首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have obtained a suite of 42 closely spaced, acoustically navigated, heat flow measurements on well-sedimented crust of anomaly M0 age (109 Ma) in the northwest Atlantic Ocean (25°N, 68°W; 950 km south of Bermuda). The mean and standard deviation of the values obtained are 1.13 HFU (μcal/cm2 s) (47.3 mW/m2) and 0.05 HFU (2.1 mW/m2), respectively. Some of the variability is accounted for by refractive effects of the basement topography. Drill core data and our modelling suggest that the thermal conductivity contrast between sediments and basement rocks in this region is less than a factor of 1.6. The mean heat flow is close to the 1.1 HFU (46 mW/m2) predicted by both the plate and boundary layer cooling models of the oceanic lithosphere. This is the first detailed comparison with theoretical cooling models on old Atlantic Ocean crust. Since the difference in surface heat flow (0.15 HFU) predicted by the two cooling models for the oldest observed oceanic lithosphere (180 Ma) is also not much larger than the range of uncertainty in our observations, discrimination between the two models on the basis of surface heat flow data alone may prove difficult.  相似文献   

2.
Preliminary heat flow values ranging from 42 to 175 mW m–2 have been estimated for Egypt from numerous geothermal gradient determinations with a reasonably good geographical distribution, and a limited number of thermal conductivity determinations. For northern Egypt and the Gulf of Suez, gradients were calculated from oil well bottom hole temperature data; east of the Nile, and at three sites west of the Nile, gradients were calculated from detailed temperature logs in shallow boreholes. With one exception, the heat flow west of the Nile and in northern Egypt is estimated to be low, 40–45 mW m–2, typical of a Precambrian Platform province. A local high, 175 mW m–2, is probably due to local oxidational heating or water movement associated with a phosphate mineralized zone. East of the Nile, however, including the Gulf of Suez, elevated heat flow is indicated at several sites, with a high of 175 mW m–2 measured in a Precambrian granitic gneiss approximately 2 km from the Red Sea coast. These data indicate potential for development of geothermal resources along the Red Sea and Gulf of Suez coasts. Water geochemistry data confirm the high heat flow, but do not indicate any deep hot aquifers. Microearthquake monitoring and gravity data indicate that the high heat flow is associated with the opening of the Red Sea.  相似文献   

3.
On the evolution of the geothermal regime of the North China Basin   总被引:1,自引:0,他引:1  
Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m−2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m−2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.  相似文献   

4.
The Red Sea is a modern example of continental fragmentation and incipient ocean formation. Heat flow data have been collected from eastern Egypt to provide information relating to the mode and mechanism of Red Sea opening. Preliminary heat flow data, including new data reported here, are now available from twenty-five sites in eastern Egypt and one site in western Sinai. A pattern of low to normal heat flow (35–55 mW m−2) inland with high heat flow (75–100 mW m−2) in a zone within 30 to 40 km of the coast is indicated.Moderately high heat flow (around 70 mW m−2) is indicated for the Gulf of Suez. The coastal zone thermal anomaly appears continuous with high heat flow previously reported for the Red Sea shelf. Heat production data indicate that the coastal thermal anomaly is not primarily related to crustal radiogenic heat production. The effects of rapid erosion may contribute to the anomaly, but are not thought to be the primary cause of the anomaly. If the anomaly is caused by lateral conduction from hot, extended, offshore lithosphere, the extension must have been active for the last 30 Ma or so, and a minimum of 100% extension is indicated. Alternatively, the anomaly is primarily caused by high mantle heat flow causing lithospheric thinning, centred beneath the Red Sea. The Red Sea is probably underlain by dominantly basic crust, formed either by intrusion into attenuated continental crust or sea-floor spreading, and for most purposes the crust formed in these two modes of extension may be essentially indistinguishable. Fission-track ages from eastern Egypt indicate that uplift started prior to, or at latest at the time of initial Red Sea opening, and this result, together with thermo-mechanical considerations, suggests an active asthenospheric upwelling beneath the Red Sea and high temperature in the lithosphere prior to extension.  相似文献   

5.
More than fifty heat flow measurements in Italy are examined. The values, corrected only for local influences (when present), are related to the main geological features with the following results: foreland areas, 55±19 mW m–2, foredeep areas, 45±21 mW m–2; folded regions and intermountain depressions, 76±29 mW m–2. In volcanic areas the heat flow rises to in excess of 600 mW m–2. From a tectonic point of view, these values are consistent with the hypothesis that the Apennine chain is intersected by two arcuate structures: the first from Liguria to Latium is very probably a continental arc, that is an are which occurs within a continent, and the second from Campania to Calabria is very similar from geophysical evidence to the classic island arcs.  相似文献   

6.
During two months in spring, 1983, a multidisciplinary study, project CESAR, was undertaken from the sea ice across the eastern Alpha Ridge, Arctic Ocean. In the geothermal program, 10 gradiometer profiles were obtained; 63 determinations of in situ sediment thermal conductivity were obtained with the same probe, and 714 measurements of conductivity using the needle probe method were obtained on nearby core.Weighted means of the thermal conductivity of the sediment are 1.26 W/mK (in situ) and 1.34 W/mK (core), consistent with the compacted sediment encountered across the ridge and with the lithology. Calculated terrestrial heat flow values, corrected for the regional topography, range from 37 to 72 mWm−2; the average is 56+/−8 mWm−2.Some temperature and heat flow versus depth profiles exhibit non-linearities that can be explained by physically reasonable (but otherwise unsubstantiated) variations in bottom water temperatures preceding the measurements; models are hypothesized that reduce the curvatures. Two heat flow values considerably higher than others in the area may be explained by higher bottom water temperature over several years, while the low value is consistent with a recent deposition from a slump. This hypothetical modelling reduces the scatter of heat flows and reduces the average to 53+/−6 mWm−2.The CESAR heat flow is somewhat greater than expected for a purely continental fragment but is consistent with crust of oceanic origin. The heat flow is similar to values obtained in Cretaceous back-arc basins. Based on the oceanic heat flow-age relationship, the heat flow constrains the age of the ridge to 60–120 million years. The heat flow observed on other aseismic features in the world's oceans suggests that the Alpha Ridge has experienced no significant tectono-thermal event in the last 100 million years.  相似文献   

7.
Geotemperature and heat flow patterns in a large-scale Meso-Cenozoic basin such as the North China Basin are strongly affected by the relief of the basement, and controlled by the contrast of thermal conductivity between basement rock and sedimentary cover. Usually, heat flow observed at the surface of a basement uplift is greater than that of a basement depression. Calculation revealed, that the ratio of the former and the latter is determined by the uplifted height (H) of the bed-rock roof of the basement and the thickness (h) of the sedimentary cover. The relief of the basement also disturbs the geotemperature and, hence, the heat flow patterns at shallow depth. Consequently, the more or less “uniform” one dimensional heat flow from the deep interior of the Earth becomes two dimensional at shallow depth with great lateral and vertical variations. The extent of the disturbed zone is also controlled by the contrast of the thermal conductivity between basement rock and sedimentary cover as well as the uplifted heigh (H) of the bed-rock roof of the basement. Numerical computation demonstrated that the disturbed depth (Ze) is usually about 3–6 times of the uplifted height (H) of a basement uplift.  相似文献   

8.
Thermal gradients have been calculated and heat flow estimates made for 34 petroleum exploration wells along four regional profiles crossing the Mesozoic-Cenozoic Beaufort-Mackenzie Basin of northern Canada. The geothermal gradients vary from 22 mKm–1 to 44 mKm–1. Four sets of possible thermal conductivity values were used to calculate a range of heat flow values for each well. Generally low heat flow is observed in wells within the deeper portions of the basin and higher heat flow values occur in wells along the Aklavik Arch Complex which forms the southeastern margin of the basin.The contribution to heat flow by heat generation below the Mesozoic-Cenozoic basin fill sediments has been considered. The heat flow contribution from sub-Mesozoic sedimentary strata and underlying basement is highest along the basin-bounding Aklavik Arch Complex. The decrease in heat flow from below the basin fill sediments toward the basin depocenter may be related to basinward crustal thinning and corresponding reductions in intra-crustal radiogenic heat production.  相似文献   

9.
Regional groundwater flow in deep aquifers adds advective components to the surface heat flow over extensive areas within the Great Plains province. The regional groundwater flow is driven by topographically controlled piezometric surfaces for confined aquifers that recharge either at high elevations on the western edge of the province or from subcrop contacts. The aquifers discharge at lower elevations to the east. The assymetrical geometry for the Denver and Kennedy Basins is such that the surface areas of aquifer recharge are small compared to the areas of discharge. Consequently, positive advective heat flow occurs over most of the province. The advective component of heat flow in the Denver Basin is on the order of 15 mW m−2 along a zone about 50 km wide that parallels the structure contours of the Dakota aquifer on the eastern margin of the Basin. The advective component of heat flow in the Kennedy Basin is on the order of 20 mW m−2 and occurs over an extensive area that coincides with the discharge areas of the Madison (Mississippian) and Dakota (Cretaceous) aquifers. Groundwater flow in Paleozoic and Mesozoic aquifers in the Williston Basin causes thermal anomalies that are seen in geothermal gradient data and in oil well temperature data. The pervasive nature of advective heat flow components in the Great Plains tends to mask the heat flow structure of the crust, and only heat flow data from holes drilled into the crystalline basement can be used for tectonic heat flow studies.  相似文献   

10.
准噶尔盆地热流及地温场特征   总被引:26,自引:5,他引:21  
利用准噶尔盆地 1 96口井的温度资料及 90块岩石样品热导率的测定 ,计算了 35个大地热流数据 ,编制了盆地不同深度现今地温等值线图 .研究结果表明 ,准噶尔盆地现今为低地温、低大地热流的冷盆 ,盆地的现今地温梯度平均为 2 1 2℃ /km ,大地热流密度平均为42 3mW/m2 .热流的分布表现为隆起高、坳陷低的特征 .影响地温场的主要因素包括盆地的深部结构、盆地演化、盆地基底构造形态、地下水活动和沉积层的放射性生热等 .  相似文献   

11.
The analysis of both temperature data and thermal conductivity material from seven deep oil exploration horeholes in northeast Africa has allowed the calculation of a heat flow value in the Somalian Horn (average58 ± 12mW m?2) and one from the coastal plain of northeast Sudan (average96 ± 19mW m?2). Heat production measurements of granites from the Sudanese basement indicate a substantial depletion in the radiogenic heat producing elements.The heat flow results complement previous measurements from the Gulf of Aden and the Red Sea and are consistent with the geological and geophysical consensus that these two regions are young proto-oceans formed by the mechanisms of spreading lithospheric plates. The heat production evidence suggests that the lithospheric plate beneath the Sudan coastal plain is approximately 30–50 km thick and underlain by a zone of partial or complete melt.  相似文献   

12.
We have measured concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100 km transect of the Superior Province of the Canadian Shield, from the Michipicoten (Wawa) greenstone belt, near Wawa, Ontario, through a domal gneiss terrane of amphibolite grade, to the granulite belt of the Kapuskasing Structural Zone, near Foleyet. This transect has been interpreted as an oblique cross section through some 25 km of crust, uplifted along a major thrust fault, and thus provides an opportunity to examine in detail a continuous profile into deep continental crust of Archean age. Mean heat production values for these terranes, based on aereal distribution of major rock types and calculated from their Th, U, and K concentrations are: Michipicoten greenstone belt = 0.72 μW m−3; Wawa domal gneiss terrane (amphibolite grade) = 1.37 μW m−3; Kapuskasing granulites = 0.44 μW m−3. Among the silicic plutonic rocks (tonalites, granites, and their derivative gneisses), the relatively large variation in heat production correlates with modal abundances of accessory minerals including allanite, sphene, zircon, and apatite. We interpret these variations as primary (pre-metamorphic). The relatively high weighted mean heat production of the domal gneiss terrane can be accounted for by the larger proportion there of late-stage Th-, U-, and K-rich granitoid plutons. These may have been derived from the underlying Kapuskasing granulite terrane, leaving it slightly depleted in heat producing elements. Transport of Th, U, and K, therefore, could have taken place in silicate melts rather than in aqueous or carbonic metamorphic fluids. This conclusion is supported by the lack of a statistically significant difference in heat production between tonalites, tonalite gneisses and mafic rocks of amphibolite versus granulite grade.The pre-metamorphic radioactivity profile for this crustal section is likely to have been uniformly low, with a mean heat production value less than 1 μW m−3. This result is distinctly different from measured profiles in more silicic terranes, which show decreasing heat production with depth. This implies fundamental differences in crustal radioactivity distributions between granitic and more mafic terranes, and may be an important factor in selective reactivation of lithologically different terranes, possibly resulting in preferential stabilization of basic terranes in the geological record. Our results indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth. Low, but significant heat production, 0.4–0.5 μW m−3, continues to lower crustal depths with no correlation to the depth parameter from the linear relationship. This low heat production may be a minimum average granulite heat production and suggests that, in general, heat flow through the Moho is 8–10 mW m−2 lower than the reduced heat flow calculated from the heat flow-heat production regression.  相似文献   

13.
A standard core analysis technique has been modified to estimate porosities from measurements on rock fragments. For the range of rocks tested, chip-determined fractional porosities were within ±0.025 of the values measured on solid-core samples. This has enabled thermal conductivity measurements on rock fragments to be corrected for the effect of porosity, yielding agreement with conductivity determinations on solid core generally to better than ± 10%. The application of this is illustrated by the determination of heat flow in a 300-m borehole in western Cyprus (latitude 34°54′N, longitude 32°34′E, elevation 82 m). A decrease in temperature gradient with depth is almost completely compensated for by increasing thermal conductivity, and the best value for heat flow at this site is 23 ± 4 mW m?2.  相似文献   

14.
Temperature data from deep petroleum exploration wells and thermal conductivity estimates based on net rock analysis data have been used to make terrestrial heat flow estimates along two profiles across the sedimentary strata of the Mackenzie Delta, northern Yukon, and offshore Beaufort Sea regions.Both profiles exhibit low heat flow values that range from 34 mWm–2 to 58 mWm–2, and little change occurs over large distances in the continental part of the area. Low heat flow values (<40 mWm–2) occur in the Beaufort-Mackenzie Basin and Rapid Depression, both of which are areas of thick successions of Cretacecus and Tertiary clastic sedimentary strata. High heat flow values of almost 80 mWm–2 occur to the south in the Taiga Nahoni Foldbelt and values as high as 60 mWm–2 are indicated along the Aklavik Arch Complex, northeast of Aklavik.The regional variations of effective thermal conductivity are insufficient to account for the heat flow variations along the profiles, and so these may indicate deep radiogenic or other heat sources.  相似文献   

15.
A heat flow isoline map is presented. Low and relatively constant heat flow has been observed in the old shield areas of the East European Platform (25–40 mW/m2). Increased heat flow (>50 mW/m2) has been found in the Dniepr-Donetz depression. The area south of the East European Platform is characterized by highly variable heat flow (55–100 mW/m2). Some geophysical implications are discussed.  相似文献   

16.
四川盆地钻孔温度测量及现今地热特征   总被引:19,自引:11,他引:8       下载免费PDF全文
基于四川盆地9口钻孔的稳态测温资料和297块岩石样品的热导率数据,报道了9个高质量的大地热流数据,提出了沉积地层岩石热导率系列柱.结合前人的数据资料,绘制了地温梯度和大地热流等值线图.四川盆地沉积地层的岩石热导率变化主要由岩性控制,与现今埋藏深度没有明显的相关性.盆地的地温梯度为17.7~33.3℃/km,平均值为22...  相似文献   

17.
Heat flow data from the eastern Mediterranean region indicates an extensive area of low heat flow, spreading over the whole basin of the Mediterranean east of Crete (Levantine Sea), Cyprus, and northern Egypt. The average of the marine heat flow measurements in the Levantine Sea is 25.7±8.4 mW/m2, and the heat flow on Cyprus is 28.0±8.0 mW/m2. The estimated values of heat flow in northern Egypt range from 38.3±7.0 to 49.9±9.3 mW/m2, apparently with no consistent trend. To the east, on the coast of Israel, the heat flow values increase, ranging from 36.6±22.4 to 56.7±14.2 mW/m2 along a SSE trend. The trend apparently correlates with an increase in crustal thickness, which is about 23 km at the north-west base of the Nile-Delta-cone, and close to 40 km beneath Israel.Contribution No. 157, Department of Geology, Kent State University, Kent, Ohio, USA.  相似文献   

18.
The results of seismic measurements along the deep seismic sounding profile VII and terrestrial heat flow measurements used for construction of heat generation models for the crust in the Paleozoic Platform region, the Sudetic Mountains (Variscan Internides) and the European Precambrian Platform show considerable differences in mantle heat flow and temperatures. At the base of the crust variations from 440–510°C in the models of Precambrian Platform to 700–820°C for the Paleozoic Platform and the Variscan Internides (Sudets) are found. These differences are associated with considerable mantle heat flow variations.The calculated models show mantle heat flow of about 8.4–12.6 mW m–2 for the Precambrian Platform and 31 mW m–2 to 40.2 mW m–2 for Paleozoic orogenic areas. The heat flow contribution originating from crustal radioactivity is almost the same for the different tectonic units (from 33.5 mW m–2 to 37.6 mW m–2). Considerable physical differences in the lower crust and upper mantle between the Precambrian Platform and the adjacent areas, produced by lateral temperature variations, could be expected. On the basis of carbon ratio data it can be concluded that the Carboniferous paleogeothermal gradient was much lower in the Precambrian Platform area than in the Paleozoic Platform region.  相似文献   

19.
In southern British Columbia the terrestrial heat flow is low (44 mW m–2) to the west of the Coast Plutonic Complex (CPC), average in CPC (50–60 mW m–2),and high to the east(80–90 mW m–2). The average heat flow in CPC and the low heat generation (less than 1 W m–3) indicate that a relatively large amount of heat flows upwards into the crust which is generally quite cool. Until two million years ago the Explorer plate underthrust this part of the American plate, carrying crustal material into the mantle. Melted crustal rocks have produced the inland Pemberton and Garibaldi volcanic belts in the CPC.Meager Mountain, a volcanic complex in the CPC 150 km north of Vancouver, is a possible geothermal energy resource. It is the product of intermittent activity over a period of 4 My, the most recent eruption being the Bridge River Ash 2440 y B.P. The original explosive eruption produced extensive fracturing in the granitic basement, and a basal explosion breccia from the surface of a cold brittle crust. This breccia may be a geothermal reservoir. Other volcanic complexes in the CPC have a similar potential for geothermal energy.Earth Physics Contribution No. 704.  相似文献   

20.
Heat flow values of 33–58 mW m–2 were found for the Transylvanian Depression, 45–57 mW m–2 for the crystalline nucleus of the Eastern Carpathians, and 70–120 mW m–2 for the Neogene volcanic area. Temperature-depth profile and some geophysical implications of the low values for the Transylvanian Depression are discussed, rendering evident clear-cut differences between this tectonic unit and other Noegene depressions. The heat flow values for the other two investigated tectonic units are usual ones for areas of their age.A preliminary map of the heat flow distribution over the Romanian territory is presented and its relation to other geophysical fields is discussed. A positive correlation was found between gravity and heat flow, and a negative one between crustal thickness and heat flow. A general conclusion could be drawn that the heat flow distribution over the Romanian territory seems to be governed by processes taking place in the upper mantle, rather than by the radioactive decay within the crust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号