the lakes' area appears to prevail in various altitudinal ranges of the region. The heterogeneous areal changes in the endmoraine dammed lakes might be attributed to different climate regimes and glacial hydrodynamics in the three HKH ranges. A periodic monitoring of the glacial lakes and their associated glaciers is essential for developing effective hazard assessment and risk reduction strategies for this high altitude Himalayan region.  相似文献   

14.
The key aspect in planning and management of water resources is to analyze the runoff potential and erosion status of the river basin. For the detailed investigation of hydrological response, freely available Cartosat-1 (IRS-P5) data was used for the preparation of digital elevation model (DEM). The runoff potential and type of erosive process of 22 river basins originating in the global biodiversity hotspot of Western Ghats, was inferred through hypsometric analysis. Several parameters like Hypsometric integral (HI), maximum concavity (Eh), coordinates of slope inflection point (I) given by a* and h* and normalized height of hypsometric curve (h) were extracted from the hypsometric curves and used for understanding the hydrological responses. From the hypsometric curves, the landform evolution processes were inferred. Contribution of diffusive and fluvial processes in slope degradation of the river basins was understood. Basins with lesser area (<100 km2) were found to have a positive correlation between hypsometric integral and basin area, whereas for large basins no such correlation exists. Based on the study, river basins can be prioritized for the appropriate conservation measures.  相似文献   

15.
Geomorphological and Quaternarygeological field- and laboratory data (Fig.1) are introduced and interpreted with regard to the maximum Ice Age (LGM) glaciation of the Central and South Karakoram in the Braldu-, Basna-, Shigar and Indus valley system as well as on the Deosai plateau between the Skardu Basin and the Astor valley (Fig.2). These data result from two research expeditions in the years 1997 and 2000. They show that between c. 6o and 2o Ka the Central Karakorum and its south slope were covered by a continuous c. 125000 km^2 sized ice stream network. This ice stream network flowed together to a joint parent glacier, the Indus glacier. The tongue end of the Indus glacier reached down to 850 ~ 800m a.s.l. In its centre the surface of this Indus ice stream network reached a height of a good 6ooo m. Its most important ice thicknesses amounted to c. 2400 ~ 2900 m.  相似文献   

16.
Compared to burn interiors, edges exhibit distinct biotic and abiotic conditions that include microclimate, wind speed, sunlight levels, soil composition, moisture content, nutrient availability, population density, and species diversity. This study characterized the landscapes in which burned forest edges formed in Samcheok, Korea. Over the study area, 500-m2 grid cells were generated to capture landscape characteristics. Grid cells intersecting burn boundary lines were designated as edge, while cells without these lines were classified as the interior of burned areas. Topographic variables including slope, elevation, topographic wetness index, solar radiation index, and proportions of fuel and land use types within grid cells were computed in a geographical information system (GIS). Correlation analysis with modified t-test and regression tree analysis were performed to explore the influences of landscape variables on edge formation with avoiding spatial autocorrelation problems. The results indicated that edges formed at low elevations with mild slopes, high topographic wetness, and low solar radiation. Edges were unlikely to form in areas dominated by Japanese red pines at low elevations. Moreover, heterogeneous land use/cover types contributed significantly to edge formation. Different forest management strategies for different landscape conditions can be more effective for enhancing resilience of forests to fire. Reducing susceptible fuel types might be effective at low elevations, while enhancing forest heterogeneity might be more effective at high elevations.  相似文献   

17.
Zoige Plateau wetlands are located in the northeastern corner of the Qinghai-Tibet Plateau.The landscape pattern evolution processes in the Zoige Plateau and their driving factors were identified by analyzing the dynamic changes in landscape modification and conversion and their dynamic rates of alpine wetlands over the past four decades.The results showed that the landscape conversion between wetlands and non-wetlands mainly occurred during the period from 1966 to 1986.The marsh wetland area converted from lake and river wetlands was larger because of swamping compared to other wetland landscapes.Meanwhile,the larger area of marsh wetlands was also converted to lake wetlands more than other types of wetlands.The modification processes mainly occurred among natural wetland landscapes in the first three periods.Obvious conversions were observed between wetland and nonwetland landscapes(i.e.,forestland,grassland,and other landscapes) in the Zoige Plateau.These natural wetland landscapes such as river,lake and marsh wetlands showed a net loss over the past four decades,whereas artificial wetland landscapes(i.e.,paddy field and reservoir and pond wetlands) showed a net decrease.The annual dynamic rate of the whole wetland landscape was 0.72%,in which the annual dynamic rate of river wetlands was the highest,followed by lake wetlands,while marsh wetlands had the lowest dynamic rate.The integrated landscape dynamic rate showed a decreasing trend in the first three periods.The changes in wetland landscape patterns were comprehensively controlled by natural factors and human activities,especially human activities play an important role in changing wetland landscape patterns.  相似文献   

18.
The glaciers Austre Lovenbreen and Pedersenbreen are located at Ny-Alesund, Svalbard. The surface mass balance and ice flow velocity of both glaciers have been determined from the first year of observations (2005/2006), while the front edge of Austre Lovenbreen was also surveyed. The results are as follows : (1) The net mass balances of Austre Lovenbreen and Pedersenbreen are -0. 44 and -0. 20 m w. e. , the annual ablation is -0. 99 and -0. 94 m w. e. . and the corresponding equilibrium line altitudes are 478. 10 and 494. 87 m, respectively. (2) Austre Lovenbreen and Pedersenbreen are characterized as ice flow models of surge-type glaciers in Svalbard. The horizontal vectors of the ice flow velocities are parallel or converge to the central lines of both glaciers, with lower velocities in the lower ablation areas and higher velocities in the middle and upper reaches of the glaciers. The vertical vectors of ice flow velocities show that there is a mass loss in the ablation areas, which reduces with increasing altitude, while there is a mass gain near the equilibrium line of Austre Lovenbreen. (3) The front edge of Austre Lovenbreen receded at an average rate of 21. 83 m·a-1, with remarkable variability-a maximum rate of 77. 30 m·a-1 and a minimum rate of 2. 76 m·a-1.  相似文献   

19.
In the Khumbu-and Khumbakarna Himalaya an ice stream network and valley glacier system has been reconstructed for the last glacial period (Würmian, Last Ice Age, Isotope stage 4–2, 60–18 Ka BP, Stage 0) with glaciogeomorphological and sedimentological methods. It was a part of the glacier system of the Himalaya and has communicated across transfluence passes with the neighbouring ice stream networks toward the W and E. The ice stream network has also received inflow from the N, from a Tibetan ice stream network, by the Kyetrak-Nangpa-Bote Koshi Drangka (Valley) in the W, by the W-Rongbuk glacier valley into the Ngozumpa Drangka (Valley), by the Central Rongbuk glacier valley into the Khumbu Drangka (Valley) and by the antecedent Arun Nadi transverse-valley in the E of the investigation area. The ice thickness of the valley glacier sections, the surface of which was situated above the snow-line, amounted to 1000–1450 m. The most extended parent valley glaciers have been measured approx. 70 km in length (Dudh Koshi glacier), 67 km (Barun-Arun glacier) and 80 km (Arun glacier). The tongue end of the Arun glacier has flowed down to c. 500 m and that of the Dudh Koshi glacier to c. 900 m asl. At heights of the catchment areas of 8481 (or 8475) m (Makalu), i.e., 8848 (or 8872) m (Mt. Everest, Sagarmatha, Chogolungma) this is a vertical distance of the Ice Age glaciation of c. 8000 m. The steep faces towering up to 2000 m above the névé areas of the 6000–7000 m-high surfaces of the ice stream network were located 2000–5000 m above the ELA. Accordingly, their temperatures were so low, that their rock surfaces were free of flank ice and ice balconies. From the maximum past glacier extension up to the current glacier margins, 13 (altogether 14) glacier stages have been differentiated and in part 14C-dated. They were four glacier stages of the late glacial period, three of the neoglacial period and six of the historical period. By means of 130 medium-sized valley glaciers the corresponding ELA-depressions have been calculated in comparison with the current courses of the orographic snow-line. The number of the glacier stages since the maximum glaciation approx. agrees with that e.g. in the Alps and the Rocky Mountains since the last glacial period. Accordingly, it is interpreted as an indication of the Würmian age (last glacial period) of the lowest ice margin positions. The current climatic, average glacier snow-line in the research area runs about 5500 m asl. The snow-line depression (ELA) of the last glacial period (Würm) calculated by four methods has run about 3870 m asl, so that an ELA-depression of c. 1630 m has been determined. This corresponds to a lowering of the annual temperature by c. 8, i.e., 10°C according to the specific humid conditions at that time.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号