首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Marine radars mounted on ships can provide remarkable insights into ocean behaviour from distances of several kilometres, placing other in situ observations and the environment around a ship into a wider oceanographic context. It has been known for some time that it is possible to map shallow water bathymetry and currents using radar image sequences recorded from shore based stations. However, a long standing question from military and hydrographic communities has been whether such techniques can be applied to radar data collected by moving vessels. If so, this presents the possibility of mapping large areas of shallow or coastal seas (albeit with a somewhat coarse horizontal resolution of 50–100 m) prior to the surveying vessel actually having to travel into potentially uncharted or dangerous shallow water areas. Trial sets of radar data were recorded by the Canadian Forces Auxiliary Vessel Quest using a Wamos radar digitiser connected to a Decca navigation radar during a number of deployments around Nova Scotia in 2008 and 2009. Georeferencing corrections derived from the existing ship navigation systems were sufficient to allow the application of the existing depth inversion analysis designed for static radar installations. This paper presents the results of bathymetry analyses of two datasets recorded from CFAV Quest while the vessel was travelling at speeds of up to 14 knots. The bathymetry derived from the radar data compare favourably with independent surveys and with the on-board echo sounder to depths of approximately 50 m.  相似文献   

2.
台湾浅滩浅海水深SAR遥感探测实例研究   总被引:3,自引:0,他引:3       下载免费PDF全文
本文基于浅海地形SAR遥感成像机理,提出星载SAR图像浅海水深遥感探测新技术.利用该遥感探测新技术与浅海地形SAR遥感图像,在台湾浅滩海域进行了浅海水深SAR遥感探测实例研究.SAR遥感探测水深值与实测水深值的比较结果显示,SAR遥感探测水深值的均方根误差达到2.5 m,误差小于10%.表明SAR具有探测浅海水深的能力,本文提出的浅海水深SAR遥感探测技术是收敛与可行的.  相似文献   

3.
We investigate the issues and methods for estimating nearshore bathymetry based on wave celerity measurements obtained using time series imagery from small unmanned aircraft systems (SUAS). In contrast to time series imagery from fixed cameras or from larger aircraft, SUAS data are usually short, gappy in time, and unsteady in aim in high frequency ways that are not reflected by the filtered navigation metadata. These issues were first investigated using fixed camera proxy data that have been intentionally degraded to mimic these problems. It has been found that records as short as 50 s or less can yield good bathymetry results. Gaps in records associated with inadvertent look-away during unsteady flight would normally prevent use of the required standard Fast Fourier Transform methods. However, we found that a full Fourier Transform could be implemented on the remaining valid record segments and was effective if at least 50% of total record length remained intact. Errors in image geo-navigation were stabilized based on fixed ground fiducials within a required land portion of the image. The elements of a future method that could remove this requirement were then outlined. Two test SUAS data runs were analyzed and compared to survey ground truth data. A 54-s data run at Eglin Air Force Base on the Gulf of Mexico yielded a good bathymetry product that compared well with survey data (standard deviation of 0.51 m in depths ranging from 0 to 4 m). A shorter (30.5 s) record from Silver Strand Beach (near Coronado) on the US west coast provided a good approximation of the surveyed bathymetry but was excessively deep offshore and had larger errors (1.19 m for true depths ranging from 0 to 6 m), consistent with the short record length. Seventy-three percent of the bathymetry estimates lay within 1 m of the truth for most of the nearshore.  相似文献   

4.
Morphological changes in coastal areas, especially in river estuaries, are of high interest in many parts of the world. Satellite data from both optical and radar sensors can help to monitor and investigate these changes. Data from both kinds of sensors being available for up to 30 years now, allow examinations over large timescales, while high resolution sensors developed within the last decade allow increased accuracy. So the creation of digital elevation models (DEMs) of, for example, the wadden sea from a series of satellite images is already possible. ENVISAT, successfully launched on March 1, 2002, continues the line of higher resolution synthetic aperture radar (SAR) imaging sensors with its ASAR instrument and now also allows several polarization modes for better separation of land and water areas. This article gives an overview of sensors and algorithms for waterline determination as well as several applications. Both optical and SAR images are considered. Applications include morphodynamic monitoring studies and DEM generation.
Andreas NiedermeierEmail:
  相似文献   

5.
Two areas within Sydney Harbour were surveyed in 2002 with a helicopter‐borne time‐domain electromagnetic system to test its potential for bathymetric mapping in shallow seawater. As delivered, the data were improperly calibrated. Therefore a re‐calibration was performed to reconcile the measured data with ‘ground truth’. Synthetic electromagnetic transients were computed for two‐layer models representing the seawater and the sediment overlying bedrock at a number of locations within the survey area. The seawater depth in the models varied between 3 m and 70 m. The measured and calculated data were compared at each delay time, and were found to be linearly related. The slope and intercept of the line of best fit were used to correct all the measured data. Inversion of the corrected time‐domain electromagnetic data generally resolved the bathymetry to submetre accuracy down to depths of about 55 m.  相似文献   

6.
数字高程模型是重要的地理空间数据,可以提供丰富的地形信息.为了获得时效性好、分辨率高的数字高程模型,本文以南京市为实验区域,利用德国宇航局TerraSAR-X卫星同一轨道上的两幅StripMap模式SAR影像对,主从影像时间间隔只有66天,空间分辨率为3 m.采用InSAR技术,通过迭代的方法来提高获取DEM的分辨率,并结合JAXA/EORC提供的AW3D30数字表面模型与迭代后的DEM进行融合来解决阴影等问题,最终获取了南京地区的高精度数字高程模型.将实验结果分别与90 m分辨率的SRTM、30 m分辨率的ASTER GDEM、30 m分辨率的AW3D30进行相互对比分析.结果表明,相比三种常用的DEM而言,本文获取的DEM能够更精确的获取地面的细节信息,特别是对于分布稀疏的大型单体建筑物,能够很好的恢复其三维信息,但是对于建筑物分布较为密集的区域,由于传感器视线受阻,不能观测建筑物的全貌,阴影分布较多,导致此类区域的DEM结果不理想,还需进一步深入研究,提高精度及可靠性.  相似文献   

7.
The gravity-geologic method (GGM) was implemented for 2′ by 2′ bathymetric determinations in a 1.6° longitude-by-1.0° latitude region centered on the eastern end of the Shackleton Fracture Zone in the Drake Passage, Antarctica. The GGM used the Bouguer slab approximation to process satellite altimetry-derived marine free-air gravity anomalies and 6,548 local shipborne bathymetric sounding measurements from the Korea Ocean Research and Development Institute to update the surrounding off-track bathymetry. The limitations of the Bouguer slab for modeling the gravity effects of variable density, rugged bathymetric relief at distances up to several kilometers, were mitigated by establishing ‘tuning’ densities that stabilized the GGM predictions. Tests using two-thirds of the shipborne bathymetric measurements to estimate the remaining third indicated that the tuning densities minimized root-mean-square deviations to about 29 m. The optimum GGM bathymetry model honoring all the ship observations correlated very well with widely available bathymetry models, despite local differences that ranged up to a few kilometers. The great analytical simplicity of GGM facilitates accurately and efficiently updating bathymetry as new gravity and bathymetric sounding data become available. Furthermore, the availability of marine free-air gravity anomaly data ensures that the GGM is more effective than simply extrapolating or interpolating ship bathymetry coverage into unmapped regions.  相似文献   

8.
We undertake detailed near-field numerical modelling of the tsunami generated by the 15 July 2009 earthquake (Mw 7.8) in Fiordland, New Zealand. High resolution bathymetry and topography data at Breaksea and Dusky Sounds, and Chalky and Preservation Inlets are derived mostly from digitised New Zealand nautical charts, Shuttle Radar Topographic Mission (SRTM) 3 arc-second data, and General Bathymetric Chart of the Ocean (GEBCO) 30 s data. A combination of continuous and campaign Global Positioning System (GPS), satellite radar (ALOS/PALSAR InSAR images) and seismology data are used to constrain the seafloor deformation for the initial tsunami condition. This source model, derived independently of DART observations, provides an excellent fit to observed tsunami elevations recorded by DART buoy 55015. The model results in the near field show maximum tsunami elevations in the range 0.5–2.0 m inside the sounds and inlets with maximum flow speeds of 3.0 m/s. Along the open coast, maximum tsunami elevations reach 2.0 m. The high flow speeds through the inlets may change the inlet stratifications and water mass inside the sounds. Media reports and field reconnaissance data show some tsunami evidence at Cormorant Cove, Duck and Goose Coves, and Passage Point.  相似文献   

9.
The aim of this study is to define and characterize water bearing geological formation and to test the possibility of using geophysical techniques to determine the hydrogeological parameters in three areas in the Vientiane basin, Laos. The investigated areas are part of the Khorat Plateau where halite is naturally occurring at depths as shallow as 50 m in the Thangon Formation. Magnetic Resonance Sounding (MRS) has been used in combination with Vertical Electrical Sounding (VES) in different geological environments. In total, 46 sites have been investigated and the MRS and VES recognized the stratigraphic unit N2Q1–3, consisting of alluvial unconsolidated sediments, as the main water bearing unit. The aquifer thickness varies usually between 10 and 40 m and the depth to the main aquifer range from 5 to 15 m. The free water content is here up to 30%, and the decay times vary between 100 and 400 ms, suggesting a mean pore size equivalent to fine sand to gravel. The resistivity is highly variable, but usually around 10–1500 Ω-m, except for some sites in areas 1 and 2, where the aquifer is of low resistivity, probably related to salt water. Hydraulic and storage-related parameters such as transmissivity, hydraulic column, have been estimated from the MRS. The MRS together with VES has been shown to be a useful and important tool for identifying and distinguishing freshwater from possible salt-affected water as well as the salt-related clay layer of the Thangon Formation. This clay layer is characterized by very low free water content and a resistivity lower than 5 Ω-m and can be found in all 3 areas at depths from 15 to 50 m.  相似文献   

10.
Remote sensing is a powerful tool for examining river morphology. This study used detailed field surveys to assess the capability of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR to measure bed elevations in rivers with disparate optical characteristics. Field measurements of water column optical properties in the clear Snake River, the more complex Blue and Colorado, and highly turbid Muddy Creek were used to calculate depth retrieval precision and dynamic range. Differences in depth of a few centimeters were detectable via passive optical techniques in the clearest stream, but precision was greatly reduced under turbid conditions. The bathymetric LiDAR evaluated in this study could not detect shallow depths or differences in depth smaller than 11 cm owing to the difficulty of distinguishing water surface and bottom returns in laser waveforms. In clear water and with high radiometric resolution, hyperspectral systems such as CASI could detect depths approaching 10 m, but semi‐empirical analysis of the Aquarius LiDAR indicated that maximum detectable depths were of the order of 2–3 m in the clear‐flowing Snake River, and closer to 1 m in the more turbid streams. Turbidity also constrained spectrally based depth retrieval, and depth estimates from the Blue/Colorado were far less reliable than on the Snake. Both sensors yielded positively biased (0.03 m for CASI, 0.08 m for Aquarius) bed elevations on the Snake, with precisions of 0.16–0.17 m. For the Blue/Colorado, mean errors were of the order of 0.2 m, biased shallow for optical data and biased deep for LiDAR, although no Aquarius laser returns were recorded from the deepest parts of these channels; precisions were reduced to 0.29–0.32 m. Both approaches have advantages and limitations, and prospective users must understand the capabilities and constraints associated with various types of remote sensing to ensure efficient use of these evolving technologies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Because of weak dissipation effects, swells generated by fierce storms can propagate across an entire ocean basin; therefore, observing swell generation and decay and retrieving storm characteristics from a swell by satellite remote sensing are possible. In this study, based on the dispersion relation and geometrical optics principle, we used SAR wave mode data from 2003 to 2010 provided by GlobWave to track swells with peak wavelengths of more than 300 m to locate a storm-generated far-traveling swell and present the swell field related to this “static” origin. Through a comparison with ECMWF wind datasets, we conducted validations and explored some conditions that cause misjudgments in swell origins. Finally, we obtained the spatiotemporal distribution characteristics of satellite-observed swell origins (i.e., the fierce wind condition) and their evolution. This work can be used as a reference for wave models, providing early swell warnings, determining air-sea surface interactions, and determining global climate change.  相似文献   

12.
Stream bathymetry is a critical variable in a number of river science applications. In larger rivers, bathymetry can be measured with instruments such as sonar (single or multi‐beam), bathymetric airborne LiDAR (light detection and ranging), or acoustic Doppler current profilers. However, in smaller streams with depths less than 2 m, bathymetry is one of the more difficult variables to map at high‐resolution. Optical remote sensing techniques offer several potential solutions for collecting high‐resolution bathymetry. In this research, I focus on direct photogrammetric measurements of bathymetry using multi‐view stereo photogrammetry, specifically Structure‐from‐Motion (SfM). The main barrier to accurate bathymetric mapping with any photogrammetric technique is correcting for the refraction of light as it passes between the two different media (air and water), which causes water depths to appear shallower than they are. I propose and test an iterative approach that calculates a series of refraction correction equations for every point/camera combination in a SfM point cloud. This new method is meant to address shortcomings of other correction techniques and works within the current preferred method for SfM data collection, oblique and highly convergent photographs. The multi‐camera refraction correction presented here produces bathymetric datasets with accuracies of ~0.02% of the flying height and precisions of ~0.1% of the flying height. This methodology, like many fluvial remote sensing methods, will only work under ideal conditions (e.g. clear water), but it provides an additional tool for collecting high‐resolution bathymetric datasets for a variety of river, coastal, and estuary systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
The reduction of gravity-field related quantities (e.g., gravity anomalies, geoid heights) due to the topography plays a crucial role in both geodetic and geophysical applications, since in the former it is an intermediate step towards geoid prediction and in the latter it reveals lateral as well as radial density contrasts and infers the geology of the area under study. The computations are usually carried out by employing a DTM and/or a DBM, which describe the topography and bathymetry, respectively. Errors in these DTMs/DBMs will introduce errors in the computed topographic effects, while poor spatial resolution of the topography and bathymetry models will result in aliasing effects to both gravity anomalies and geoid heights, both influencing the accuracy of the estimated solutions. The scope of this work is twofold. First, a validation and accuracy assessment of the SRTM 3″ (90 m) DTM over Greece is performed through comparisons with existing global models as well as with the Greek 450 m national DTMs. Whenever a misrepresentation of the topography is identified in the SRTM data, it is “corrected” using the local 450 m DTM. This process resulted in an improved SRTM DTM called SRTMGr, which was then used to determine terrain effects to gravity field quantities. From the fine-resolution SRTMGr DTMs, coarser models of 15″, 30″, 1′, 2′ and 5′ have been determined in order to investigate aliasing effects on both gravity anomalies and geoid heights by computing terrain effects at variable spatial resolutions. From the results acquired in two test areas, it was concluded that SRTMGr provides similar results to the local DTM making the use of other older global DTMs obsolete. The study for terrain aliasing effects proved that when high-resolution and accuracy gravity and geoid models are needed, then the highest possible resolution DTM should be employed to compute the respective terrain effects. Based on the results acquired from two the test areas a corrected SRTMGr DTM has been compiled for the entire Greek territory towards the development of a new gravimetric geoid model. Results from that analysis are presented based on the well-known remove-compute-restore method, employing land and marine gravity data, EGM08 as a reference geopotential model and the SRTMGr DTM for the computation of the RTM effects.  相似文献   

14.
Shallow SH-wave reflections are far from routine, although their study can provide insights into important properties of near-surface materials that cannot be inferred from P-wave data alone. Difficulties in separating SH-wave reflections from Love waves are generally considered the major obstacle to progress in shallow SH-wave seismic reflection. This may be the case in surveys undertaken at great depths, but it is not necessarily true for reflection data gathered at shallow and ultra-shallow depths. This paper shows that when SH-wave data possess wavelengths greater than the thickness of the superficial layer, Love waves are not greatly dispersed. In this case, misinterpretation between parts of reflection hyperbolae and waveguide arrivals is sufficiently limited. In a one-layer model earth, which well approximates typical situations of the near-surface underground, the most energetic modes (the lowermost modes) of the dispersed surface waves have a dominant frequency band that falls below the wavelet spectrum of the shallow reflections; therefore, they can be filtered out in the frequency domain. Higher modes, although their spectral content overlaps that of the reflections, exhibit small amplitudes on seismograms and leave strong reflections unaffected.We present field examples from three different sites where we were able to obtain ultra-shallow reflections (< 3 m) in unconsolidated sediments. The high level of resolution (vertical resolution up to 15 cm) suggests that SH-wave reflection imaging has the potential to complement other high-resolution techniques, such as P-wave reflection and ground-penetrating radar (GPR) imaging, allowing a better and more complete characterization of the near-surface environments.  相似文献   

15.
SAR浅海水下地形遥感探测技术综述   总被引:2,自引:0,他引:2       下载免费PDF全文
SAR已成为浅海水下地形探测的重要技术手段之一.与传统浅海水下地形探测技术相比,SAR浅海水下地形遥感探测技术具有明显的经济效益.该水深探测技术通过对浅海水下地形SAR图像仿真模型的反演求解,从SAR图像中提取水下地形信息.本文回顾了SAR浅海水下地形遥感探测技术的不同数值模型和应用实例,并针对目前SAR浅海水下地形遥感探测技术存在的问题和今后研究方向进行了探讨和总结.  相似文献   

16.
Detailed gravity and aeromagnetic data over maars in the Auckland volcanic field reveal contrasting anomalies, even where surface geology is similar. Pukaki and Pukekiwiriki, almost identical maars marked by sediment-filled craters and tuff rings, have gravity and magnetic anomalies of − 6 g.u. and 20 nT, and 8 g.u. and 160 nT, respectively. The Domain and Waitomokia maars, with similar tuff rings but each with a small central scoria cone, have gravity and magnetic anomalies of 32 g.u. and 300 nT, and 21 g.u. and 310 nT, respectively. These differences in geophysical expression are attributed to varying volumes of dense, magnetic basalt in the form of shallow bowl-shaped bodies up to several hundreds of metres in diameter and up to 140 m thick beneath the maar centres. These bodies are interpreted as solidified magma that ponded into early-formed phreatomagmatic explosion craters. Where magma supply was limited relative to groundwater availability, no residual subsurface basalt occurs (as at Pukaki); continued magma supply, but limited groundwater, resulted in ponding (e.g. at Pukekiwiriki) and eventually the building of a scoria cone (as at Domain and Waitomokia). There is no evidence in these geophysical data for diatreme structures below the maars or for shallow and/or extensive feeder dykes associated with these maars. If diatreme structures do occur, their lack of geophysical signature must be a consequence of either their small geophysical contrast with host Miocene sediments and/or masking by the stronger anomalies associated with the subsurface basalt. In addition, any magma conduits appear to be confined centrally beneath the maars, at least to shallow depths (upper 100 m).  相似文献   

17.
High-resolution satellite radar observations of erupting volcanoes can yield valuable information on rapidly changing deposits and geomorphology. Using the TerraSAR-X (TSX) radar with a spatial resolution of about 2 m and a repeat interval of 11 days, we show how a variety of techniques were used to record some of the eruptive history of the Soufriere Hills Volcano, Montserrat between July 2008 and February 2010. After a 15-month pause in lava dome growth, a vulcanian explosion occurred on 28 July 2008 from a vent that was hidden by dense cloud. We were able to show the civil authorities using TSX difference images of surface roughness change that this explosion had not disrupted the dome sufficiently to warrant continuation of a previous, precautionary evacuation. Change difference images also proved to be valuable in mapping new pyroclastic flow deposits: the valley-occupying block-and-ash component tended to increase backscatter and the marginal surge deposits to reduce it, with the pattern reversing after the event due to erosion and deposition. By comparing east- and west-looking images acquired 12 h apart, the deposition of some individual pyroclastic flows can be inferred from change differences. Some of the narrow upper sections of valleys draining the volcano received many tens of metres of rockfall and pyroclastic flow deposits over periods of a few weeks. By measuring the changing radar shadows cast by these valleys in TSX images the changing depth of infill by deposits could be estimated. In addition to using the amplitude data from the radar images we also used their phase information within the InSAR technique to calculate the topography during a period of no surface activity. This enabled areas of transient topography, crucial for directing future flows, to be captured.  相似文献   

18.
基于重力地质法的南中国海海底地形反演   总被引:3,自引:0,他引:3       下载免费PDF全文
根据重力地质法(GGM),利用南中国海海域内63179个船测控制点水深将测高自由空间重力异常划分为长波参考场和短波残差场,并反演出了该海域112°E-119°E,12°N-20°N范围的1’×1’海底地形模型,该过程中使用的海水和海底洋壳密度差异常数1.32 g·cm-3通过实测水深估计得到.利用反演得到的GGM模型对剩余的10529个检核点船测水深插值计算后与实测水深进行比较,其较差结果的均值为-1.64 m,标准差为76.95 m,相对精度为4.06%.此外,根据船测点数量、分布和海底地形的不同,选择了三个海域进行统计,结果表明:在船测控制点分布均匀的海域,GGM模型精度优于ETOPO1模型,在控制点过于分散的海域其精度会有所下降,但好于船测水深的直接格网化结果.为进一步探究检核点的较差结果中出现较大数值的成因,本文对精度较差的点位进行了单独分析,选择了两条船测航迹剖面进行了研究,并分析了检核点的水深较差、相对精度与水深和重力异常的关系,结果表明:GGM模型精度受水深和重力异常的相关性影响较小,受海底地形复杂程度影响较大,地形坡度变化平缓海域的预测精度明显高于海山地区.最后,综合GGM模型和ETOPO1模型优势,利用所有船测水深作为控制,生成了综合的海底地形模型.  相似文献   

19.
The Cape Verde Islands are located on a mid-plate topographic swell and are thought to have formed above a deep mantle plume. Wide-angle seismic data have been used to determine the crustal and uppermost mantle structure along a ~ 440 km long transect of the archipelago. Modelling shows that ‘normal’ oceanic crust, ~ 7 km in thickness, exists between the islands and is gently flexed due to volcano loading. There is no direct evidence for high density bodies in the lower crust or for an anomalously low density upper mantle. The observed flexure and free-air gravity anomaly can be explained by volcano loading of a plate with an effective elastic thickness of 30 km and a load and infill density of 2600 kg m− 3. The origin of the Cape Verde swell is poorly understood. An elastic thickness of 30 km is expected for the ~ 125 Ma old oceanic lithosphere beneath the islands, suggesting that the observed height of the swell and the elevated heat flow cannot be attributed to thermal reheating of the lithosphere. The lack of evidence for high densities and velocities in the lower crust and low densities and velocities in the upper mantle, suggests that neither a crustal underplate or a depleted swell root are the cause of the shallower than expected bathymetry and that, instead, the swell is supported by dynamic uplift associated with the underlying plume.  相似文献   

20.
The December 26, 2003 Mw 6.6 Bam earthquake is one of the most disastrous earthquakes in Iran. QuickBird panchromatic and multispectral satellite imagery with 61 cm and 2.4 m ground resolution, respectively provide new insights into the surface rupturing process associated with this earthquake. The results indicate that this earthquake produced a 2–5 km-wide surface rupture zone with a complex geometric pattern. A 10-km-long surface rupture zone developed along the pre-existing Bam fault trace. Two additional surface rupture zones, each 2–5 km long, are oblique to the pre-existing Bam fault in angles of 20–35°. An analysis of geometric and geomorphic features also shows that movement on the Bam fault is mainly right-lateral motion with some compressional component. This interpretation is consistent with field investigations, analysis of aftershocks as well as teleseismic inversion. Therefore, we suggest that the 2003 Bam earthquake occurred on the Bam fault, and that the surface ruptures oblique to the Bam fault are caused by secondary faulting such as synthetic shears (Reidel shears). Our fault model for the Bam earthquake provides a new tectonic scenario for explaining complex surface deformations associated with the Bam earthquake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号