首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the spherical harmonic representations of the earth's disturbing potential and its functionals, we derive the inverse Vening Meinesz formula, which converts deflection of the vertical to gravity anomaly using the gradient of the H function. The deflection-geoid formula is also derived that converts deflection to geoidal undulation using the gradient of the C function. The two formulae are implemented by the 1D FFT and the 2D FFT methods. The innermost zone effect is derived. The inverse Vening Meinesz formula is employed to compute gravity anomalies and geoidal undulations over the South China Sea using deflections from Seasat, Geosat, ERS-1 and TOPEX//POSEIDON satellite altimetry. The 1D FFT yields the best result of 9.9-mgal rms difference with the shipborne gravity anomalies. Using the simulated deflections from EGM96, the deflection-geoid formula yields a 4-cm rms difference with the EGM96-generated geoid. The predicted gravity anomalies and geoidal undulations can be used to study the tectonic structure and the ocean circulations of the South China Sea. Received: 7 April 1997 / Accepted: 7 January 1998  相似文献   

2.
This paper analyzes several systematic errors affecting sea surface gradients derived from Seasat, Geosat/ERM, Geosat/GM, ERS-1/35d, ERS-1/GM and TOPEX/POSEIDON altimetry. Considering the data noises, the conclusion is: (1) only Seasat needs to correct for the non-geocentricity induced error, (2) only Seasat and Geosat/GM need to correct for the one cycle per revolution error, (3) only Seasat, ERS-1/GM and Geosat/GM need to correct for the tide model error; over shallow waters it is suggested to use a local tide model not solely from altimetry. The effects of the sea surface topography on gravity and geoid computations from altimetry are significant over areas with major oceanographic phenomena. In conclusion, sea surface gradient is a better data type than sea surface height. Sea surface gradients from altimetry, land gravity anomalies, ship gravity anomalies and elevation data were then used to calculate the geoid over Taiwan by least-squares collocation. The inclusion of sea surface gradients improves the geoid prediction by 27% when comparing the GPS-derived and the predicted geoidal heights, and by 30% when comparing the observed and the geoid-derived deflections of the vertical. The predicted geoid along coastal areas is accurate to 2 cm and can help GPS to do the third-order leveling. Received 22 January 1996; Accepted 13 September 1996  相似文献   

3.
从经典边值问题理论及球谐函数理论出发,在空域推导获得了由大地水准面高以及垂线偏差计算扰动重力的解析计算公式,为利用卫星测高数据反演海洋扰动重力提供了理论基础。针对全球海洋区域和局部海洋区域的扰动重力反演,在前人已有工作基础上,提出了改进的基于一维FFT的精确快速算法,保证了计算结果与原解析方法完全一致,且计算速度提高约20倍。该算法在提高计算效率的同时避免了由于引入FFT而产生的混叠、边缘效应问题,而且对观测数据的序列长度没有硬性要求,使得应用更加灵活。利用EGM2008地球重力场模型分别生成了2.5'分辨率大地水准面高数据和垂线偏差数据,按照本文提出的改进方法(采用全球积分计算)分别反演获得了全球及局部海洋区域的扰动重力。经比较分析,由大地水准面和垂线偏差分别反演获得的扰动重力其差异在0.8×10-5 m/s2以内,这说明两种反演方法是基本一致的,但在数据包含系统误差的情况下,由垂线偏差反演扰动重力具有一定优势。  相似文献   

4.
 The use of GPS for height control in an area with existing levelling data requires the determination of a local geoid and the bias between the local levelling datum and the one implicitly defined when computing the local geoid. If only scarse gravity data are available, the heights of new data may be collected rapidly by determining the ellipsoidal height by GPS and not using orthometric heights. Hence the geoid determination has to be based on gravity disturbances contingently combined with gravity anomalies. Furthermore, existing GPS/levelling data may also be used in the geoid determination if a suitable general gravity field modelling method (such as least-squares collocation, LSC) is applied. A comparison has been made in the Aswan Dam area between geoids determined using fast Fourier transform (FFT) with gravity disturbances exclusively and LSC using only the gravity disturbances and the disturbances combined with GPS/levelling data. The EGM96 spherical harmonic model was in all cases used in a remove–restore mode. A total of 198 gravity disturbances spaced approximately 3 km apart were used, as well as 35 GPS/levelling points in the vicinity and on the Aswan Dam. No data on the Nasser Lake were available. This gave difficulties when using FFT, which requires the use of gridded data. When using exclusively the gravity disturbances, the agreement between the GPS/levelling data were 0.71 ± 0.17 m for FFT and 0.63 ± 0.15 for LSC. When combining gravity disturbances and GPS/levelling, the LSC error estimate was ±0.10 m. In the latter case two bias parameters had to be introduced to account for a possible levelling datum difference between the levelling on the dam and that on the adjacent roads. Received: 14 August 2000 / Accepted: 28 February 2001  相似文献   

5.
The fast Fourier transform (FFT) and, recently, the fast Hartley transform (FHT) have been extensively used by geodesists for efficient geoid determination. For this kind of efficiency, data must be given on a regular grid and, consequently, a pre-processing step of interpolation is required when only point measurements are available. This paper presents a way of computing a grid of geoid undulations N without explicitly gridding the data. The method is applicable to all FFT or FHT techniques of geoid or terrain effects determination, and it works with planar as well as spherical formulas. This method can be used not only for, e.g., computing a grid of undulations from irregular gravity anomalies g but it also lends itself to other applications, such as the gridding of gravity anomalies and, since the contribution of each data point is computed individually, the update of N- or g-grids as soon as new point measurements become available. In the case that there are grid cells which contain no measurements, the results of gravity interpolation or geoid estimation can be drastically improved by incorporating into the procedure a frequency-domain interpolating function. In addition to numerical results obtained using a few simple interpolating functions, the paper presents briefly the mathematical formulas for recovering missing grid values and for transforming values from one grid to another which might be rotated and/or scaled with respect to the first one. The geodetic problems where these techniques may find applications are pointed out throughout the paper.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

6.
The Stokes formula is efficiently evaluated by the one-and two- dimensional (1D, 2D) fast Fourier transform (FFT) technique in the plane and on the sphere in order to obtain precise geoid determinatiover a large area such as Europe. Using a high-pass filtered spherical harmonic reference model (OSU91A truncated to different degrees), gridded gravity anomalies and geoid heights were produced and the anomalies were used as input in the FFT software. Various tests were performed with respect to the different kernel functions used, to the spherical computations in bands, as well as to windowing, edge effects and extent of the area. It is thus demonstrated that, in geoid computations over large regions, the 1D spherical FFT and the 2D multiband spherical FFT in combination with discrete spectra for the kernel functions and 100% zero-padding give better results than those obtained by the other transform techniques. Additionally, numerical tests were carried out at the same test area using the planar fast Hartley transform (FHT) instead of the FFT and the results obtained by the two attractive alternatives were compared regarding the requirements in both computer time and computer memory needed in geoid height computations.A slightly modified version of the paper has been presented at the XX EGS General Assembly, Hamburg, 3–7 April, 1995  相似文献   

7.
The objective of this study is to evaluate two approaches, which use different representations of the Earth’s gravity field for downward continuation (DC), for determining Helmert gravity anomalies on the geoid. The accuracy of these anomalies is validated by 1) analyzing conformity of the two approaches; and 2) converting them to geoid heights and comparing the resulting values to GPS-leveling data. The first approach (A) consists of evaluating Helmert anomalies at the topography and downward-continuing them to the geoid. The second approach (B) downward-continues refined Bouguer anomalies to the geoid and transforms them to Helmert anomalies by adding the condensed topographical effect. Approach A is sensitive to the DC because of the roughness of the Helmert gravity field. The DC effect on the geoid can reach up to 2 m in Western Canada when the Stokes kernel is used to convert gravity anomalies to geoid heights. Furthermore, Poisson’s equation for DC provides better numerical results than Moritz’s equation when the resulting geoid models are validated against the GPS-leveling. On the contrary, approach B is significantly less sensitive to the DC because of the smoothness of the refined Bouguer gravity field. In this case, the DC (Poisson’s and Moritz’s) contributes only at the decimeter level to the geoid model in Western Canada. The maximum difference between the geoid models from approaches A and B is about 5 cm in the region of interest. The differences may result from errors in the DC such as numerical instability. The standard deviations of the hHN for both approaches are about 8 cm at the 664 GPS-leveling validation stations in Western Canada.  相似文献   

8.
利用卫星测高数据反演海洋重力异常研究   总被引:20,自引:2,他引:20  
全面研究了利用卫得测高数据反演海洋重力异常3种主要方法(即Stokes数据解析反解以及逆Vening-Meinesz公式)的技术特点,建立了3种算法的数学模型及其谱计算式,在以1440阶次位模型定义的标准场中完成了3种算法的数值比较和内部检核,通过仿真试验实现了3种算法的可靠性和稳定性检验,最后,本文利用卫得测高实测对南中国海地区的海洋重力异常进行了实际反演,并将反演结果同船测数据进行了比较。  相似文献   

9.
In the analyses of 2D real arrays, fast Hartley (FHT), fast T (FTT) and real-valued fast Fourier transforms are generally preferred in lieu of a complex fast Fourier transform due to the advantages of the former with respect to disk storage and computation time. Although the FHT and the FTT in one dimension are identical, they are different in two or more dimensions. Therefore, first, definitions and some properties of both transforms and the related 2D FHT and FTT algorithms are stated. After reviewing the 2D FHT and FTT solutions of Stokes' formula in planar approximation, 2D FHT and FTT methods are developed for geoid updating to incorporate additional gravity anomalies. The methods are applied for a test area which includes a 64×64 grid of 3×3 point gravity anomalies and geoid heights calculated from point masses. The geoids computed by 2D FHT and FTT are found to be identical. However, the RMS value of the differences between the computed and test geoid is ±15 mm. The numerical simulations indicate that the new methods of geoid updating are practical and accurate with considerable savings on storage requirements. Received: 15 February 1996; Accepted: 22 January 1997  相似文献   

10.
Geoid determination using one-step integration   总被引:1,自引:1,他引:0  
P. Novák 《Journal of Geodesy》2003,77(3-4):193-206
A residual (high-frequency) gravimetric geoid is usually computed from geographically limited ground, sea and/or airborne gravimetric data. The mathematical model for its determination from ground gravity is based on the transformation of observed discrete values of gravity into gravity potential related to either the international ellipsoid or the geoid. The two reference surfaces are used depending on height information that accompanies ground gravity data: traditionally orthometric heights determined by geodetic levelling were used while GPS positioning nowadays allows for estimation of geodetic (ellipsoidal) heights. This transformation is usually performed in two steps: (1) observed values of gravity are downward continued to the ellipsoid or the geoid, and (2) gravity at the ellipsoid or the geoid is transformed into the corresponding potential. Each of these two steps represents the solution of one geodetic boundary-value problem of potential theory, namely the first and second or third problem. Thus two different geodetic boundary-value problems must be formulated and solved, which requires numerical evaluation of two surface integrals. In this contribution, a mathematical model in the form of a single Fredholm integral equation of the first kind is presented and numerically investigated. This model combines the solution of the first and second/third boundary-value problems and transforms ground gravity disturbances or anomalies into the harmonically downward continued disturbing potential at the ellipsoid or the geoid directly. Numerical tests show that the new approach offers an efficient and stable solution for the determination of the residual geoid from ground gravity data.  相似文献   

11.
An analysis of the quasi-stationary sea surface topography (QSST) is carried out in the Norwegian Sea region (54°<ø<72°, -25°<<20°) using marine gravimetry and one year of Geosat ERM altimetry. As reference models the geopotential model OSU91A and the QSST model OSU89D were used. Two procedures to extract the QSST from mean sea surface heights and gravity anomalies were tested. Spherical FFT techniques were applied in both procedures. The results show that QSST associated with wavelength shorter than 4000 km exists. Relative to the OSU89D model the QSST was found to have a variance of (0.219 m)2 and a correlation length of 1.105°. The circulation pattern recovered in this paper agree with results of oceanographic analysis.  相似文献   

12.
A new, high-resolution and high-precision geoid has been computed for the whole of Canada and part of the U.S., ranging from 35°N to about 90°N in latitude and 210°E to 320°E in longitude. The OSU91A geopotential model complete to degree and order 360 was combined with a 5 × 5 mean gravity anomaly grid and 1km × 1km topographical information to generate the geoid file. The remove-restore technique was adopted for the computation of terrain effects by Helmert's condensation reduction. The contribution of the local gravity data to the geoid was computed strictly by the 1D-FFT technique, which allows for the evaluation of the discrete spherical Stokes integral without any approximation, parallel by parallel. The indirect effects of up to second order were considered. The internal precision of the geoid, i.e. the contribution of the gravity data and the model coefficients noise, was also evaluated through error propagation by FFT. In a relative sense, these errors seem to agree quite well with the external errors and show clearly the weak areas of the geoid which are mostly due to insufficient gravity data coverage. Comparison of the gravimetric geoid with the GPS/levelling-derived geoidal heights of eight local GPS networks with a total of about 900 stations shows that the absolute agreement with respect to the GPS/levelling datum is generally better than 10 cm RMS and the relative agreement ranges, in most cases, from 4 to 1 ppm over short distances of about 20 to 100km, 1 to 0.5 ppm over distances of about 100 to 200 km, and 0.5 to 0.1 ppm for baselines of 200 to over 1000 km. Other existing geoids, such as UNB90, GEOID90 and GSD91, were also included in the comparison, showing that the new geoid achieves the best agreement with the GPS/levelling data.Presented at theIAG General Meeting, Beijing, P.R. China, Aug. 6–13, 1993  相似文献   

13.
Any errors in digital elevation models (DEMs) will introduce errors directly in gravity anomalies and geoid models when used in interpolating Bouguer gravity anomalies. Errors are also propagated into the geoid model by the topographic and downward continuation (DWC) corrections in the application of Stokes’s formula. The effects of these errors are assessed by the evaluation of the absolute accuracy of nine independent DEMs for the Iran region. It is shown that the improvement in using the high-resolution Shuttle Radar Topography Mission (SRTM) data versus previously available DEMs in gridding of gravity anomalies, terrain corrections and DWC effects for the geoid model are significant. Based on the Iranian GPS/levelling network data, we estimate the absolute vertical accuracy of the SRTM in Iran to be 6.5 m, which is much better than the estimated global accuracy of the SRTM (say 16 m). Hence, this DEM has a comparable accuracy to a current photogrammetric high-resolution DEM of Iran under development. We also found very large differences between the GLOBE and SRTM models on the range of −750 to 550 m. This difference causes an error in the range of −160 to 140 mGal in interpolating surface gravity anomalies and −60 to 60 mGal in simple Bouguer anomaly correction terms. In the view of geoid heights, we found large differences between the use of GLOBE and SRTM DEMs, in the range of −1.1 to 1 m for the study area. The terrain correction of the geoid model at selected GPS/levelling points only differs by 3 cm for these two DEMs.  相似文献   

14.
Minimization and estimation of geoid undulation errors   总被引:2,自引:1,他引:1  
The objective of this paper is to minimize the geoid undulation errors by focusing on the contribution of the global geopotential model and regional gravity anomalies, and to estimate the accuracy of the predicted gravimetric geoid.The geopotential model's contribution is improved by (a) tailoring it using the regional gravity anomalies and (b) introducing a weighting function to the geopotential coefficients. The tailoring and the weighting function reduced the difference (1) between the geopotential model and the GPS/levelling-derived geoid undulations in British Columbia by about 55% and more than 10%, respectively.Geoid undulations computed in an area of 40° by 120° by Stokes' integral with different kernel functions are analyzed. The use of the approximated kernels results in about 25 cm () and 190 cm (maximum) geoid errors. As compared with the geoid derived by GPS/levelling, the gravimetric geoid gives relative differences of about 0.3 to 1.4 ppm in flat areas, and 1 to 2.5 ppm in mountainous areas for distances of 30 to 200 km, while the absolute difference (1) is about 5 cm and 20 cm, respectively.A optimal Wiener filter is introduced for filtering of the gravity anomaly noise, and the performance is investigated by numerical examples. The internal accuracy of the gravimetric geoid is studied by propagating the errors of the gravity anomalies and the geopotential coefficients into the geoid undulations. Numerical computations indicate that the propagated geoid errors can reasonably reflect the differences between the gravimetric and GPS/levelling-derived geoid undulations in flat areas, such as Alberta, and is over optimistic in the Rocky Mountains of British Columbia.Paper presented at the IAG General Meeting, Beijing, China, August 8–13, 1993.  相似文献   

15.
The aim of this investigation is to study some FFT problems related to the application of FFT to gravity field convolution integrals. And the others, such as the effect of spectral leakage, edge effects, cyclic convolution and effect of padding, are also discussed. A numerical test for these problems is made. A large area of Western China selected for the test is located between 30°N~36°N and 96°E~102°E and includes 1 858 gravity observations on land. The results show that the removal of the bias in the residual gravity anomalies is important to avoid spectral leakage. One hundred percent zero padding is highly recommended for further research of the geoid to remove cyclic convolution errors and edge effects. 1-D FFT is recommended for precise local geoid determination because it does not use kernel approximation.  相似文献   

16.
Two modifications of the Hotine formula using the truncation theory and marine gravity disturbances with altimetry data are developed and used to compute a marine gravimetric geoid in the Gulf Stream area. The purpose of the geoid computation from marine gravity information is to derive the absolute dynamic ocean topography based on the best estimate of the mean surface height from recent altimetry missions such as Geosat, ERS-1, and Topex. This paper also tries to overcome difficulties of using Fast Fourier Transformation (FFT) techniques to the geoid computation when the Hotine kernel is modified according to the truncation theory. The derived absolute dynamic ocean topography is compared with that from global circulation models such as POCM4B and POP96. The RMS difference between altimetry-derived and global circulation model dynamic ocean topography is at the level of 25cm. The corresponding mean difference for POCM4B and POP96 is only a few centimeters. This study also shows that the POP96 model is in slightly better agreement with the results derived from the Hotine formula and altimetry data than POCM4B in the Gulf Stream area. In addition, Hotine formula with modification (II) gives the better agreement with the results from the two global circulation models than the other techniques discussed in this paper. Received: 10 October 1996 / Accepted: 16 January 1998  相似文献   

17.
本文联合T/P数据、T/P新轨道数据、ERS数据、GFO数据、GeosatGM数据和ERS-1/168数据,用测高卫星记录点的位置信息直接计算沿轨大地水准面的方向导数,结合测线轨迹方向的方位角在交叉点处推求垂线偏差,然后利用逆Vening-Meinesz公式计算了中国近海(0o~41oN,105o~132oN)2′×2′格网分辨率的海域重力异常模型。将其与CLS_SHOW99重力异常模型比较,统计结果表示与该模型差异的RMS为8.15mgal,在剔除差值大于20mgal的点(剔除3.3%)以后,RMS为4.72mgal;与某海区船测重力异常比较的RMS为8.91mgal。  相似文献   

18.
1 IntroductionInthemid_1 980s,thefastFouriertransformation(FFT)begantofindwidespreaduseingeoiddeter minationbecauseofitsefficientevaluationofcon volutionintegrals,whencomparedtoclassicalnu mericalintegration .Formanyyears,theplanar,2_DFFThadbeenused (Schwarz ,1 …  相似文献   

19.
Gravity field convolutions without windowing and edge effects   总被引:5,自引:0,他引:5  
A new set of formulas has been developed for the computation of geoid undulations and terrain corrections by FFT when the input gravity anomalies and heights are mean gridded values. The effects of the analytical and the discrete spectra of kernel functions and that of zero-padding on the computation of geoid undulations and terrain corrections are studied in detail.Numerical examples show that the discrete spectrum is superior to the analytically-defined one. By using the discrete spectrum and 100% zero-padding, the RMS differences are 0.000 m for the FFT geoid undulations and 0.200 to 0.000 mGal for the FFT terrain corrections compared with results obtained by numerical integration.  相似文献   

20.
为解决世界各国高程基准差异的问题,提出联合卫星重力场模型、地面重力数据、GNSS大地高、局部高程基准的正高或正常高,按大地边值问题法确定局部高程基准重力位差的方法。首先推导了利用传统地面"有偏"重力异常确定高程基准重力位差的方法;接着利用改化Stokes核函数削弱"有偏"重力异常的影响,并联合卫星重力场模型和地面"有偏"重力数据,得到独立于任何局部高程基准的重力水准面,以此来确定局部高程基准重力位差;最后利用GNSS+水准数据和重力大地水准面确定了美国高程基准与全球高程基准W0的重力位差为-4.82±0.05 m2s-2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号