首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report seven high precision U–Pb age determinations for mafic dykes from a number of major Precambrian swarms located in the Dharwar craton, south India. These new age results define two previously unrecognized widespread Paleoproterozoic dyking events at 2221–2209 and 2181–2177 Ma, and confirm a third at 2369–2365 Ma. Three parallel E–W trending mafic dykes from the petrographically and geochemically variable Bangalore dyke swarm, the most prominent swarm in the Dharwar craton, yield indistinguishable U–Pb baddeleyite ages of 2365.4 ± 1.0, 2365.9 ± 1.5 and 2368.6 ± 1.3 Ma, indicating rapid emplacement in less than five million years. A compilation of Paleoproterozoic U–Pb ages for mafic magmatic events worldwide indicates that the 2369–2365 Ma Bangalore dyke swarm represents a previously unrecognized pulse of mafic magmatism on Earth.  相似文献   

2.
The Archaean block of southern Greenland constitutes the core of the North Atlantic craton (NAC) and is host to a large number of Precambrian mafic intrusions and dyke swarms, many of which are regionally extensive but poorly dated. For southern West Greenland, we present a U–Pb zircon age of 2990 ± 13 Ma for the Amikoq mafic–ultramafic layered intrusion (Fiskefjord area) and four baddeleyite U–Pb ages of Precambrian dolerite dykes. Specifically, a dyke located SE of Ameralik Fjord is dated at 2499 ± 2 Ma, similar to a previously reported 40Ar/39Ar age of a dyke in the Kangâmiut area. For these and related intrusions of ca. 2.5 Ga age in southern West Greenland, we propose the name Kilaarsarfik dykes. Three WNW-trending dykes of the MD3 swarm yield ages of 2050 ± 2 Ma, 2041 ± 3 Ma and 2029 ± 3 Ma. A similar U–Pb baddeleyite age of 2045 ± 2 Ma is also presented for a SE-trending dolerite (Iglusuataliksuak dyke) in the Nain Province, the rifted western block of the NAC in Labrador. We speculate that the MD3 dykes and age-equivalent NNE-trending Kangâmiut dykes of southern West Greenland, together with the Iglusuataliksuak dyke (after closure of the Labrador Sea) represent components of a single, areally extensive, radiating swarm that signaled the arrival of a mantle plume centred on what is presently the western margin of the North Atlantic craton. Comparison of the magmatic ‘barcodes’ from the Nain and Greenland portions of the North Atlantic craton with the established record from the north-eastern Superior craton shows matches at 2500 Ma, 2214 Ma, 2050–2030 Ma and 1960–1950 Ma. We use these new age constraints, together with orientations of the dyke swarms, to offer a preliminary reconstruction of the North Atlantic craton near the north-eastern margin of the Superior craton during the latest Archaean and early Palaeoproterozoic, possibly with the Core Zone craton of eastern Canada intervening.  相似文献   

3.
U–Pb zircon geochronology of two Permo-Triassic granites (samples OT-52 and OT-272 with ages of 229 ± 8 Ma and 256 ± 2 Ma, respectively) in the Unazuki area, Hida Metamorphic Belt, southwest Japan, revealed the presence of Eoarchean to Paleoproterozoic inheritance. Inheritance is consistent with both samples showing low zircon saturation temperatures for their bulk compositions. In OT-52, dark in CL, low Th/U zircon domains have a mean 207Pb/206Pb age of 1940 ± 17 Ma, which is consistent with an age of 1937 ± 6 Ma for anatexis in the Precambrian Busan gneiss complex in Korea. Eoarchaean inherited zircons with 207Pb/206Pb ages from ca. 3750 to 3550 Ma are common in OT-272 but are few in OT-52, suggesting a source from rocks with affinities to those in the Anshan area in the northeast China part of the North China Craton. On the other hand, a Hida Metamorphic Belt metasedimentary gneiss into which the granites were intruded contains ca. 1840, 1130, 580, 360, 285 and 250 Ma zircons (Sano et al., 2000). These ages suggest that the Unazuki Mesozoic granites did not originate from proximal Hida Metamorphic Complex rocks, but instead from unrelated rocks obscured at depth. The predominance of Eoarchean to Paleoproterozoic age components, and the marked lack of 900–700 Ma components suggest that the source was the (extended?) fringe of the North China Craton, rather than from Yangtze Craton crust. The Mesozoic evolution of Japan and its linkages to northeast Asia are discussed in the context of these results.  相似文献   

4.
The Epupa Metamorphic Complex constitutes the southwestern margin of the Congo Craton and is exposed in a hilly to mountainous terrain of northwestern Namibia, bordering the Kunene River and extending into southern Angola. It consists predominantly of granitoid gneisses which are migmatized over large areas. This migmatization locally led to anatexis and produced crustal-melt granites such as the Otjitanda Granite. We have undertaken reconnaissance geochemical studies and single zircon U–Pb SHRIMP and Pb–Pb evaporation dating of rocks of the Epupa Complex. The granitoid gneisses, migmatites and anatectic melts are similar in composition and constitute a suite of metaluminous to peraluminous, calc-alkaline granitoids, predominantly with volcanic arc geochemical signatures. The zircon protolith ages for the orthogneisses range from 1861 ± 3 to 1758 ± 3 Ma. Anatexis in the migmatitic Epupa gneisses was dated from a melt patch at 1762 ± 4 Ma, and the anatectic Otjitanda Granite has a zircon age of 1757 ± 4 Ma. Migmatization and anatexis therefore occurred almost immediately after granitoid emplacement and date a widespread high-temperature Palaeoproterozoic event at ∼1760 Ma which has not been recorded elswhere in northern Namibia. The Nd isotopic systematics of all dated samples are surprisingly similar and suggest formation of the protolith from a source region that probably separated from the depleted mantle about 2.4–2.0 Ga ago. A major Archaean component in the source area is unlikely.  相似文献   

5.
An in situ U–Pb SIMS (IN-SIMS) method to date micro-baddeleyite crystals as small as 3 μm is presented with results from three samples that span a variety of ages and geologic settings. The method complements ID-TIMS geochronology by extending the range of dateable crystals to sizes smaller than can be recovered by physical separation. X-ray mapping and BSE imaging are used to locate target grains in thin section, followed by SIMS analysis on a CAMECA ims 1270, using the field aperture in the transfer column to screen out ions from host phases. Internal age precisions for the method are anticipated to range from 0.1% for Precambrian rocks to 3–7% for Phanerozoic rocks. Results establish a 2689 ± 5 Ma age for mafic dikes in the Wyoming craton, USA, a 1540 ± 30 Ma age for a subaerial lava flow from the Thelon Basin of northern Canada, and a 457 ± 34 Ma age for mafic dikes in the platform sequence of southeastern Siberia. The method is ideal for relatively non-destructive dating of small samples such as extraterrestrial rocks and precious terrestrial samples.  相似文献   

6.
Chronology of Neoproterozoic volcanosedimentary successions remains controversial for many regions of the Arabian–Nubian Shield, including the Dokhan Volcanics of NE Egypt. New U–Pb zircon SHRIMP ages have been obtained for 10 silica-rich ignimbrites and two subvolcanic dacitic bodies, mapped as Dokhan Volcanics, from the North Eastern Desert of Egypt. Crystallization ages range between 592 ± 5 and 630 ± 6 Ma (Early Ediacaran). Apparently, the late consolidation of the Arabian–Nubian Shield was accompanied by the evolution of isolated volcanic centres and basin systems which developed during a period of approx. 40 Ma, independently in space and time and probably under changing tectonic regimes. The obtained age data together with other previously published reliable ages for Dokhan Volcanics suggest two main pulses of volcanic activity: 630–623 Ma and 618–592 Ma. Five samples contain inherited zircons, with ages of 669, 715–746, 847 and 1530 Ma, supporting models that North Eastern Desert crust is mainly juvenile Neoproterozoic crust.  相似文献   

7.
Isotope analyses (K–Ar, δ18O and δD) were performed on illite from both the sandstone cover and the underlying basement, close to and distant from Shea Creek, an unconformity-type U deposit (Athabasca Basin, Canada); the illite had previously been characterized crystallographically. In the barren areas away from deposit, illite is mainly of the cis-vacant 1M polytype occurring as relatively coarse-grained lath-shaped particles, while it occurs as fine-grained particles of the trans-vacant 1M type next to and in the U mineralized strata. The tectonic-induced hydrothermal system that favored illite crystallization was multi-episodic 1453 ± 2, 1330 ± 20 and probably about 1235 Ma ago. These illite-forming episodes appear to have occurred contemporaneously to those favoring the concentration of the associated U oxides, which were dated independently by the U–Pb method in the Shea Creek deposits and elsewhere in the Athabasca Basin.  相似文献   

8.
The southern Jiangxi Province is a major part of the Nanling W–Sn metallogenic province of southern China, where all W–Sn ore deposits are temporally and spatially related to Mesozoic granitic intrusions. The Tianmenshan–Hongtaoling orefield is a recently explored territory endowed by several styles of W–Sn mineralization. The orefield comprises three composite granitic plutons: Tianmenshan, Hongtaoling and Zhangtiantang associated with several tens of W–Sn-polymetallic ore deposits (Maoping, Baxiannao, Niuling, Zhangdou, Yaolanzhai and others) along their contacts. In this study, four new SHRIMP zircon U–Pb ages were determined for three composite granitic plutons, and 33 molybdenite samples from five W–Sn deposits were analysed by ICP-MS Re–Os isotopic method. SHRIMP zircon U–Pb ages for both medium to coarse-gained biotite granite and porphyritic biotite monzogranite from the Tianmenshan composite pluton are 157.2 ± 2.2 Ma and 151.8 ± 2.9 Ma, respectively. Molybdenite Re–Os isochron ages for the related Baxiannao fracture-controlled tungsten deposits are 157.9 ± 1.5 Ma. Maoping greisens-type tungsten deposits were emplaced at 155.3 ± 2.8 Ma and the Maoping wolframite–quartz veins at 150.2 ± 2.8 Ma, respectively. The SHRIMP U–Pb age of zircons from the Hongtaoling biotite granite is 151.4 ± 3.1 Ma whereas the molybdenite Re–Os isochron ages of the genetically related Niuling endocontact tungsten quartz veins and Zhangdou exocontact tungsten quartz veins are 154.9 ± 4.1 to 154.6 ± 9.7 Ma and 149.1 ± 7.1 Ma, respectively. The SHRIMP zircon U–Pb age of the Zhangtiantang fine-grained muscovite granite is 156.9 ± 1.7 Ma, whereas the molybdenite Re–Os isochron age for the related Yaolanzhai greisens-type tungsten deposit is 155.8 ± 2.8 Ma. These new age data, combined with those available from the literature, indicate that the ages of W–Sn ores and related granites are Late Jurassic with a peak at 150 to 160 Ma, which corresponds to the widespread Mesozoic metallogenic event in southern China. Molybdenites from this group of tungsten deposits have quite low Re contents (29.1 to 2608 ppb), suggesting continental crustal provenance of the ore metals.  相似文献   

9.
A geochemical study of interstitial water and solid phase sediment using bulk concentration and geochemical partitioning was undertaken in vertical sediment profiles to trace diagenetic processes of lead (Pb) in hypersaline salt marsh sediments. In addition, we measured the stable isotopic composition of Pb in order to distinguish its input sources. Concentrations of Pb increased from low or background values in the bottommost layer (< 60 cm depth), followed by fluctuations in the middle layer (20–60 cm) and peak values in the subsurface layer (3–5 cm). Pb associated to reactive fractions (e.g. OM, Fe–Mn oxyhydroxides and carbonates) accounted for 60% of that initially deposited. Stable Pb isotope data (206Pb/207Pb and 207Pb/208Pb) suggested that most of the Pb in the upper sediments (1.204 ± 0.002 and 2.469 ± 0.007) is still derived from the leaded gasoline combustion (1.201 ± 0.006 and 2.475 ± 0.005). Profile of dissolved Pb was related to those for ammonium, phosphates and dissolve Fe and Mn, which reveals the influence of the diagenetic reactions on the Pb behavior. OM, Fe–Mn oxyhydroxides and the sulfide minerals play a significant role for mobilizing and trapping the Pb. Metal mobilization was calculated considering an advective–diffusive system. The advective process constitutes the dominant mechanism of Pb mobilization. A low diffusive outflux with respect to the Pb mobilization rate suggested that most of the released Pb is retained in the sediments. Authigenic oxides precipitated at the oxic–suboxic layers (0–4 cm depth) and authigenic sulfide minerals formed Pb in the anoxic layers (7–20 cm depth) constituting the main scavengers for Pb that is diagenetically released. This retention has significant environmental implications because it reduces the availability and toxicity of Pb to biota, including humans.  相似文献   

10.
New SHRIMP U–Pb zircon geochronology and fieldwork integrated with reappraisal of earlier mapping demonstrates that the so-called ‘southern region’ of the mainland Lewisian Gneiss Complex comprises a package of distinct tectono-stratigraphic units. From south to north these are the Rona (3135–2889 Ma), Ialltaig (c. 2000 Ma) and Gairloch (ca. 2200 Ma) terranes. These terranes were metamorphosed and deformed separately until ca. 1670 Ma by which time they had been juxtaposed and were integral with terranes to the north. The northern boundary of the Palaeoproterozoic Gairloch terrane is a shear zone, north of which is the Archaean Gruinard terrane with 2860–2800 Ma protoliths and ca. 2730 Ma granulite facies metamorphism. In contrast, south of the Gairloch terrane, the Archaean gneisses of the Rona terrane have older protolith ages, underwent an anatectic event at ca. 2950 Ma and show no evidence of 2730 Ma granulite facies metamorphism. In current structural interpretations the Gruinard terrane forms a structural klippe over the intervening Gairloch terrane. However, the Rona and Gruinard terranes cannot be equivalent on age grounds, and are interpreted as unrelated different entities. Contained within the southern margin of the Gairloch terrane is the Ialltaig terrane, shown here to comprise an exotic slice of granulite facies Palaeoproterozoic crust, rather than Archaean basement as previously thought. The ca. 1877 Ma granulite facies metamorphism of the Ialltaig terrane is the youngest event that is unique to a single terrane in the mainland Complex, making it an upper estimate for the timing of amalgamation with surrounding tectonic units. U–Pb titanite ages of 1670 ± 12 Ma and ca. 1660 Ma for low-strain zones at Diabaig are interpreted to be cooling through the titanite closure temperature after the amphibolite facies reworking of these southern terranes and the southern margin of the Gruinard Terrane. These new data have implications for the tectonic setting of the mainland in relation to the Outer Hebrides and in the wider evolution of the basement in the North Atlantic.  相似文献   

11.
The arrested, prograde amphibolite- to granulite-facies transition at Kabbaldurga, south India, overprints Archacan amphibolite-facies nebulitic gneisses and the late Archaean Closepet granite. Previous studies have shown that this facies transition was controlled by a channelled influx of a dehydrating fluid, assumed to be CO2, at 750°C and 5.5 kbar confining pressure. The effect of this type of prograde transition on zircon U–Pb isotopic systematics and whole-rock geochemistry has been studied using 1 kg amphibolite-facies, transitional and granulite-facies domains from a single block of gneiss. The zircon populations from all three domains have essentially similar morphology and U–Pb systematics. This similarity shows that at the conditions under which the prograde granulite-facies transition took place via fluid influx, the zircon U–Pb systematics were not disturbed by the process. Using the pooled data from all three domains, it is concluded that the protolith of the gneiss formed at 2965±4 Ma (2), and that zircons also grew during an anatectic event common to all domains at 2528±5 Ma. The granulite-facies metamorphism has not been dated directly due to the lack of response to the zircon U–Pb isotopic systematies to it. However, field and petrographic criteria dictate that its maximum age is 2528±5 Ma, the age of the anatectic event common to each domain in the gneiss block, which was overprinted during the granulite-facies event. For most major and trace elements, consistent enrichment or depletion trends associated with the transition to granulite facies cannot be identified with confidence. However, the granulite-facies portion is LREE (light-rare-earth-element)-enriched and H (heavy) REE-depleted compared with the amphibolite-facies domain, and the transitional domain is at intermediate values. The isotopic and geochemical evidence presented supports the conclusion that the granulite-facies charnockitic rocks at Kabbaldurga were not formed by removal of an anatectic melt, but that they formed later by simple metamorphic overprint of amphibolite-facies rocks.  相似文献   

12.
The Middle–Lower Yangtze River metallogenic belt (MLYRMB), extending from Daye in Hubei Province in the west to Zhenjiang in Jiangsu Province in the east, hosts a number of large polymetallic (Cu–Au–Mo, Fe, Zn, Pb, and Ag) deposits and constitutes one of the most important metallogenic belts in China. The Cu–Au–Mo deposits in the Jiurui district are an important component of the MLYRMB. In this study we carried out precise and detailed zircon U–Pb dating for all types of magmatic rocks from the Wushan ore deposit in the Jiurui district. Three samples of Cu–Au–Mo-related porphyries from different ore belts at Wushan were analyzed and yielded zircon U–Pb ages of 148.0 ± 1.0 Ma, 145.4 ± 0.9 Ma and 147.3 ± 0.9 Ma, respectively. A series of dykes were emplaced immediately following the Cu–Au–Mo-related porphyries at Wushan. A dark-colored basic dyke which intruded into the granodiorite porphyry at Wujia gold deposit near Wushan was dated at 144.5 ± 1.2 Ma. Two lamprophyre dykes taken from the north ore belt at Wushan underground mining stops were dated at 143.6 ± 0.9 Ma and 144.3 ± 0.9 Ma, respectively. A late-stage dyke which was also taken from the Wushan north ore belt yielded an age of 142.6 ± 1.0 Ma and might represent the end of magmatism in the Wushan ore deposit. These new geochronological data demonstrate that the time range of magmatism in the Wushan ore deposit is approximately between 148 Ma and 143 Ma, showing that the magmatic activity at Wushan was rapid and intensive. The ages of Cu–Au–Mo-related porphyries from other areas in the Jiurui district, such as the Dongleiwan, Yangjishan and Chengmenba ore deposits, were also measured and yielded zircon U–Pb ages of 141.5 ± 1.7 Ma, 143.4 ± 1.4 Ma and 146.6 ± 1.0 Ma, respectively. Combined with those previously reported zircon U–Pb age results from the Jiurui district, the present age data set demonstrates that extensive magmatism in the Jiurui district was coeval and intensive, marked by a magmatic activity in the age range of 148 to 138 Ma and peaked between 148 Ma and 142 Ma. According to the statistics of all those precise zircon U–Pb ages, the Cu–Au–Mo-related porphyries in the Edong and Tongling districts in the MLYRMB show similar ages, and they have a slightly younger peak age and a longer duration than that of the Jiurui district. The geographic shape of the MLYRMB in the Cretaceous shows an arcuate structure, the Jiurui district is located at the transitional point of the arcuate structure and the Edong and Tongling districts are situated on both sides of the arcuate structure. Considering that the Jiurui district has a slightly older peak age and a shorter duration of magmatic activity than that in the Edong and Tongling districts, it seems that the arcuate structure of the MLYRMB played an important role in the formation of these Cu–Au–Mo-related porphyries. Consequently, we suggest that the genesis of the Late Mesozoic magmatic rocks along the MLYRMB may have been due to a tectonic activity developed from southeast to northwest, which probably has a close relationship with the subduction of the paleo-Pacific plate beneath the Eurasian plate in Mesozoic times.  相似文献   

13.
We present baddeleyite U–Pb ages of Neoarchaean to Palaeoproterozoic dyke swarms and the Mashonaland sill province in Zimbabwe. The 2575.0 ± 1.5 Ma age of the Umvimeela dyke is indistinguishable from the 2575.4 ± 0.7 Ma result (Oberthür et al., 2002) for a pyroxenite layer of the Great Dyke and testifies to synchronous emplacement of the Great Dyke and its satellites. Three samples of WNW- to NNW-trending dykes of the Sebanga swarm yielded ages of 2512.3 ± 1.8 Ma, 2470.0 ± 1.2 Ma and 2408.3 ± 2.0 Ma, the latter of which dates the Sebanga Poort Dyke of this swarm. These results suggest that emplacement took place over a protracted period which involved at least three generations of dykes within the swarm and, more importantly, invalidate previous inferences of a genetic link between the Sebanga swarm and the Mashonaland sills. Crystallisation ages of 1877 ± 2.2 Ma, 1885.9 ± 2.4 Ma and 1875.6 ± 1.6 Ma for three dolerite samples of the extensive Mashonaland sills from different parts of the Zimbabwe craton were also obtained. This is the oldest common igneous event that is recorded in the Zimbabwe and Kaapvaal cratons. Collectively with previous published geochronological and petrological evidence in favour of a major 2.0 Ga event within the Limpopo Belt, these results suggest that the Zimbabwe and Kaapvaal cratons did not form a coherent unit (Kalahari) until ca. 2.0 Ga.  相似文献   

14.
Zircon and titanite were investigated in impactites of the Gardnos structure, a crater formed in Sveconorwegian (ca. 1 Ga) crust, which was then overridden in the Devonian by Caledonian nappes. Observed deformation features in zircons are granular texture, planar microstructures, and likely the incorporation of organic carbon during impact causing black staining of the zircon grains. The grains were studied by scanning electron microscopy (SEM) and cathode luminescence (CL) and dated by U-Pb isotope dilution - thermo-ionization mass spectrometry (ID-TIMS). Zircon grains without impact related features have U-Pb data showing moderate discordance (5-13%) and indicating formation ages mostly in the range of 1600-1000 Ma, except detrital zircon ages as old as >2481 Ma, reflecting the diversity of target rocks in the area. Titanite with concordant ages of 995-999 Ma dates metamorphism during final juxtaposition of the Telemarkia on the Idefjorden terrane to the east. Zircon grains with demonstrated or presumed shock features yield highly discordant (14-40%) U-Pb data, with a majority of them plotting along an array with a lower intercept of about 340 Ma reflecting the influence of the Caledonian orogeny and recent Pb-loss. One zircon grain was totally reset at 379 Ma during late Caledonian metamorphism, which also caused local growth of new titanite. A specific group of zircon grains yields data with relatively high discordance for moderate U contents, and five of these analyses, including that of a grain with proven granular or aggregate texture, fit a discordia line with an upper intercept of 546 ± 5 Ma. These features are interpreted as indicating zircon break-down to an amorphous state during impact, with subsequent recrystallization into microcrystalline aggregates causing extensive to complete Pb loss. We further suggest that their crystallinity prevented Pb loss during the Caledonian orogeny, while the small subgrain size and increasing metamictisation allowed more recent disturbances. We thus interpret the 546 Ma age as the approximate time of impact.  相似文献   

15.
Field studies integrated with cathodoluminescence petrography and SHRIMP U–Pb dating of zircons from >150 orthogneisses and metatonalites from the Eoarchaean Itsaq Gneiss Complex (southern West Greenland) shows that only a minority contain ≥3840 Ma zircons, whereas the majority carry only younger ones. Rocks containing ≥3840 Ma zircons vary from very rare single-phase metatonalites to more common complexly banded tonalitic migmatites. The former metatonalites have simple oscillatory-zoned ≥3840 Ma zircon with limited recrystallisation and overgrowth, whereas the more common migmatites have much more complicated zircon populations with both ≥3840 Ma and 3650–3600 Ma oscillatory-zoned zircon, more extensive recrystallisation and widespread complex core-rim multiple growth relationships.  相似文献   

16.
Discoveries of >4 Ga old zircon grains in the northwest Yilgarn of Western Australia led to the conclusion that evolved crust formed on the Earth within the first few 100 Ma after accretion. Little is known, however, about the fate of the first crust that shaped early Earth's surface. Here we report combined solution and laser-ablation Lu–Hf–U–Pb isotope analyses of early Archean and Hadean detrital zircon grains from different rocks of the Narryer Gneiss Complex (NGC), Yilgarn Craton, Western Australia. The zircons show two distinct groups with separate evolutionary trends in their Hf isotopes. The majority of the zircon grains point to separation from a depleted mantle reservoir at ∼3.8–3.9 Ga. The second Hf isotope trend implies reworking of older Hadean zircon grains. The major trend starting at 3.8–3.9 Ga defined by the Hf isotopes corresponds to a Lu/Hf that is characteristic for felsic crust and consequently, the primary sources for these zircons presumably had a chemical composition characteristic of continental crust. Reworked Hadean crust appears to have evolved with a similar low Lu/Hf, such that the early crust was probably evolved with respect to Lu–Hf distributions. The co-variation of Hf isotopes vs. age in zircon grains from Mt. Narryer and Jack Hills zircon grains implies a similar crustal source for both sediments in a single, major crustal domain. Age spectra and associated Hf isotopes in the zircon grains strongly argue for ongoing magmatic reworking over hundreds of millions of years of the felsic crustal domain in which the zircon grains formed. Late-stage metamorphic zircon grains from the Meeberrie Gneiss unit yield a mean U–Pb age of 3294.5 ± 3.2 Ma with initial Hf isotopes that correspond to the evolutionary trend defined by older NGC zircon grains and overlap with other detrital zircon grains, proving their genetic relationship. This ‘Meeberrie event’ is interpret here as the last reworking event in the precursor domain before final deposition. The continuous magmatic activity in one crustal domain during the Archean is recorded by the U–Pb ages and Hf isotope systematics of zircon grains and implies reworking of existing crust. We suspect that the most likely driving force for such reworking of crustal material is ongoing crustal collision and subduction. A comparison of Hf isotope signatures of zircon grains from other Archean terranes shows that similar trends are recognised within all sampled Archean domains. This implies either a global trend in crustal growth and reworking, or a genetic connection of Archean terranes in close paleo-proximity to each other. Notably, the Archean Acasta gneiss (Canada) shows a similar reworking patterns to the Yilgarn Craton of Hadean samples implying either a common Hadean source or amalgamation at the Hadean–Archean transition.  相似文献   

17.
Increasing evidence shows that Mesoproterozoic rocks are widespread in the Río de la Plata Craton. Carbon and strontium isotope analyses were carried out for three different, carbonate-bearing successions in the southern Nico Pérez Terrane. The Parque UTE Group is erected, comprising (from base to top) the mainly volcanogenic Cañada Espinillo Formation, the dolomitic Mina Valencia Formation and the mixed carbonate-siliciclastic Cerro del Mástil Formation. A δ13C curve was obtained for carbonates of the Parque UTE Group, which is characterized by a plateau at +1 to +1.6‰ V-PDB, bracketed between two negative excursions (−1.8‰ V-PDB at the base and −3.3‰ V-PDB at the top). These values are consistent with a Mesoproterozoic depositional age for the unit, as indicated by U–Pb ages of synsedimentary volcanics and gabbros of 1429 ± 21 and 1492 ± 4 Ma, respectively.  相似文献   

18.
The Song-Kul Basin sits on a plateau at the Northern and Middle Kyrgyz Tien Shan junction. It is a lacustrine basin, occupied by Lake Song-Kul and predominantly developed on igneous basement. This basement was targeted for a multi-method chronological study to identify the different magmatic episodes responsible for basement formation and to constrain the timing of the development of its present-day morphology. Zircon U/Pb dating by LA-ICP-MS revealed four different magmatic episodes: a Late Cambrian (~ 500 Ma) island arc system, a Late Ordovician (~ 450 Ma) subduction related intrusion, an Early Permian (~ 290 Ma) collisional stage, and a Middle to Late Permian (~ 260 Ma) post-collisional magmatic pulse. Middle to Late Triassic (~ 200–230 Ma) titanite fission-track ages and Late Triassic – Early Jurassic (~ 180–210 Ma) apatite fission-track ages and thermal history modeling indicate the Song-Kul basement was already emplaced in the shallow crust at that time. An exhumed fossil apatite fission-track partial annealing zone is recognized in the bordering Song-Kul mountain ranges. The area experienced only minor post-Early Mesozoic denudation. The igneous basement was slowly brought to apatite (U–Th)/He retention temperatures in the Late Cretaceous–Palaeogene. Miocene to present reactivation of the Tien Shan does not manifestly affect this part of the orogen.  相似文献   

19.
Lunar Mg-suite norite 78238 was dated using the Sm-Nd, Rb-Sr, and U-Pb isotopic systems in order to constrain the age of lunar magma ocean solidification and the beginning of Mg-suite magmatism, as well as to provide a direct comparison between the three isotopic systems. The Sm-Nd isotopic system yields a crystallization age for 78238 of 4334 ± 37 Ma and an initial value of −0.27 ± 0.74. The age-initial (T-I) systematics of a variety of KREEP-rich samples, including 78238 and other Mg-suite rocks, KREEP basalts, and olivine cumulate NWA 773, suggest that lunar differentiation was completed by 4492 ± 61 Ma assuming a Chondritic Uniform Reservoir bulk composition for the Moon. The Rb-Sr isotopic systematics of 78238 were disturbed by post-crystallization processes. Nevertheless, selected data points yield two Rb-Sr isochrons. One is concordant with the Sm-Nd crystallization age, 4366 ± 53 Ma. The other is 4003 ± 95 Ma and is concordant with an Ar-Ar age for 78236. The 207Pb-206Pb age of 4333 ± 59 Ma is concordant with the Sm-Nd age. The U-Pb isotopic systematics of 78238 yield linear arrays equivalent to younger ages than the Pb-Pb system, and may reflect fractionation of U and Pb during sample handling. Despite the disturbed nature of the U-Pb systems, a time-averaged μ (238U/204Pb) value of the source can be estimated at 27 ± 30 from the Pb-Pb isotopic systematics. Because KREEP-rich samples are likely to be derived from source regions with the highest U/Pb ratios, the relatively low μ value calculated for the 78238 source suggests the bulk Moon does not have an exceedingly high μ value.  相似文献   

20.
The paper deals with the U–Pb data of zircon separated from three samples representative of mylonitic leucogranites, trondhjemites and pegmatites occurring along the Alpine tectonic zone between the Castagna and Sila Units in northern Calabria. These mylonites are associated to Variscan granitic-granodioritic biotite-rich augen gneisses derived from Neo-Proterozoic-Early Cambrian protoliths. Apparent ages ranging from Early Cambrian to post-Variscan have been obtained. Th, U and rare earth elements have been determined in two zircon domains of mylonitic leucogranite and trondhjemite giving different ages in order to get information relative to their geological significance. The pegmatite preserves intrusive contact with the augen gneisses and with the other mylonites; it turns out to be emplaced at 290–300 Ma, like the Variscan plutonites of the Castagna Unit. The deformation masks the original contacts of the mylonitic leucogranite and trondhjemite with the biotite-rich augen gneisses. The age-group averaging 540 Ma is interpreted as indicative of the emplacement of the protoliths and it coincides with the age previously determined for the emplacement of the protoliths of the biotite-rich augen gneisses. Zircon from the mylonitic pegmatite includes domains showing concordant and discordant ages younger than 290 Ma, thus reflecting various degrees of partial resetting and Pb-loss caused by post-Variscan events. Zircon from the mylonitic leucogranite and trondhjemite includes apparent ages between 300 and 280 Ma as well as ages younger than 250 Ma. Perturbation of U–Pb system by Alpine shearing appears evident; however, possibile effects caused by thermal input and hydrothermal fluid infiltration from the Variscan plutonites cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号