首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper shows that there is a strict quantitative connection between three factors: reserves-to-production ratio (w), rate of production growth (a), and degree of reserve replenishment during 1 year (i). The first of these factors shows how many years the current level of production can be supported by existing proved reserves (if both are invariable). The second factor shows how quickly the production increases. The third, characterizes the correlation between oil production and reserves discovery, which is the basis for potential oil production growth. For planning purposes it is important to know how many units of new reserves have to be proved during each year per one unit of production for the different reserves-to-production ratio and production growth. The results of calculating these factors are shown in the table and pictured on the graph. They can be used for regions where the replenishment of proven reserves (factor (i)) exceeds 1 barrel of new reserves per 1 barrel of production. This paper also describes the interdependence and dynamics of these factors when the replenishment of proved reserves is incomplete.  相似文献   

2.
世界石油探明储量分布特征与空间格局演化   总被引:2,自引:0,他引:2  
石油探明储量是一个动态变化的过程,文章对1980年以来不同区域尺度,包括全球、各大区以及国家层面的石油探明储量变化、分布特征等进行分析,得出结论:(1)世界石油探明储量自1980年以来大致经历了4个阶段,呈现明显的阶梯状增长的态势,基本每十年出现一次储量跃升,并保持一段时间的平稳。储采比一直稳定在40年以上,呈现缓慢上升的趋势。(2)大区尺度的石油探明储量分布不均衡,且探明储量的变化趋势不同。中东一直是石油探明储量最大的地区,其次为中南美洲地区。中东、北美占世界比重先升后降。非洲和中南美洲稳步提升,亚太地区持续下滑。(3)国家层面的石油探明储量呈现明显的集中分布。储量前4的国家占世界储量的53.75%,储量超过10亿吨的国家在很大程度上主导着世界石油开发的基本格局。从各国演变来看,世界石油储量呈现出多极化的趋势,从中东、北美向中亚、俄罗斯和中南美洲等转移。  相似文献   

3.
Predicting the Peak in World Oil Production   总被引:1,自引:0,他引:1  
The US Department of Energy's Energy Information Administration (EIA) recently predicted that world oil production could continue to increase for more than three decades, based on the recent US Geological Survey (USGS) evaluation of world oil resources and a simple, transparent model. However, it can be shown that this model is not consistent with actual oil production records in many different regions, particularly that of the US, from which it was derived. A more careful application of the EIA model, using the same resource estimates, indicates that at best non-OPEC oil production can increase for less than two decades, and should begin to decline at the latest sometime between 2015 and 2020. OPEC at this point will completely control the world oil market and will need to meet increased demand as well as compensate for declining production of non-OPEC producers. OPEC could control the market even sooner than this, given its larger share of proven oil reserves, probable difficulties in transforming non-OPEC undiscovered reserves into proven reserves, and the converging interests of all oil producers as reserves are depleted. This has significant implications for the world economy and for US national security.  相似文献   

4.
This paper examines three issues related to both the U.S. and world oil supply: (1) the nature of the long-term, postpeak production profile for the U.S. and, by inference, other regions (the Hubbert curve is used as a “strawman” model); (2) implications on U.S. energy security of using a modified Hubbert-type conceptual model of prepeak production, testing the adequacy of Latin America to be the primary source of U.S. oil imports; and (3) the cyclic behavior of oil prices. it shows that U.S. production will exhibit a more attenuated decline than that simulated by the Hubbert curve and not decline to zero. it asserts that U.S. production is better predicted by past reserves than past production, but that this argument does not apply to nations that keep a much larger proportion of reserves in the ground. Such nations could considerably expand production without any growth in reserves. The paper concedes that the potential total production for these nations could be examined with a Hubbert curve model linked to reserves, but with great uncertainty. Such an uncertain optimistic forecast predicts that the cumulative production of Latin America could far exceed that of the United States. Nevertheless, a statistical model of oil prices since 1870 implies that real wellhead oil prices in the United States are on a long-term upward path, underlying a much more “noisy” cyclical pattern estimated to include 22- and 27-year cycles. The statistical model predicts a severe oil shock within a few years (of 1998) but also predicts that through 2030, real oil prices will not reach 1981 levels again. The paper examines U.S. and world trends in seismic exploration, drilling locations and depths, drilling costs, oil/gas reserves, oil/gas use rates, and oil demand. After taking these factors into consideration, it concludes that the statistical model of oil prices cannot be disputed, despite its lack of basis in economic theory.  相似文献   

5.
6.
非洲在世界石油供给格局中的地位演变   总被引:1,自引:0,他引:1  
郝丽莎  赵媛 《地理研究》2012,31(3):507-520
21世纪以来,非洲已成为世界石油进口大国寻求来源地多元化、保障自身石油安全的战略高地,也成为我国的第二大石油来源地。考察非洲在世界石油供给格局中的地位及演变,有利于系统把握非洲石油供给的优劣势,为优化我国对非石油合作战略提供依据。本文以国家为研究单元,综合运用箱线图和空间聚类分析法,创新份额和位序综合分析法,对比考察了...  相似文献   

7.
This study develops confidence intervals for estimates of inferred oil and gas reserves based on bootstrap procedures. Inferred reserves are expected additions to proved reserves in previously discovered conventional oil and gas fields. Estimates of inferred reserves accounted for 65% of the total oil and 34% of the total gas assessed in the U.S. Geological Survey's 1995 National Assessment of oil and gas in US onshore and State offshore areas. When the same computational methods used in the 1995 Assessment are applied to more recent data, the 80-year (from 1997 through 2076) inferred reserve estimates for pre-1997 discoveries located in the lower 48 onshore and state offshore areas amounted to a total of 39.7 billion barrels of oil (BBO) and 293 trillion cubic feet (TCF) of gas. The 90% confidence interval about the oil estimate derived from the bootstrap approach is 22.4 BBO to 69.5 BBO. The comparable 90% confidence interval for the inferred gas reserve estimate is 217 TCF to 413 TCF. The 90% confidence interval describes the uncertainty that should be attached to the estimates. It also provides a basis for developing scenarios to explore the implications for energy policy analysis.  相似文献   

8.
Following Hubberts successful prediction of the timing of US peak oil production, Hubberts model has been used extensively to predict peak oil production elsewhere. However, forecasts of world and regional peak oil and natural gas production using Hubberts methodology usually have failed, leading to the implicit belief that such predictions always will fail and that we need not worry about finite resources. A careful examination of Hubberts approach indicates that the most important reasons for his success in the US were stable markets, the high growth rate of demand, ready availability of low cost imports, and a reasonable estimate of easily extractable reserves. This analysis also shows that his model cannot predict ultimate oil reserves and that it should be considered an econometric model. Building on Hubberts vital insight, that cheap fossil fuel reserves are knowable and finite, one can state that for world peak oil production, political constraints should be much more important than resource constraints.  相似文献   

9.
新疆生态经济系统的能值分析与可持续发展研究   总被引:47,自引:3,他引:44  
能值是生态经济学中用来衡量自然支持系统与经济系统的产品与过程的新概念,在此基础上建立的理论和方法可用于度量来自自然系统的“自然资本”和生态系统服务功能的价值。运用能值理论与方法,对新疆生态经济系统主要资源的贮存价值、总能值用量、能值的流入流出情况、人口承载力、能值投入率、能值使用强度、环境负荷等指标进行了系统研究,并与其他国家的有关指标进行了比较研究,提出了进一步开发新疆资源、实现可持续发展目标的政策建议。  相似文献   

10.
Proven reserves of liquid hydrocarbons are now assessed at between 950 and 1,000 billion barrels, depending on the source. Their life expectancy at the current rate of world production is about 41 to 45 years. This lifetime is much longer than what was predicted in both 1970 and 1980. However, this wealth of resources does not necessarily mean that the security of oil supplies is guaranteed for all countries. Oil reserves are unequally distributed from a geopolitical standpoint. Reserves and output are mainly due to big fields (with more than 500 million barrels of initial reserves).Though oil supplies seem to be ensured for the coming 30 to 40 years, what does the picture look like beyond 2020–20307 The increased lifetime of proven oil reserves has been apparent only in the last 10 to 20 years. The considerable increase in proven oil reserves reported after 1986 is, in fact, mainly due to revisions and extensions, rather than to new sources of oil: conventional oil (with the price per barrel of oil on the order of $20 and recovery rate around 30 percent) remaining to be discovered today; oil resources stemming from an improvement in recovery rate; oil resources resulting from exploitation of new zones, such as deep sea zones; and unconventional types of oil, such as extra-heavy crudes, tar sands, shale oils, and liquid hydrocarbons from chemical-enhanced oil recovery methods.  相似文献   

11.
The giant oil fields of the world are only a small fraction of the total number of fields, but their importance is huge. Over 50% of the world’s oil production came from giants by 2005 and more than half of the world’s ultimate reserves are found in giants. Based on this, it is reasonable to assume that the future development of the giant oil fields will have a significant impact on the world oil supply. In order to better understand the giant fields and their future behavior, one must first understand their history. This study has used a comprehensive database on giant oil fields in order to determine their typical parameters, such as the average decline rate and life-times of giants. The evolution of giant oil field behavior has been investigated to better understand future behavior. One conclusion is that new technology and production methods have generally led to high depletion rates and rapid decline. The historical trend points towards high decline rates of fields currently on plateau production. The peak production generally occurs before half the ultimate reserves have been produced in giant oil fields. A strong correlation between depletion-at-peak and average decline rate is also found, verifying that high depletion rate leads to rapid decline. Our result also implies that depletion analysis can be used to rule out unrealistic production expectations from a known reserve, or to connect an estimated production level to a needed reserve base.  相似文献   

12.
中国典型自然保护区生境状况时空变化特征   总被引:17,自引:1,他引:16  
祝萍  黄麟  肖桐  王军邦 《地理学报》2018,73(1):92-103
中国已建立各类自然保护区2740个,占全国陆地面积的14.8%。本文以典型国家级自然保护区为例,基于遥感反演、模型模拟、空间分析等方法,获得植被覆盖度、净初级生产力(NPP)和土地覆被时空数据集,分析2000-2015年中国不同区域、不同类型自然保护区生境状况时空变化及人类扰动的影响,进而评估自然保护区在栖息地及生物多样性保护方面的效果。结果表明:2000-2015年,国家级自然保护区植被覆盖度从36.3%提高到37.1%,各类型自然保护区均有不同程度提高,其中森林类保护区年增速0.11%,草原草甸类0.84%,内陆湿地类0.21%,荒漠生态类0.09%,野生动物类和野生植物类则分别为0.11%和0.08%。草原草甸类、内陆湿地类、荒漠生态类、野生动物类自然保护区植被NPP年增速分别为2.06 g·m-2、1.23 g·m-2、0.28 g·m-2、0.4 g·m-2,而森林类和野生植物类则分别以3.45 g·m-2和2.35 g·m-2的年速率减少。近15年,国家级自然保护区内人类扰动呈现微弱变化,除青藏高原区和南亚热带湿润区内保护区人类扰动略微下降以外,其他区域均有所增强,特别是北亚热带和温带湿润区,其保护区人类扰动由4.70%明显增至5.35%。  相似文献   

13.
This article reviews the theoretical foundations for the concept of peak minerals; drawing on similarities and differences with peak oil as modelled using Hubbert style curves. Whilst several studies have applied peak modelling to selected minerals, discussion of the appropriateness of using Hubbert style curves in the minerals context remains largely unexplored. Our discussion focuses on a comparison between oil and minerals, on the key variables: rates of discovery, estimates of ultimately recoverable resources and demand and production trends. With respect to minerals, there are several obstacles which complicate the application of Hubbert style curves to the prediction of future mineral production, including the lack of accurate discovery data, the effect of uncertain reserve estimates, and varying ore quality and quantity. Another notable difference is that while oil is often combusted during use, minerals are used to make metals which are inherently recyclable. Notwithstanding, by using a range of estimates of resources and/or reserves, a period of time can be identified which indicates when a peak in minerals production may occur. This information may then be used to plan for a transition from using a potentially constrained resource, to using substitutes if available, or to reducing demand for that mineral in society.  相似文献   

14.
Although reserve (or field) growth has proved to be an important contributing factor in adding new reserves in mature petroleum basins, it is a poorly understood phenomenon. Although several papers have been published on the U.S. fields, there are only a few publications on fields in other petroleum provinces. This paper explores the reserve growth in the 42 largest West Siberian oil fields that contain about 55% of the basin's total oil reserves.The West Siberian oil fields show 13-fold reserve growth 20 years after the discovery year and only about 2-fold growth after the first production year. This difference in growth is attributed to extensive exploration and field delineation activities between discovery and the first production year. Because of the uncertainty in the length of evaluation time and in reported reserves during this initial period, reserve growth based on the first production year is more reliable for model development. However, reserve growth models based both on discovery year and first production year show rapid growth in the first few years and slower growth in the following years. In contrast, the reserve growth patterns for the conterminous United States and offshore Gulf of Mexico show a steady reserve increase throughout the productive lives of the fields. The different reserve booking requirements and the lack of capital investment for improved reservoir management and production technologies in West Siberia are the probable causes for the difference in the growth patterns.The models based on the first production year predict that the reserve growth potential in the 42 largest oil fields of West Siberia for a five-year period (1998–2003) ranges from 270–330 million barrels or 0.34–0.42% per year. For a similar five-year period (1996–2001), models for the conterminous United States predict a growth of 0.54–0.75% per year.  相似文献   

15.
The magnitude of the world's mineral consumption has increased sharply, and there is no sign that growth is likely to stop in the near future. Currently, new discoveries and technology add to the reserves of varous mineral commodities at a rate that has exceeded depletion. As a result, life expectancies have remained nearly constant. However, it is questionable whether this condition is sustainable in the future. Therefore, most of our attention to the future has been focused on potentially recoverable resources. The potentially recoverable resources for 35 minerals in the Earth's crust were estimated based on the relationship between crustal abundance and the reserve of currently recoverable gold. The ratio of the reserve plus cumulative consumption to the abundance of gold is appropriate for calculating reserves of other mineral resources because gold has the highest profit margin for exploration of reserves. From an economic perspective, the price of gold is 350 times the mean value of 33 other resources for calculating production versus price. New mining technologies and new processing methods have been developed during the last 20 years as a response to high prices. As a result, five times the reserves available in 1970 have now been discovered, and two times the reserves available in 1970 were consumed during the past two decades. It is questionable whether other mineral commodities can reach the ratio of reserve plus cumulative consumption to abundance that gold does. Using this concept, the limit of the Earth's resources under present technology was calculated for 35 mineral resources, based on the ratio of the reserve plus cumulative consumption to abundance for gold. Even though recoverable tonnage of lead, silver, tin, boron, copper, and mercury from ore deposits in the Earth's crust is relatively low, the abundance of these metals is apparently sufficient for future supplies. However, considering the special situation of gold created by its very high price compared to world production, there is anxiety concerning steep increases in the price or depletion of these metals, which have a shorter lifetime from a geochemical point of view.  相似文献   

16.
本文评价了三江源自然保护区生态系统宏观结构及涵养水源、保持水土、保护生物多样等主要生态服务功能,分析了自然保护区生态保护与建设工程的生态成效及其原因。结果显示,工程实施后,各自然保护区的土地覆被转类指数明显增加,生态系统宏观状况好转;保护区内草地生产力皆呈增加趋势,水域面积增加,食物供给能力提高,栖息地生境好转。森林类保护区的森林面积减少趋势得到遏制;湿地类保护区的湿地面积多呈增加趋势;草地类保护区的草地减少趋势缓解,荒漠化明显遏制,草地植被覆盖度有所增加;冰川类保护区多条冰川出现明显退缩导致冰川融水增多,有利于雪线以下草地净初级生产力的增加。  相似文献   

17.
Fossil fuels are finite and nonrenewable. In due course, they will become scarce and costly. Their role in powering modern economies is so vital as to warrant a review of ultimately recoverable reserves and of plausible future consumption patterns. Over the past 50 years, many oil companies, geologists, governments, and private corporations have performed scores of studies of Estimated Ultimately Recoverable (EUR) global oil. Taken together, the great majority of these studies reflect a consensus that EUR oil reserves lie within the range of 1800 to 2200 billion barrels. Given this range, a simple model is used to calculate that world oil production is likely to peak sometime between 2007 and 2019. The global transportation sector, almost totally dependent on oil, could be especially hard hit unless vehicles fueled by sources other than petroleum are developed and rapidly deployed.  相似文献   

18.
中国海洋油气资源开发与国家石油安全战略对策   总被引:17,自引:3,他引:14  
石油是中国能源安全的核心问题,随着我国石油供应对外依赖程度的增大,石油安全问题越来越突出,将会成为我国21世纪经济、社会可持续发展面临的一个重要问题。我国是海洋油气资源丰富的国家,广阔的海域中分布着近100×104km2的含油沉积盆地,近海石油资源量为240×108t,天然气资源量为140×1012m3。海洋油气资源的开发利用,将能部分解决我国油气资源进口数量。本文讨论了解决石油安全的四种模式,对我国油气安全的国际和国内条件进行了分析,提出了解决我国油气安全的战略对策。  相似文献   

19.
为阐明祁连山青海云杉(Picea crassifolia)林分布带对其土壤碳、氮含量的影响,以分布在祁连山东段和西段的典型青海云杉林为研究对象,通过野外取样和室内分析,论述了青海云杉林浅层土壤碳、氮含量特征及其相互关系。结果表明:(1)祁连山东、西段土壤剖面有机碳含量均随土壤深度的增加而减小,但不同土层差异显著性不同,0~40cm含量分别为73.57±17.17g·kg-1和45.85±11.93g·kg-1;东、西段土壤剖面有机碳储量没有明显的变化规律,0~40cm有机碳储量分别为205.51±39.44t·hm-2和134.93±25.80t·hm-2。(2)祁连山东、西段土壤全氮含量随土层深度变化和不同土层差异显著性变化规律同土壤有机碳含量,0~40cm全氮含量分别为4.56±0.88g·kg-1和2.81±0.66g·kg-1;东、西段土壤全氮储量亦同土壤有机碳储量变化规律,0~40cm储量分别为12.77±2.08t·hm-2和8.38±1.56t·hm-2。(3)祁连山东、西段土壤剖面不同土层C/N比差异显著性变化规律相同,其C/N值分别为15.92±1.24和16.10±2.07;C/N比值大小主要取决于有机碳含量;线性分析表明,土壤有机碳与全氮含之间呈极显著的正相关关系,可用乘幂曲线模型Y=aXb较好地描述(p0.01)。上述研究结果可为祁连山水源涵养林建群种青海云杉林的经营和管理提供理论依据和数据支撑。  相似文献   

20.
以广东省自然保护区作为生态源地,利用最小累积阻力模型,分析潜在生态廊道,通过增加河流与高速公路廊道形成综合生态网络(CEN),并利用α指数、β指数、γ指数和成本比对CEN进行评价,结果显示:由潜在生态廊道构成的基础生态网络(BEN),αβγ指数分别为0.54、2.02和0.70,说明其能使广东省自然保护区结构复杂化并形成有效链路;将河流廊道加入BEN形成河流生态网络,其结构更加完善,但因河流本身是两岸基质连通阻力较大的因素,其αβγ指数均比基础生态网络有所降低,分别只有0.33、1.64和0.55;由自然保护区、潜在生态廊道、河流廊道、道路廊道、生态节点组成的综合生态网络,αβγ指数分别达到0.68、2.34和0.79,说明道路生态廊道的加入,可以弥补河流生态网络的弱点,使网络形成良好回路,对生态网络的稳定性有重要作用。在当前国土空间生态修复的背景下,建议建设、修复生态廊道47条、生态节点52个,以改善自然保护区孤岛化,促进自然保护区之间的物种交流,提升生态系统服务功能,可为广东省的生态修复、生态安全格局构建提供核心框架。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号