首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Preliminary heat flow values ranging from 42 to 175 mW m–2 have been estimated for Egypt from numerous geothermal gradient determinations with a reasonably good geographical distribution, and a limited number of thermal conductivity determinations. For northern Egypt and the Gulf of Suez, gradients were calculated from oil well bottom hole temperature data; east of the Nile, and at three sites west of the Nile, gradients were calculated from detailed temperature logs in shallow boreholes. With one exception, the heat flow west of the Nile and in northern Egypt is estimated to be low, 40–45 mW m–2, typical of a Precambrian Platform province. A local high, 175 mW m–2, is probably due to local oxidational heating or water movement associated with a phosphate mineralized zone. East of the Nile, however, including the Gulf of Suez, elevated heat flow is indicated at several sites, with a high of 175 mW m–2 measured in a Precambrian granitic gneiss approximately 2 km from the Red Sea coast. These data indicate potential for development of geothermal resources along the Red Sea and Gulf of Suez coasts. Water geochemistry data confirm the high heat flow, but do not indicate any deep hot aquifers. Microearthquake monitoring and gravity data indicate that the high heat flow is associated with the opening of the Red Sea.  相似文献   

2.
Heat flow data from the eastern Mediterranean region indicates an extensive area of low heat flow, spreading over the whole basin of the Mediterranean east of Crete (Levantine Sea), Cyprus, and northern Egypt. The average of the marine heat flow measurements in the Levantine Sea is 25.7±8.4 mW/m2, and the heat flow on Cyprus is 28.0±8.0 mW/m2. The estimated values of heat flow in northern Egypt range from 38.3±7.0 to 49.9±9.3 mW/m2, apparently with no consistent trend. To the east, on the coast of Israel, the heat flow values increase, ranging from 36.6±22.4 to 56.7±14.2 mW/m2 along a SSE trend. The trend apparently correlates with an increase in crustal thickness, which is about 23 km at the north-west base of the Nile-Delta-cone, and close to 40 km beneath Israel.Contribution No. 157, Department of Geology, Kent State University, Kent, Ohio, USA.  相似文献   

3.
The Central Volcanic Region of New Zealand is an active back-arc basin developed within continental lithosphere, and therefore offers a rare opportunity to study back-arc extension from land-based observations. Two parameters related to the heat output from the Central Volcanic Region are of particular interest. Firstly, the average heat flow for the eastern half of the Central Volcanic Region is about 800 mW/m2—in order to maintain this heat flow over geological time periods an efficient mass-transfer of heat is required. Secondly, the observed asymmetry in the pattern of heat output, coupled with the tectonic erosion of blocks of continental crust from the eastern axial ranges into the Central Volcanic Region, suggests that the process currently in progress at the eastern margin of the Region is asymmetric spreading with concomitant thermal differentiation of continental crust into its silicic and basic components.  相似文献   

4.
In this study, we aim to map the Curie point depth surface for the northern Red Sea rift region and its surroundings based on the spectral analysis of aeromagnetic data. Spectral analysis technique was used to estimate the boundaries (top and bottom) of the magnetized crust. The Curie point depth (CPD) estimates of the Red Sea rift from 112 overlapping blocks vary from 5 to 20 km. The depths obtained for the bottom of the magnetized crust are assumed to correspond to Curie point depths where the magnetic layer loses its magnetization. Intermediate to deep Curie point depth anomalies (10–16 km) were observed in southern and central Sinai and the Gulf of Suez (intermediate heat flow) due to the uplifted basement rocks. The shallowest CPD of 5 km (associated with very high heat flow, ~235 mW m?2) is located at/around the axial trough of the Red Sea rift region especially at Brothers Island and Conrad Deep due to its association with both the concentration of rifting to the axial depression and the magmatic activity, whereas, beneath the Gulf of Aqaba, three Curie point depth anomalies belonging to three major basins vary from 10 km in the north to about 14 km in the south (with a mean heat flow of about 85 mW m?2). Moreover, low CPD anomalies (high heat flow) were also observed beneath some localities in the northern part of the Gulf of Suez at Hammam Fraun, at Esna city along River Nile, at west Ras Gharib in the eastern desert and at Safaga along the western shore line of the Red Sea rift. These resulted from deviatoric tensional stresses developing in the lithosphere which contribute to its further extension and may be due to the opening of the Gulf of Suez and/or the Red Sea rift. Furthermore, low CPD (with high heat flow anomaly) was observed in the eastern border of the study area, beneath northern Arabia, due to the quasi-vertical low-velocity anomaly which extends into the lower mantle and may be related to volcanism in northern Arabia. Dense microearthquakes seem to occur in areas where the lateral gradients of the CPD are steep (e.g. entrance of the Gulf of Suez and Brothers Island in the Red Sea). These areas may correspond to the boundaries between high and low thermal regions of the crust. Thus, the variations in the microseismic activity may be closely related to thermal structures of the crust. Indeed, shallow cutoff depths of seismicity can also be found in some geothermal areas (e.g. western area of Safaga city along the Red Sea coastal region and at Esna city along the River Nile). These facts indicate that the changes in the thickness of the seismogenic layer strongly depend on temperature. Generally, the shallow Curie point depth indicates that some regions in our study area are promising regions for further geothermal exploration particularly in some localities along the River Nile, Red Sea and Gulf of Suez coastal regions.  相似文献   

5.
Heat flow values were calculated from direct measurements of temperature and thermal conductivity at thirteen sites in the Arkansas-Missouri Ozark Plateau region. These thirteen values are augmented by 101 estimates of heat flow, based on thermal conductivity measurements and temperature gradients extrapolated from bottom-hole temperatures. The regional heat flow profile ranges from 9 mW m−2 to over 80 mW m−2, but at least two distinct thermal regimes have been identified. Seven new heat flow determinations are combined with three previously published values for the St. Francois Mountains (SFM), a Precambrian exposure of granitic and rhyolitic basement rocks, average 47 mW m−2. Radioactive heat production of 76 samples of the exposed rocks in the SFM averages 2.4 μW m−2 and a typical continental basement contribution of 14 mW m−2 is implied. Conversely, the sedimentary rock sequence of the plateau is characterized by an anomalously low heat flow, averaging approximately 27 mW m−2. Groundwater transmissivity values that are based on data from 153 wells in deep regional aquifers demonstrate an inverse relationship to the observed heat flow patterns. The areas of high transmissivity that correspond to areas of low total heat flux suggest that the non-conservative vertical heat flow within the Ozark sedimentary sequence can be attributed to the effects of groundwater flow.  相似文献   

6.
The surface heat flow in the interior of Archean cratons is typically about 40 mW m−2 while that in Proterozoic and younger terrains surrounding them is generally considerably higher. The eighty-four heat flow observations from southern Africa provide an excellent example of this contrast in surface heat flow, showing a difference of some 25 mW m−2 between the Archean craton and younger peripheral units. We investigate two possible contributions to this contrast: (1) a shallow mechanism, essentially geochemical, comprising a difference in crustal heat production between the two terrains, and (2) a deeper mechanism, essentially geodynamical, arising from the existence of a lithospheric root beneath the Archean craton which diverts heat away from the craton into the thinner surrounding lithosphere. A finite element numerical model which explores the interplay between these two mechanisms suggests that a range of combinations of differences in crustal heat production and lithospheric thickness can lead to the contrast in surface heat flow observed in southern Africa. Additional constraints derived from seismological observations of cratonic roots, the correlation of surface heat flow and surface heat production, petrological estimates of the mean heat production in continental crust and constraints on upper mantle temperatures help narrow the range of acceptable models. Successful models suggest that a cratonic root beneath southern Africa extends to depths of 200–400 km. A root in this thickness range can divert enough heat to account for 50–100% of the observed contrast in surface heat flow, the remainder being due to a difference in crustal heat production between the craton and the surrounding mobile belts in the range of zero to 0.35 μW m−3.  相似文献   

7.
Regional groundwater flow in deep aquifers adds advective components to the surface heat flow over extensive areas within the Great Plains province. The regional groundwater flow is driven by topographically controlled piezometric surfaces for confined aquifers that recharge either at high elevations on the western edge of the province or from subcrop contacts. The aquifers discharge at lower elevations to the east. The assymetrical geometry for the Denver and Kennedy Basins is such that the surface areas of aquifer recharge are small compared to the areas of discharge. Consequently, positive advective heat flow occurs over most of the province. The advective component of heat flow in the Denver Basin is on the order of 15 mW m−2 along a zone about 50 km wide that parallels the structure contours of the Dakota aquifer on the eastern margin of the Basin. The advective component of heat flow in the Kennedy Basin is on the order of 20 mW m−2 and occurs over an extensive area that coincides with the discharge areas of the Madison (Mississippian) and Dakota (Cretaceous) aquifers. Groundwater flow in Paleozoic and Mesozoic aquifers in the Williston Basin causes thermal anomalies that are seen in geothermal gradient data and in oil well temperature data. The pervasive nature of advective heat flow components in the Great Plains tends to mask the heat flow structure of the crust, and only heat flow data from holes drilled into the crystalline basement can be used for tectonic heat flow studies.  相似文献   

8.
Heat flow values of 33–58 mW m–2 were found for the Transylvanian Depression, 45–57 mW m–2 for the crystalline nucleus of the Eastern Carpathians, and 70–120 mW m–2 for the Neogene volcanic area. Temperature-depth profile and some geophysical implications of the low values for the Transylvanian Depression are discussed, rendering evident clear-cut differences between this tectonic unit and other Noegene depressions. The heat flow values for the other two investigated tectonic units are usual ones for areas of their age.A preliminary map of the heat flow distribution over the Romanian territory is presented and its relation to other geophysical fields is discussed. A positive correlation was found between gravity and heat flow, and a negative one between crustal thickness and heat flow. A general conclusion could be drawn that the heat flow distribution over the Romanian territory seems to be governed by processes taking place in the upper mantle, rather than by the radioactive decay within the crust.  相似文献   

9.
We have obtained a suite of 42 closely spaced, acoustically navigated, heat flow measurements on well-sedimented crust of anomaly M0 age (109 Ma) in the northwest Atlantic Ocean (25°N, 68°W; 950 km south of Bermuda). The mean and standard deviation of the values obtained are 1.13 HFU (μcal/cm2 s) (47.3 mW/m2) and 0.05 HFU (2.1 mW/m2), respectively. Some of the variability is accounted for by refractive effects of the basement topography. Drill core data and our modelling suggest that the thermal conductivity contrast between sediments and basement rocks in this region is less than a factor of 1.6. The mean heat flow is close to the 1.1 HFU (46 mW/m2) predicted by both the plate and boundary layer cooling models of the oceanic lithosphere. This is the first detailed comparison with theoretical cooling models on old Atlantic Ocean crust. Since the difference in surface heat flow (0.15 HFU) predicted by the two cooling models for the oldest observed oceanic lithosphere (180 Ma) is also not much larger than the range of uncertainty in our observations, discrimination between the two models on the basis of surface heat flow data alone may prove difficult.  相似文献   

10.
Heat flow values from some additional locations in the Cenozoic Cambay Basin have been determined. Together with the previously published data, they show that the heat flow is moderate (55–67 mW/m′) in the southern part of the basin towards Broach and Ankleswar, and that there is a clear trend of high heat flow (75–93 mW/m2; range of average values for six different, widely separated, locations) in a part of the basin located north of the Mahisagan river between Cambay and Mehsana along a stretch of about 140 km. Conductive steady state geotherms, calculated using observed high surface heat flow values and appropriate models show, beneath the Cambay-Mehsana area, a large degree of melting in the lower crust and upper mantle, which is not suggested by the existing geodata. Considering this aspect and taking into account the existence of a normal crust about 37 km thick below the Cambay-Tarapur and Ahmedabad-Mehsana blocks (as obtained from deep seismic soundings), it has been inferred that the heat flow anomaly is due to transient thermal perturbations introduced from tectonic activity in the form of magmatic intrusions. A careful analysis of heat flow, gravity and other related geodata point out and support the possibility of a Miocene/Pliocene basic intrusive body at a depth of around 10 km under the Cambay-Mehsana area. Further, the consistent trend of the thermal and gravity fields indicates thinning of the postulated intrusive body from Cambay towards Mehsana.  相似文献   

11.
Heat flow in the Sohm abyssal plain is measured to be 53 mW/m2 at an age of 163 Ma. This is 25% higher than predicted by conductive cooling models, even though the sediment-corrected basement depth of 6.5 km at this location is normal for its age. An analysis of existing heat flow, depth and geoid anomalies in the northwest Atlantic shows that there is little correlation between heat flow and depth throughout the entire region. Depth and geoid are clearly related to the Bermuda swell while the associated heat flow anomaly, once adjusted for variations with age, is limited to 5 mW/m2 and only decays to the south. This means that the Bermuda swell is probably not caused by extensive thermal reheating within the lithosphere, but instead by dynamic uplift at its lower boundary due to the convective upwelling of a mantle plume. The regionally high heat flow in the northwest Atlantic may be a thermal remanent of previous plumes which passed beneath this region early in its history. Therefore, depth and heat flow anomalies from this region cannot be used to provide constraints on steady-state parameters of the lithosphere, such as the presence or absence of a long-term boundary layer at its base.  相似文献   

12.
Summary The surface thermal flux of the continental margins of the northwestern Mediterranean Sea is interpreted on the basis of a 1-D instantaneous pure shear stretching model of the lithosphere in terms of three components: the background heat flowing out from the asthenosphere (38 mW m–2), the transient contribution depending on the rift age and extension amount (35 mW m–2 at the most), and the contribution due to the radiogenic elements of the lithosphere. The radiogenic component is estimated at the continental margins of the Ligurian-Provençal basin and Valencia trough, and in the surrounding mainland areas by means of available data of surface heat generation from Variscan Corsica, Maures-Estérel and the Central Massif along with a geophysical-petrological relationship between heat production and seismic velocity. The lithosphere radiogenic heat contribution ql decreases with the thinning factor according to the exponential law: ql() = a exp(-b), in which factor b is greater for that part of the lithosphere below the uppermost 10 km. Considering also the heat generated by radioactive isotopes in sediments, the stable Variscan lithosphere produces an average thermal flux of 30 mW m–2 which decreases by about one half where the lithosphere is thinned by one third. Although the surface heat generation is 2·1 – 3·3 µW m–3 in the Maures-Estérel massif — excepting small outcrops of dioritic rocks with lower heat production — and 1·8 µW m–3 for most of Corsica, the radiogenic heating within the lithosphere for such areas is nearly the same and does not explain the higher heat flux of the Corsica margin. This asymmetric thermal pattern with surface heat flux which is 10 – 15 mW m–2 higher than predictions is probably of upper mantle origin, or can be ascribed to penetrative magmatism.  相似文献   

13.
The results of seismic measurements along the deep seismic sounding profile VII and terrestrial heat flow measurements used for construction of heat generation models for the crust in the Paleozoic Platform region, the Sudetic Mountains (Variscan Internides) and the European Precambrian Platform show considerable differences in mantle heat flow and temperatures. At the base of the crust variations from 440–510°C in the models of Precambrian Platform to 700–820°C for the Paleozoic Platform and the Variscan Internides (Sudets) are found. These differences are associated with considerable mantle heat flow variations.The calculated models show mantle heat flow of about 8.4–12.6 mW m–2 for the Precambrian Platform and 31 mW m–2 to 40.2 mW m–2 for Paleozoic orogenic areas. The heat flow contribution originating from crustal radioactivity is almost the same for the different tectonic units (from 33.5 mW m–2 to 37.6 mW m–2). Considerable physical differences in the lower crust and upper mantle between the Precambrian Platform and the adjacent areas, produced by lateral temperature variations, could be expected. On the basis of carbon ratio data it can be concluded that the Carboniferous paleogeothermal gradient was much lower in the Precambrian Platform area than in the Paleozoic Platform region.  相似文献   

14.
On the evolution of the geothermal regime of the North China Basin   总被引:1,自引:0,他引:1  
Recent heat flow and regional geothermal studies indicate that the North China Basin is characterized by relatively high heat flow compared with most stable areas in other parts of the world, but lower heat flow than most active tectonic areas. Measured heat flow values range from 61 to 74 mW m−2. The temperature at a depth of 2000 m is generally in the range 75 to 85°C, but sometimes is 90°C or higher. The geothermal gradient in Cenozoic sediments is in the range 30 to 40°C/km for most of the area. The calculated temperature at the Moho is 560 and 640°C for surface heat flow values of 63 and 71 mW m−2, respectively. These thermal data are consistent with other geophysical observations for the North China Basin. Relatively high heat flow in this area is related to Late Cretaceous-Paleogene rifting as described in this paper.  相似文献   

15.
The Cape Verde Islands are located on a mid-plate topographic swell and are thought to have formed above a deep mantle plume. Wide-angle seismic data have been used to determine the crustal and uppermost mantle structure along a ~ 440 km long transect of the archipelago. Modelling shows that ‘normal’ oceanic crust, ~ 7 km in thickness, exists between the islands and is gently flexed due to volcano loading. There is no direct evidence for high density bodies in the lower crust or for an anomalously low density upper mantle. The observed flexure and free-air gravity anomaly can be explained by volcano loading of a plate with an effective elastic thickness of 30 km and a load and infill density of 2600 kg m− 3. The origin of the Cape Verde swell is poorly understood. An elastic thickness of 30 km is expected for the ~ 125 Ma old oceanic lithosphere beneath the islands, suggesting that the observed height of the swell and the elevated heat flow cannot be attributed to thermal reheating of the lithosphere. The lack of evidence for high densities and velocities in the lower crust and low densities and velocities in the upper mantle, suggests that neither a crustal underplate or a depleted swell root are the cause of the shallower than expected bathymetry and that, instead, the swell is supported by dynamic uplift associated with the underlying plume.  相似文献   

16.
The eastern Pontides orogenic belt is one of the most complex geodynamic settings in the Alpine–Himalayan belt due to the lack of systematical geological and geophysical data. In this study, 1D crustal structure and P-wave velocity distribution obtained from gravity modeling and seismological data in the area has been used for the development of the thermal model of the eastern Pontides orogenic belt. The computed temperature-depth profiles suggest a temperature of 590?±?60°C at a Moho depth of 35?km indicates the presence of a brittle-ductile transition zone. This temperature value might be related to water in the subducted crust of the Tethys oceanic lithosphere. The Curie temperature depth value of 29?km, which may correspond to the crustal magma chambers, is found 5–7?km below the Moho depth. Surface heat flow density values vary from 66.5 and 104.7?mW?m?2. High mantle heat flow density value of 48?mW?m?2 is obtained for the area should be related to melting of the lithospheric mantle caused by upwelling of asthenosphere.  相似文献   

17.
Continental shield regions are normally characterized by low-to-moderate mantle heat flow. Archaean Dharwar craton of the Indian continental shield also follows the similar global pattern. However, some recent studies have inferred significantly higher mantle heat flow for the Proterozoic northern block of Southern Granulite Terrain (SGT) in the immediate vicinity of the Dharwar craton by assuming that the radiogenic elements depleted exposed granulites constitute the 45-km-thick crust. In this study, we use four-layered model of the crustal structure revealed by integrated geophysical studies along a geo-transect in this region to estimate the mantle heat flow. The results indicate that: (i) the mantle heat flow of the northern block of SGT is 17 ± 2 mW/m2, supporting the global pattern, and (ii) the lateral variability of 10–12 mW/m2 in the surface heat flow within the block is of crustal origin. In terms of temperature, the Moho beneath the eastern Salem–Namakkal region appears to be at 80–100 °C higher temperature than that beneath the western Avinashi region.  相似文献   

18.
We have measured concentrations of heat producing elements (Th, U, and K) in 58 samples representative of the main lithologies in a 100 km transect of the Superior Province of the Canadian Shield, from the Michipicoten (Wawa) greenstone belt, near Wawa, Ontario, through a domal gneiss terrane of amphibolite grade, to the granulite belt of the Kapuskasing Structural Zone, near Foleyet. This transect has been interpreted as an oblique cross section through some 25 km of crust, uplifted along a major thrust fault, and thus provides an opportunity to examine in detail a continuous profile into deep continental crust of Archean age. Mean heat production values for these terranes, based on aereal distribution of major rock types and calculated from their Th, U, and K concentrations are: Michipicoten greenstone belt = 0.72 μW m−3; Wawa domal gneiss terrane (amphibolite grade) = 1.37 μW m−3; Kapuskasing granulites = 0.44 μW m−3. Among the silicic plutonic rocks (tonalites, granites, and their derivative gneisses), the relatively large variation in heat production correlates with modal abundances of accessory minerals including allanite, sphene, zircon, and apatite. We interpret these variations as primary (pre-metamorphic). The relatively high weighted mean heat production of the domal gneiss terrane can be accounted for by the larger proportion there of late-stage Th-, U-, and K-rich granitoid plutons. These may have been derived from the underlying Kapuskasing granulite terrane, leaving it slightly depleted in heat producing elements. Transport of Th, U, and K, therefore, could have taken place in silicate melts rather than in aqueous or carbonic metamorphic fluids. This conclusion is supported by the lack of a statistically significant difference in heat production between tonalites, tonalite gneisses and mafic rocks of amphibolite versus granulite grade.The pre-metamorphic radioactivity profile for this crustal section is likely to have been uniformly low, with a mean heat production value less than 1 μW m−3. This result is distinctly different from measured profiles in more silicic terranes, which show decreasing heat production with depth. This implies fundamental differences in crustal radioactivity distributions between granitic and more mafic terranes, and may be an important factor in selective reactivation of lithologically different terranes, possibly resulting in preferential stabilization of basic terranes in the geological record. Our results indicate that a previously determined apparently linear heat flow-heat production relationship for the Kapuskasing area does not relate to the distribution of heat production with depth. Low, but significant heat production, 0.4–0.5 μW m−3, continues to lower crustal depths with no correlation to the depth parameter from the linear relationship. This low heat production may be a minimum average granulite heat production and suggests that, in general, heat flow through the Moho is 8–10 mW m−2 lower than the reduced heat flow calculated from the heat flow-heat production regression.  相似文献   

19.
The tectonic stresses can significantly affect the propagation of a magma-filled crack. It has been pointed out that the rheological boundaries control the emplacement of magmas through the effect of stress. However, it has not been clarified how the role of rheological boundaries depends on the regional tectonic and thermal states. We have evaluated the role of rheological boundaries under various tectonic and thermal conditions and found that the level of magma emplacement may jump according to the changes in the tectonic force or the surface heat flow. The stress profiles were estimated by a simple model of lithospheric deformation. We employed a three-layer model of the lithosphere; the upper crust, the lower crust and the upper mantle have different rheological properties. A constant horizontal force is applied to the lithosphere, and the horizontal strain is assumed to be independent of depth. When realistic tectonic forces (>1011 N/m) are applied, the rheological boundaries mainly control the emplacement of magma. The emplacement is expected at the MOHO, the upper–lower crust boundary, and the brittle–ductile boundary. For lower tectonic forces (<1011 N/m), the tectonic stress no longer plays an important role in the emplacement of magmas. When the tectonic stress controls the emplacement, the roles of rheological boundaries strongly depend on the surface heat flow. When the surface heat flow is relatively high (>80 mW/m2), the stress in the mantle is quite low and the MOHO cannot trap ascending magmas. For relatively low heat flow (<80 mW/m2), on the other hand, the MOHO acts as a magma trap, and the upper–lower crust boundary acts as a magma trap only when the magma supply rate is sufficiently high. Our results suggest that the emplacement depth can change responding to the change in the tectonic force and/or that in the surface heat flow. This may provide us a key to understand the relation between the evolution of a volcanic region and its tectonic and/or thermal history.  相似文献   

20.
The analysis of both temperature data and thermal conductivity material from seven deep oil exploration horeholes in northeast Africa has allowed the calculation of a heat flow value in the Somalian Horn (average58 ± 12mW m?2) and one from the coastal plain of northeast Sudan (average96 ± 19mW m?2). Heat production measurements of granites from the Sudanese basement indicate a substantial depletion in the radiogenic heat producing elements.The heat flow results complement previous measurements from the Gulf of Aden and the Red Sea and are consistent with the geological and geophysical consensus that these two regions are young proto-oceans formed by the mechanisms of spreading lithospheric plates. The heat production evidence suggests that the lithospheric plate beneath the Sudan coastal plain is approximately 30–50 km thick and underlain by a zone of partial or complete melt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号