首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Cinnabar (α-HgS) and metacinnabar (β-HgS) dissolved at environmentally significant rates in oxygenated slurry experiments simulating a low-flow fluvial system. Based on SO42− production, cinnabar dissolution rates were 2.64 to 6.16 μmol (SO42−) m− 2 day− 1, and metacinnabar dissolution rates were 1.20 to 1.90 μmol (SO42−) m− 2 day− 1. Monodentate-bound thiosulfate (S2O32−) was identified as an oxidation product on the HgS surface by ATR-IR spectroscopy based on strong infrared absorption bands in the 1140–1145 cm− 1 and 1006–1014 cm− 1 regions. The presence of sulfide oxidation intermediates on the HgS surface indicates that SO42− concentration underestimates α-HgS and β-HgS dissolution in this setting. Mercury release rates during dissolution were more than two orders of magnitude less than SO42− production, but were significant: 0.47 mg (Hg) m− 2 y− 1 from cinnabar [6.45 nmol (Hg) m− 2 day− 1], and 0.17 mg (Hg) m− 2 y− 1 from metacinnabar [2.29 nmol (Hg) m− 2 day− 1]. The Hg mobilized during α-HgS and β-HgS dissolution is sufficient to form natural Au–Hg amalgam in downstream placer settings. The proportion of mercury that is not remobilized during α-HgS and β-HgS dissolution likely adsorbs to the dissolving mercuric sulfide. Adsorption of Hg2+ to cinnabar was detected in situ by anodic stripping voltammetry using a cinnabar-modified carbon paste electrode following accumulation of Hg2+ on the electrode at open circuit potential.  相似文献   

2.
Cantilever torque magnetometry is utilized widely in physics and material science for the determination of magnetic properties of thin films and semiconductors. Here, we report on its first application in rock magnetism, namely the determination of K1 and K2 of single crystal octahedra of natural magnetite. The design of cantilever magnetometers allows optimization for the specific research question at hand. For the present study, a cantilever magnetometer was used that enables measurement of samples with a volume up to 64 mm3. It can be inserted into an electromagnet with a maximum field of 2 T. The cantilever spring is suitable for torque values ranging from 7.5 × 10− 7 N·m to 5 × 10− 6 N·m. The torque is detected capacitively; the measured capacitance is converted into torque by using a calibrated feedback coil. The magnetometer allows in-situ rotation of the sample in both directions and is, therefore, also suitable to analyze rotational hysteresis effects.The evaluation of the magnetite anisotropy constants involved Fourier analysis of the torque signal on the magnetite crystals' (001) and (110) planes. The absolute anisotropy constant has been computed using the extrapolation-to-infinite-field method. The value of K1 at room temperature is determined at − 1.28 × 104 [J m− 3] (± 0.13, i.e. 10%) and that of K2 at − 2.8 × 103 [J m− 3] (± 0.1, i.e. 2%). These values concur with earlier determinations that could not provide an instrumental error, in contrast with this work.The cantilever magnetometer performs four times faster than other torque magnetometers used for rock magnetic studies. This makes the instrument also suitable for magnetic fabric analysis.  相似文献   

3.
The Oroscocha Quaternary volcano, in the Inner Arc Domain of the Andean Cordillera (southern Peru), emitted peraluminous rhyolites and trachydacites that entrained decimetric to millimetric lamprophyric blobs. These latter show kersantite modal compositions (equal proportion of groundmass plagioclase and K-feldspar) and potassic bulk-rock compositions (1<K2O/Na2O<2; 6.7–7.2 wt.% CaO). Kersantite blobs have shapes and microstructures consistent with an origin from a mixing process between mafic potassic melts and rhyolitic melts. Both melts did exchange their phenocrysts during the mixing process. In addition to index minerals of lamprophyres (Ba–Ti–phlogopite, F-rich apatite, andesine and Ca-rich sanidine), the groundmass of kersantite blobs displays essenite-rich diopside (up to 22 mol%), Ti-poor magnetite microlites, Ti-poor hematite microlites and a series of Ca–Ti–Zr- and REE-rich accessory minerals that have never been reported from lamprophyres. Titanite [up to 5.3 wt.% ZrO2 and 5.2 wt.% (Y2O3 + REE2O3)] and Zr- and Ca-rich perrierite (up to 7.2 wt.% ZrO2 and 10.8 wt.% CaO) predate LREE- and iron-rich zirconolite and Fe-, Ti-, Hf-, Nb- and Ce-rich baddeleyite (up to 5.3 wt.% Fe2O3, 3.2 wt.% TiO2, 1.5 wt.% HfO2, 1.2 wt.% Nb2O5, 0.25 wt.% CeO2) in the crystallization order of the groundmass. Isomorphic substitutions suggest iron to occur as Fe3+ in all the accessory phases. This feature, the essenitic substitution in the clinopyroxene and the occurrence of hematite microlites, all indicate a drastic increase of the oxygen fugacity (from FMQ − 1 to FMQ + 5 log units) well above the HM synthetic buffer within a narrow temperature range (1100–1000 °C). Such a late-magmatic oxidation is ascribed to assimilation of water from the felsic melts during magma mixing, followed by rapid degassing and water dissociation during eruption of host felsic lavas. Thus, magma mixing involving felsic melt end-members provides a mechanism for mafic potassic melts to be oxidized beyond the HM synthetic buffer curve.  相似文献   

4.
Mercury contents in Precambrian banded iron formation-hosted hematite ores are virtually unknown. In an attempt to provide information on the abundance and distribution of Hg in Fe ore, we present analyses for Hg in samples of high-grade soft hematite ore from Gongo Soco, Minas Gerais, Brazil. Bulk samples contain from <  5 to 25  ppb Hg without obvious correlation with major elements. Granulometric fractions of follow-up samples have amounts of Hg from 6 to 48  ppb and display positive linear correlations with total Mn as MnO (r = 0.87), LOI (r = 0.87) and SiO2 (r = 0.76), as well as a negative linear correlation with total Fe as Fe2O3 (r = −  0.87). The correlations suggest that Hg is associated with a hydrated ferruginous groundmass bearing residual Mn, Al and Si, which replaced gangue minerals in itabirite in the process of formation of the Gongo Soco soft hematite ore.  相似文献   

5.
A strategy to neutralize acidic pit lakes was tested in an upscaling process using field mesocosms of 26 to ca. 4500 m3 volume in the acidic pit Mining Lake 111 in Germany. After addition of the substrates Carbokalk and straw a neutral sediment layer formed, in which microbial sulfate and iron reduction as well as sulfide precipitation occurred. The net rate of neutralization was limited by the precipitation of iron sulfides rather than by microbial reactions. Oxidation of H2S by ferric iron in the anoxic sediment lowered the net sulfate reduction rate. Seasonal fluctuations of iron sulfides in the sediment showed that the reaction products were not necessarily stable. The long-term success of the approach depends on the net partition of the precipitated iron-(mono-/di-) sulfide that is permanently buried in the anoxic sediment. It could be shown by field experiments that the long-term success of the neutralization depends on the spatial scale and duration of the experiments. Volumes from 26 to 4500 m3, exposition times from 4 months to 5 years, and increasingly thick coverings of the sediments with straw, from zero to 40 cm, were used. Net neutralization rates decreased from 41 meq m− 2 d− 1 in laboratory microcosms to a mean rate of 2.3 meq m− 2 d− 1 in the 4500 m3 field experiment. The results show that the success of the microbial treatment of acid pit lakes lastly depends on the limnological conditions in the lake that cannot be simulated by upscaling of simple laboratory experiments.  相似文献   

6.
Dissolution of the synthetic hydroxylapatite (HAP) and fluorapatite (FAP) in pure water was studied at 25 °C and 45 °C in a series of batch experiments. The XRD, FT-IR and SEM analyses indicated that the synthetic, microcrystalline HAP and FAP with apatite structure used in the experiments were found to have no obvious variation after dissolution except that the existence of OH groups in FT-IR spectra for FAP after 2880 h dissolution was observed. During the HAP dissolution (0–4320 h), the aqueous calcium and phosphate concentrations reached the maxima after 120 h and then decreased slowly with time. For the FAP dissolution in pure water, after a transient time of 1440 h (< 60 d), element concentrations and pH became constant suggesting attainment of a steady-state between the solution and solid. During early stages of the FAP dissolution reaction (< 72–120 h), mineral components were released in non-stoichiometric ratios with reacted solution ratios of dissolved Ca:P, Ca:F and P:F being lower than mineral stoichiometric ratios of Ca5(PO4)3F, i.e., 1.67, 5.0 and 3.0, respectively. This indicated that F were preferentially released compared to Ca from the mineral structure. The mean Ksp values were calculated by using PHREEQC for HAP of 10− 53.28 (10− 53.02–10− 53.51) and for FAP of 10− 55.71 (10− 55.18–10− 56.13) at 25 °C, the free energies of formation ΔGfo[HAP] and ΔGfo[FAP] were calculated to be − 6282.82 kJ/mol and − 6415.87 kJ/mol, respectively.  相似文献   

7.
The 1.27 Ga old Ivigtut (Ivittuut) intrusion in South Greenland is world-famous for its hydrothermal cryolite deposit [Na3AlF6] situated within a strongly metasomatised A-type granite stock. This detailed fluid inclusion study characterises the fluid present during the formation of the cryolite deposit and thermodynamic modelling allows to constrain its formation conditions.Microthermometry revealed three different types of inclusions: (1) pure CO2, (2) aqueous-carbonic and (3) saline-aqueous inclusions. Melting temperatures range between − 23 and − 15 °C for type 2 and from − 15 to − 10 °C for type 3 inclusions. Most inclusions homogenise between 110 and 150 °C into the liquid.Stable isotope compositions of CO2 and H2O were measured from crushed inclusions in quartz, cryolite, fluorite and siderite. The δ13C values of about − 5‰ PDB are typical of mantle-derived magmas. The differences between δ18O of CO2 (+ 21 to + 42‰ VSMOW) and δ18O of H2O (− 1 to − 21.7‰ VSMOW) suggest low-temperature isotope exchange. δD (H2O) ranges from − 19 to − 144‰ VSMOW. The isotopic composition of inclusion water closely follows the meteoric water line and is comparable to Canadian Shield brines. Ion chromatography revealed the fluid's predominance in Na, Cl and F. Cl/Br ratios range between 56 and 110 and may imply intensive fluid–rock interaction with the host granite.Isochores deduced from microthermometry in conjunction with estimates for the solidification of the Ivigtut granite suggest a formation pressure of approximately 1–1.5 kbar for the fluid inclusions. Formation temperatures of different types of fluid inclusions vary between 100 and 400 °C. Thermodynamic modelling of phase assemblages and the extraordinary high concentration in F (and Na) may indicate that the cryolite body and its associated fluid inclusions could have formed during the continuous transition from a volatile-rich melt to a solute-rich fluid.  相似文献   

8.
Bacterial metal reduction is an important biogeochemical process in anaerobic environments. An understanding of electron transfer pathways from dissimilatory metal-reducing bacteria (DMRB) to solid phase metal (hydr)oxides is important for understanding metal redox cycling in soils and sediments, for utilizing DMRB in bioremedation, and for developing technologies such as microbial fuel cells. Here we hypothesize that the outer membrane cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 are the only terminal reductases capable of direct electron transfer to a hematite working electrode. Cyclic voltammetry (CV) was used to study electron transfer between hematite electrodes and protein films, S. oneidensis MR-1 wild-type cell suspensions, and cytochrome deletion mutants. After controlling for hematite electrode dissolution at negative potential, the midpoint potentials of adsorbed OmcA and MtrC were measured (−201 mV and −163 mV vs. Ag/AgCl, respectively). Cell suspensions of wild-type MR-1, deletion mutants deficient in OmcA (ΔomcA), MtrC (ΔmtrC), and both OmcA and MtrC (ΔmtrC–ΔomcA) were also studied; voltammograms for ΔmtrC–ΔomcA were indistinguishable from the control. When the control was subtracted from the single deletion mutant voltammograms, redox peaks were consistent with the present cytochrome (i.e., ΔomcA consistent with MtrC and ΔmtrC consistent with OmcA). The results indicate that OmcA and MtrC are capable of direct electron exchange with hematite electrodes, consistent with a role as terminal reductases in the S. oneidensis MR-1 anaerobic respiratory pathway involving ferric minerals. There was no evidence for other terminal reductases operating under the conditions investigated. A Marcus-based approach to electron transfer kinetics indicated that the rate constant for electron transfer ket varies from 0.025 s−1 in the absence of a barrier to 63.5 s−1 with a 0.2 eV barrier.  相似文献   

9.
Several methods were evaluated and compared for the estimation of pyrite oxidation rates (POR) in waste rock at Mine Doyon, Quebec, Canada. Methods based on data collected in situ, such as the interpretation of temperature and oxygen concentration profiles (TOP) measured in the waste rock pile and pyrite mass balance (PMB) on solid phase samples were compared with the oxygen consumption measurements (OCM) in closed chamber in the laboratory. A 1-D analytical solution to a gas and heat transport equation used temperature and oxygen profiles (TOP) measured in the pile for the preliminary POR estimates at a site close to the slope of the pile (Site 6) and in the core of the pile (Site 7). Resulting POR values were 1.1 × 10− 9 mol(O2) kg− 1 s− 1 and 1.0 × 10− 10 mol(O2) kg− 1 s− 1 for the slope site and the core site, respectively. Oxidation rates based on pyrite mass balance (PMB) calculations for solid samples were 2.21 × 10− 9 mol(O2) kg− 1 s− 1 and 2.03 × 10− 9 mol(O2) kg− 1 s− 1, respectively, for the same slope and core sites, but the difference between sites was within the error margin. The OCM measurements in the laboratory on fresh waste rock samples yielded higher POR values than field methods, with average oxidation rate of 6.7 × 10− 8 mol(O2) kg− 1 s− 1. However, the OCM results on weathered and decomposed material from the rock stockpile (average oxidation rate 3.4 × 10− 9 mol(O2) kg− 1 s− 1) were consistent with results from the field-based estimates. When POR values based on fresh material are excluded, the remaining POR values for all methods range from 1.0 × 10− 10 to 3.4 × 10− 9 mol(O2) kg− 1 s− 1. The lowest estimated value (1.0 × 10− 10 mol(O2) kg− 1 s− 1) was based on TOP estimates in the interior of the pile where oxygen transport was limited by diffusion from the surface. These results suggest that small-scale OCM laboratory experiments may provide relatively representative values of POR in the zones of waste rock piles in which oxygen transport is not dominated by diffusion.  相似文献   

10.
Ilmenite separated from beach sands of Bangladesh was oxidized for 1 h at 950 °C and then reduced in charcoal for 4 h at 1050 °C. This was followed by leaching in 5% to 15% hydrochloric acid solution in temperature range of 30 to 75 °C for periods of up to 2 h. The results were compared with those obtained by leaching of ilmenite reduced without oxidizing. Oxidation prior to reduction of the ilmenite was found to increase both the extent and the rate of leaching. The residual iron contents after leaching were also found to be lower than that obtained for non-oxidized samples. The kinetic data of leaching of ilmenite reduced after oxidation was found to follow first order reaction model, i.e., G(α) = − ln(1 − α) up to an α value of 0.5 (i.e. up to 50% reduction) and then changed to spherical model, i.e., G(α) = [1 − (1 − α)]3. On the other hand, leaching of ilmenite reduced without oxidizing was found to follow the Ginstling-Brounshtein reaction, i.e., G(α) = 1 − (2/3)α − (1 − α)2/3 throughout the leaching process. Oxidation of ilmenite prior to reduction was also found to have decreased the activation energy of leaching from 43 kJ/mol, found for samples leached after reduction without oxidizing, to 30 kJ/mol.  相似文献   

11.
A novel one-step hydrothermal synthesis of 11 Å tobermorite, a cation exchanger, from a unique combination of waste materials is reported. 11 Å tobermorite was prepared from stoicheiometric quantities of cement bypass dust and waste container glass at 100 °C in water. The product also comprised 10 wt.% calcite and trace quartz as residual parent phases from the cement bypass dust. In a batch sorption study at 20 °C the uptakes of Cd2+ and Pb2+ by the waste-derived tobermorite product were found to be 171 mg g− 1 and 467 mg g− 1, respectively, and in both cases the removal process could be described using a simple pseudo-second-order rate model (k2 = 2.30 × 10− 5 g mg− 1 min− 1 and 5.09 × 10− 5 g mg− 1 min− 1, respectively). The sorption characteristics of the 11 Å tobermorite are compared with those of other waste-derived sorbents and potential applications are discussed.  相似文献   

12.
Systematic geochronologic, geochemical, and Nd isotopic analyses were carried out for an early Paleoproterozoic high-K intrusive complex exposed in southwestern Tarim, NW China. The results provide a better understanding of the Paleoproterozoic tectonic evolution of the Tarim Block. Zircon U–Pb age dating indicates two Paleoproterozoic magmatic episodes occurring at ca. 2.41 Ga and ca. 2.34 Ga respectively, which were followed by a ca. 1.9 Ga metamorphic event. The 2.41 Ga granodiorite–adamellite suite shares characteristics of late to post-orogenic metaluminous A-type granites in its high alkalinity (Na2O + K2O = 7.6–9.3%), total REE (410–788 ppm), Zr (370–660 ppm), and Y (21.7–58.4 ppm) contents. εNd(t) values for the suite range from − 3.22 to − 4.71 and accordingly the Nd modal ages (T2DM) vary between 3.05 Ga and 3.17 Ga. Based on geochemical data, the 2.34 Ga suite can be subdivided into two sub-suites, namely A-type and S-type. However, both types have comparable Nd isotope compositions (εNd(t) ≈ − 0.41 to − 2.08) and similar narrow T2DM ranges (2.76–2.91 Ga).Geochemical and Nd isotopic data for the high-K intrusive complex, in conjunction with the regional geological setting, suggest that both the 2.41 Ga suite and the 2.34 Ga A-type sub-suite might have been produced by partial melting of the Archean mafic crust in a continental rift environment. The S-type sub-suite is thought to have formed by partial melting of felsic pelites and/or metagreywackes recycled from Archean crust (TTG?). Gabbro enclaves with positive εNd(t) value (2.15) have been found to be intermingling within the 2.34 Ga suite; ca. 2.34–2.36 Ga gabbroic dykes and adamellites have previously been documented in eastern Tarim. These observations indicate that the high-K intrusions may reflect the emergence of depleted mantle upwelling beneath the Tarim Block at that time. We suggest a three-stages model for the Precambrian crustal evolution in the Tarim Block: (1) the formation of proto-crust (TTG) by ca. 2.5 Ga, (2) episodes of felsic magmatism possibly occurring in continental rift environments at ca. 2.41 Ga and ca. 2.34–2.36 Ga, and (3) ca. 1.9 Ga metamorphism that may represent the solidification of the Precambrian basement of the Tarim Block.  相似文献   

13.
Experimental studies concerning the dissolved air flotation (DAF) of fine (dp < 100 μm) quartz particles, using two different flotation cells (setups), are presented. Pure and well characterised quartz samples were treated with a commercial amine as collector prior to flotation and bubbles were characterised by the LTM-BSizer technique. Bubble size distribution showed 71% (by volume) and 94% (by number) of the bubbles having sizes (db) lower than 100 μm (i.e. microbubbles). The Sauter and arithmetic mean diameters were 79 μm and 56 μm, respectively, for the bubbles generated at 300 kPa (gauge) saturation pressure (after 30 minute saturation time). Quartz particle size distribution (obtained by laser diffraction) showed a volume-moment diameter of 13 μm. The Rosin–Rammler–Bennett, Gates–Gaudin–Schumann and log-normal distribution functions were well fitted (R2 > 0.96) to the bubble size distribution and quartz particle size distribution data. Values of total quartz recovery ranging from 6% to 53% (by mass) were obtained for the DAF experiments under different collector concentrations (up to 2 mg g− 1), with an optimal collector concentration found at 1 mg g− 1. These results are significant considering that 27% (by volume) of the quartz particles are ultrafine (dp < 5 μm), demonstrating the widely-known efficiency of DAF to remove small particles when applied in the field of water and wastewater treatment. The true flotation behaviour, as a function of particle diameter (dp), exhibits a local minimum when particles are approximately 3–5 μm in size. The results contribute to the discussion in the literature about the existence of such a minimum, which is generally interpreted as a change in the mechanism of particle collection from convection (collision) to diffusion at lower particle sizes.  相似文献   

14.
The carbonate-hosted Kabwe Pb–Zn deposit, Central Zambia, has produced at least 2.6 Mt of Zn and Pb metal as well as minor amounts of V, Cd, Ag and Cu. The deposit consists of four main epigenetic, pipe-like orebodies, structurally controlled along NE–SW faults. Sphalerite, galena, pyrite, minor chalcopyrite, and accessory Ge-sulphides of briartite and renierite constitute the primary ore mineral assemblage. Cores of massive sulphide orebodies are surrounded by oxide zones of silicate ore (willemite) and mineralized jasperoid that consists largely of quartz, willemite, cerussite, smithsonite, goethite and hematite, as well as numerous other secondary minerals, including vanadates, phosphates and carbonates of Zn, Pb, V and Cu.Galena, sphalerite and pyrite from the Pb–Zn rich massive orebodies have homogeneous, negative sulphur isotope ratios with mean δ34SCDT permil (‰) values of − 17.75 ± 0.28 (1σ), − 16.54 ± 0.0.27 and − 15.82 ± 0.25, respectively. The Zn-rich and Pb-poor No. 2 orebody shows slightly heavier ratios of − 11.70 ± 0.5‰ δ34S for sphalerite and of − 11.91 ± 0.71‰ δ34S for pyrite. The negative sulphur isotope ratios are considered to be typical of sedimentary sulphides produced through bacterial reduction of seawater sulphate and suggest a sedimentary source for the sulphur.Carbon and oxygen isotope ratios of the host dolomite have mean δ13CPDB and δ18OSMOW values of 2.89‰ and 27.68‰, respectively, which are typical of marine carbonates. The oxygen isotope ratios of dolomite correlate negatively to the SiO2 content introduced during silicification of the host dolomite. The depletion in 18O in dolomite indicates high temperature fluid/rock interaction, involving a silica- and 18O-rich hydrothermal solution.Two types of secondary fluid inclusions in dolomite, both of which are thought to be related to ore deposition, indicate temperatures of ore deposition in the range of 257 to 385 and 98 to 178 °C, respectively. The high temperature fluid inclusions contain liquid + vapour + solid phases and have salinities of 15 to 31 eq. wt.% NaCl, whereas the low temperature inclusions consist of liquid + vapour with a salinity of 11.5 eq. wt.% NaCl.Fluid transport may have been caused by tectonic movements associated with the early stages of the Pan-African Lufilian orogeny, whereas ore deposition within favourable structures occurred due to changes in pressure, temperature and pH in the ore solution during metasomatic replacement of the host dolomite. The termination of the Kabwe orebodies at the Mine Club fault zone and observed deformation textures of the ore sulphides as well as analysis of joint structures in the host dolomite, indicate that ore emplacement occurred prior to the latest deformation phase of the Neoproterozoic Lufilian orogeny.  相似文献   

15.
The calcite cement in the Lower Ordovician Majiagou Formation in the Ordos basin in northern China can be subdivided into three groups based on preliminary results of oxygen and carbon isotopes and fluid inclusion microthermometry. Group 1 has low oxygen isotopes (− 14‰ to − 18‰), low Th values (92–103 °C), and low salinities (1.7–4.9 wt.% NaCl equivalent) and is interpreted to have precipitated during early burial from porewater influenced by meteoric water. Group 2 has much higher oxygen isotope values (− 5‰ to − 8‰), which, coupled with the higher Th values (136–151 °C), suggest that the calcite was precipitated from fluids that were significantly enriched in 18O, possibly resulting from fluid–rock reaction during burial. Group 3 occurring along fractures is characterized by high salinities (21–28 wt.% NaCl equivalent) and is interpreted to have been precipitated from locally preserved residual evaporitic brines. The occurrence of primary hydrocarbon inclusions and its low carbon isotopes (− 11‰ to − 15‰) suggest that precipitation of group 3 calcite took place in the presence of hydrocarbons.  相似文献   

16.
Glide systems of hematite single crystals in deformation experiments   总被引:1,自引:0,他引:1  
The critical resolved shear stresses (CRSSs) of hematite crystals were determined in compression tests for r-twinning, c-twinning and {a}<m>-slip in the temperature range 25 °C to 400 °C, at 400 MPa confining pressure, and a strain rate of 10− 5 s− 1 by Hennig-Michaeli, Ch., Siemes, H., 1982. Experimental deformation of hematile crstals betwen 25 °C and 400 °C at 400 MPa confining pressure. In: Schreyer, W. (Ed.) High Pressure Research in Geoscience, Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, p. 133–150. In the present contribution newly performed experiments on hematite single crystals at temperatures up to 800 °C at strain rates of 10− 5 s− 1 and 300 MPa confining pressure extends the knowledge about the CRSS of twin and slip modes. Optical observations, neutron diffraction goniometry, SEM forescatter electron images and electron backscatter diffraction are applied in order to identify the glide modes. Both twinning systems and {a}<m>-slip were confirmed by these methods. Besides the known glide systems the existence of the (c)<a>-slip system could be stated. Mechanical data establish that the CRSS of r-twinning decreases from 140 MPa at 25 °C to  5 MPa at 800 °C and for {a}<m>-slip from > 560 MPa at 25 °C to  40 MPa at 700 °C. At room temperature the CRSS for c-twinning is around 90 MPa and at 600 °C  60 MPa. The data indicate that the CRSSs above 200 °C seem to be between the values for r-twinning and {a}<m>-slip. For (c)<a>-slip only the CRSS at 600 °C could be evaluated to  60 MPa. Exact values are difficult to determine because other glide systems are always simultaneously activated.  相似文献   

17.
The Yueshan mineral belt is geotectonically located at the centre of the Changjiang deep fracture zone or depression of the lower Yangtze platform. Two main types of ore deposits occur in the Yueshan orefield: Cu–Au–(Fe) skarn deposits and Cu–Mo–Au–(Pb–Zn) hydrothermal vein-type deposits. Almost all deposits of economic interest are concentrated within and around the eastern and northern branches of the Yueshan dioritic intrusion. In the vicinity of the Zongpu and Wuhen intrusions, there are many Cu–Pb–Zn–Au–(S) vein-type and a few Cu–Fe–(Au) skarn-type occurrences.Fluid inclusion studies show that the ore-forming fluids are characterised by a Cl(S)–Na+–K+ chemical association. Hydrothermal activity associated with the above two deposit types was related to the Yueshan intrusion. The fluid salinity was high during the mineralisation processes and the fluid also underwent boiling and mixed with meteoric water. In comparison, the hydrothermal activity related to the Zongpu and Wuhen intrusions was characterised by low salinity fluids. Chlorine and sulphur species played an important role in the transport of ore-forming components.Hydrogen- and oxygen-isotope data also suggest that the ore-forming fluids in the Yueshan mineral belt consisted of magmatic water, mixed in various proportions with meteoric water. The enrichment of ore-forming components in the magmatic waters resulted from fluid–melt partitioning. The ore fluids of magmatic origin formed large Cu–Au deposits, whereas ore fluids of mixed magmatic-meteoric origin formed small- to medium-sized deposits.The sulphur isotopic composition of the skarn- and vein-type deposits varies from − 11.3‰ to + 19.2‰ and from + 4.2‰ to + 10.0‰, respectively. These variations do not appear to have been resulted from changes of physicochemical conditions, rather due to compositional variation of sulphur at the source(s) and by water–rock interaction. Complex water–rock interaction between the ore-bearing magmatic fluids and sedimentary wall rocks was responsible for sulphur mixing. Lead and silicon isotopic compositions of the two deposit types and host rocks provide similar indications for the sources and evolution of the ore-forming fluids.Hydrodynamic calculations show that magmatic ore-forming fluids were channelled upwards into faults, fractures and porous media with velocities of 1.4 m/s, 9.8 × 10− 1 to 9.8 × 10− 7 m/s and 3.6 × 10− 7 to 4.6 × 10− 7 m/s, respectively. A decrease of fluid migration velocity in porous media or tiny fractures in the contact zones between the intrusive rocks and the Triassic sedimentary rocks led to the deposition of the ore-forming components. The major species responsible for Cu transport are deduced to have been CuCl, CuCl2, CuCl32− and CuClOH, whereas Au was transported as Au2(HS)2S2−, Au(HS)2, AuHS and AuH3SiO4 complexes. Cooling and a decrease in chloride ion concentration caused by fluid boiling and mixing were the principal causes of Cu deposition. Gold deposition was related to decrease of pH, total sulphur concentration and fO2, which resulted from fluid boiling and mixing.Geological and geochemical characteristics of the two deposit types in the Yueshan mineral belt suggest that there is a close genetic relationship with the dioritic magmatism. Geochronological data show that the magmatic activity and the mineralisation took place between 130 and 136 Ma and represent a continuous process during the Yanshanian time. The cooling of the intrusions and the mineralisation event might have lasted about 6 Ma. The cooling rate of the magmatic intrusions was 80 to 120 °C my− 1, which permitted sufficient heat supply by magma to the ore-forming system.  相似文献   

18.
The Cobre–Babilonia vein system formed during a single major hydrothermal stage and is part of the Taxco district in Guerrero, southern Mexico. Homogenization and ice melting temperatures range from 160 to 290 °C and from − 11.6 to − 0.5 °C, respectively. We determined an approximate thermal gradient of 17 to 20 °C per 100 m using fluid inclusions. A thermal peak marked by the 290 °C isotherm is interpreted as a major feeder channel to the veins. The highest content of Zn + Pb in ore coincides with the 220 and 240 °C isotherms. Salinities of mineralizing fluids range from 0.8 to 15.6 wt.% NaCl equiv, and are distributed in two populations that can be related with barren or ore-bearing vein sections, with 0.8 to 6 wt.% NaCl equiv and 7 to 15.6 wt.% NaCl equiv, respectively. δ13C and δ18O water values from calcite from the Cobre–Babilonia vein system and the Esperanza Vieja and Guadalupe mantos range − 5.4‰ to − 10.4‰ and 9.9‰ to 13.4‰, respectively. δ34S values range from 0‰ to 3.2‰ and − 0.7‰ to − 4.3‰ in sphalerite, − 4‰ to 0.9‰ in pyrite, and − 1.4‰ to − 5.5‰ in galena. Both fluid inclusion and stable isotope data are compatible with magmatic and meteoric sources for mineralizing fluids. Also, sulfur isotope compositions suggest both magmatic and sedimentary sources for sulfur.  相似文献   

19.
The Mapocho river, which crosses downtown Santiago, is one of the most important rivers in contact with a population of about six million inhabitants. Anthropogenic activities, industrialization, farming activities, transport, urbanization, animal and human excretions, domestic wastes and copper mining have affected the river, contaminating it and its sediments with heavy metals. Concentration and distribution of Cu, Zn, Pb and Cd were studied with the purpose of determining their bioavailability and their relation with the characteristics of the sediments. Freshly deposited seasonal sediments were collected from 0–8 cm depths from 6 locations (S1 to S6) along the 30-km long channel length, in the four seasons of year on the following dates: May 2001 (D1, autumn); August 2001 (D2, winter); October 2001 (D3, spring) and January 2002 (D4, summer). The dried samples were sifted to obtain the < 63-μm sediment fraction, since it has been shown that large amounts of heavy metals are bound in the fine-grained fraction of the sediment. Cu and Zn were analyzed by atomic absorption spectrophotometry and Pb and Cd by square wave anodic stripping voltammetry. The highest concentrations of Cu (2850 μg g− 1) were found in the northern part of the river (S1, average D1–D4), near the mountains and a copper mine, and then decreased downstream to 209 μg g− 1 (S6). Total Zn showed an irregular variation, with higher values at S1 (1290 μg g− 1) and high values in some winter sampling (1384 μg g− 1 S4, S5–D2). Pb showed different trends, increasing from S1 to S6 (17 to 61 μg g− 1), with the highest values in the summer samples (83 μg g− 1, S4–S6, D4), and total Cd increased slightly from mean values of 0.2 and 0.5 μg g− 1. Partition into five fractions was made using Tessier's analytical sequential extraction technique; the residue was treated with aqua regia for recovery studies, although this step is not part of the Tessier procedure. The results show that Cu, Zn and Pb in the sediments were dependent on the sampling places along the river, and variation in two years was low (D1–D4). The highest values of total organic matter, carbonate and conductivity were found in S6, which has the smallest size particles, while at S1 the sediments were predominantly sand and contain larger amounts of silica. Cu associated with carbonate decreased gradually from 58% (1771 μg g− 1, S1) to 16% (32 μg g− 1, S6); Cu bonded to reducible fraction was almost constant (33% to 37%), and Cu associated with oxidizable fraction increased from 7% (S1) to 34% (S6), but copper content was lower (214 to 68 μg g− 1). Zn had a similar fractionation profile. However, Pb bound to oxidizable fraction did not show significant percent variation along the river (20% to 19%), but the amount bounded was 4 to 12 μg g− 1. The residual fraction increased from 24% to 41% (5 to 25 μg g− 1, S1 to S6). The distribution of Cd in the sediment was almost independent of the sampling stations and was bound to carbonate, reducible and residual fraction in similar proportion. Cu and Zn at S1 were mainly bound to carbonates and reducible phases with 91% and 73% (2779 and 965 μg g− 1, respectively), and with a change in the pH and/or the redox potential of the sediment–water system, these contaminants could easily enter the food chain. In S6 the amount of Cu and Zn in these phases was 50% and 53% (100 to 313 μg g− 1, respectively).  相似文献   

20.
Timpanogos Cave, located near the Wasatch fault, is about 357 m above the American Fork River. Fluvial cave sediments and an interbedded carbonate flowstone yield a paleomagnetic and U–Th depositional age of 350 to 780 ka. Fault vertical slip rates, inferred from calculated river downcutting rates, range between 1.02 and 0.46 mm yr− 1. These slip rates are in the range of the 0–12 Ma Wasatch Range exhumation rate ( 0.5–0.7 mm yr− 1), suggesting that the long-term vertical slip rate remained stable through mid-Pleistocene time. However, the late Pleistocene (0–250 ka) decelerated slip rate ( 0.2–0.3 mm yr− 1) and the accelerated Holocene slip rate ( 1.2 mm yr− 1) are consistent with episodic fault activity. Assuming that the late Pleistocene vertical slip rate represents an episodic slowing of fault movement and the long-term (0–12 Ma) average vertical slip rate, including the late Pleistocene and Holocene, should be  0.6 mm yr− 1, there is a net late Pleistocene vertical slip deficit of  50–75 m. The Holocene and late Pleistocene slip rates may be typical for episodes of accelerated and slowed fault movement, respectively. The calculated late Pleistocene slip deficit may mean that the current accelerated Wasatch fault slip rate will extend well into the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号