首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This study examines wave interactions with multiple semi-immersed Jarlan-type perforated breakwaters. A numerical model based on linear wave theory and an eigenfunction expansion method has been developed to study the hydrodynamic characteristics of breakwaters. The numerical results show a good agreement with previous analytical results and experimental data for limiting cases of double partially immersed impermeable walls and double and triple Jarlan-type breakwaters. The wave transmission coefficient CT; reflection coefficient CR, and energy dissipation coefficient CE coefficients and the horizontal wave force exerted on the front and rear walls are examined. The results show that CR reaches the maximum value when B/L = 0.46n while it is smallest when B/L=0.46n+0.24 (n=0, 1, 2,...). An economical triple semi-immersed Jarlan-type perforated breakwater can be designed with B/L = 0.25 and CR and CT ranging from 0.25 to 0.32 by choosing a relative draft d/h of 0.35 and a permeability parameter of the perforated front walls being 0.5 for an incident wave number kh nearly equal to 2.0. The triple semi-immersed Jarlan-type perforated breakwaters with significantly reduced CR, will enhance the structure’s wave absorption ability, and lead to smaller wave forces compared with the double one. The proposed model may be used to predict the response of a structure in the preliminary design stage for practical engineering.  相似文献   

2.
金蓉  谌晓洪 《海洋学报》2010,32(10):6955-6962
用B3LYP/LANL2DZ方法对ZrnPd(n =1—13)团簇的平衡几何结构、能量、频率、电子性质和磁性进行了计算.研究表明,Pd原子位于表面的异构体更为稳定,其中Zr7Pd,Zr12Pd团簇稳定性高,是幻数团簇;此外,相对于ZrnCo与ZrnFe团簇,ZrnPd团簇参与化学反应的能力较弱,化学稳定性更  相似文献   

3.
辐射传输模式HydroLight是研究水体辐射传输特性的有效工具,同时也是进行石油类水体辐射传输特性的有效模型。本文基于2018年8月在辽宁大连港海域实测的石油类污染水体的表观及固有光学量数据,通过设置不同浓度的配比模拟试验,利用HydroLight对油类物质和藻类物质的单一组分和两者混合水体的遥感反射比(remote sensing reflectance,Rrs)光谱进行了模拟。模拟结果表明:(1)在仅含油类物质单一组分的水体中,Rrs随着油浓度Coil的变化分为两个特征波段:400~480 nm和480~700 nm。在400~480 nm波段范围内RrsCoil的增加而减小,在480~700 nm随Coil的增大而增大;(2)在仅含藻类物质的单一成分水体中,叶绿素的光谱特性需要其浓度Cchl达到一定值才能表现出来,在低Cchl时的Rrs光谱特性反映为纯水的光谱特性;(3)在油藻混合水体中,随Coil的增加会增大叶绿素的Rrs,但不会明显改变叶绿素的Rrs随波长的变化趋势,这说明油藻混合水体的光谱形状主要受叶绿素的影响,油类物质的存在只改变光谱的量值。利用HydroLight对石油类污染水体的Rrs展开研究,有助于丰富水色遥感基础研究,对完善各类水体生物光学模型研究具有重要的理论意义。  相似文献   

4.
基于1993-2017年卫星高度计数据得到的中尺度涡追踪产品,分析了1000 m以深南海海盆中尺度涡移动速度C的时空分布特征。结果表明,南海海盆气候态平均的中尺度涡纬向移动速度cx均为西向,经向移动速度cy在海盆西北侧为南向,东南侧为北向。cy随经度的变化与背景经向流的变化一致,相关系数达0.96,而cx的变化与背景纬向流和β效应有关。cxC存在明显季节变化,夏季最慢,冬季最快。年际变化上,cxcy的大值多发生在太平洋年代际涛动(PDO)负位相期的La Nina年。中尺度涡在其生命周期的开始和结束阶段(即生成和耗散阶段)移速较快,而在稳定的“中期”阶段移动缓慢。该趋势与涡旋转速呈反相关,相关系数为-0.93。以移速小于1.5 cm/s和大于15.4 cm/s定义的极慢和极快涡旋,分别占总涡旋数量的1.5%和1.9%。移速极慢的涡多出现在海盆的中部,且主要发生在夏季;移速极快的涡多出现在海盆的边缘,且主要发生在冬季。机制分析显示,南海海盆中尺度涡移动速度的时空分布受到大尺度背景流场调制。  相似文献   

5.
依据南海低纬地区SA09-040孔高分辨率的孢粉记录,自下至上划分了4个孢粉组合带。从孢粉成分的变化,重建了22.25ka B P以来的植被与气候变化历史。结果表明:孢粉主要来源于婆罗洲和周围岛屿,孢粉1带(22.25~16.6ka B P),低山雨林植被发育,为暖热气候,从测年时间看,当时为末次冰期晚期。孢粉2带(16.6~10.82ka B P,为末次冰消期),植被以热带低山雨林和低地雨林为主,针叶的松数量较多,当时的气温比现在低。孢粉3带(全新世早期,10.82~6.43ka B P),植被以热带低山雨林和低地雨林为主,针叶松属数量减少,气温比前期升高,海平面也上升。孢粉4带(全新世中晚期,6.43ka B P至今),全新世中期为炎热、湿润的气候环境,全新世晚期可能与婆罗洲现今的植被景观相近,为热、湿的气候环境。  相似文献   

6.
A series of experiments was carried out to study the flow behaviour behind a rotationally oscillating cylinder at a low Reynolds number (Re=300) placed in a recirculation water channel. A stepper motor was used to rotate the cylinder clockwise- and- counterclockwise about its longitudinal axis at selected frequencies. The particle image velocimetry (PIV) technique was used to capture the flow field behind a rotationally oscillating cylinder. Instantaneous and time-averaged flow fields such as the vorticity contours, streamline topologies and velocity distributions were analyzed. The effects of four rotation angle and frequency ratios Fr (Fr=fn/fv, the ratio of the forcing frequency fn to the natural vortex shedding frequency fv) on the wake in the lee of a rotationally oscillating cylinder were also examined. The significant wake modification was observed when the cylinder undergoes clockwise-and-counterclockwise motion with amplitude of π, especially in the range of 0.6≤Fr≤1.0.  相似文献   

7.
由于存在极高的初级生产和高效的碳代谢速率, 珊瑚礁海域二氧化碳(CO2)的汇/源属性仍存有争议。为明晰中国典型珊瑚礁海域CO2的汇源属性及驱动因素, 作者基于2022年11月(秋季)和2023年2月(冬季)在深圳杨梅坑海域的调查结果并结合室内培养实验所获得的数据, 探究了枯水季节典型亚热带珊瑚礁海水二氧化碳分压(pCO2)的分布特征及主要控制机制。结果表明, 调查期间pCO2的变化较大, 其范围为233.3~465.3 μatm。秋季表现为大气CO2的汇, CO2吸收通量为1.66±0.41 mmol C/(m2/d);冬季表现为大气CO2的弱源, 其释放通量为0.36±0.17 mmol C/(m2/d)。调查期间(枯水季)杨梅坑海域受淡水输入的影响较小, 季节性温度影响下的生物过程是驱动pCO2变化的关键因素, 其贡献pCO2总变化量的73.6%(表层)和66.5%(底层)。其中, 浮游植物光合作用的季节差异是导致海水CO2汇源转变的主要成因, 而微生物呼吸作用的影响甚微。相比较, 物理过程(CO2海-气交换、温度和盐度变化)对pCO2的影响相对较小, 其作用结果远低于生物过程。此外, 珊瑚的代谢活动对杨梅坑局部海域pCO2分布产生一定影响, 造成礁区pCO2值高于非礁区。因此, 海气CO2通量估算中不能忽视局部海域珊瑚代谢作用的影响。  相似文献   

8.
对位于东海内陆架泥质区的MZ05孔浅钻岩芯进行粒度、常微量元素、AMS~(14)C测年分析,获得2.90-1.80ka B.P.期间粒度和常微量元素随时间变化的高分辨率曲线。综合分析MZ05孔地球化学元素比值(CIA,Rb/Sr)曲线发现沉积物源区的化学风化强度变化可以分为3个阶段:2.90-2.70ka B.P.的增强期,2.64-2.35ka B.P.的减弱期和2.35-1.80ka B.P.的较弱期,反映该段时间内东亚夏季风的强弱变化。MZ05孔的沉积物敏感粒级(1.2~22.1μm)平均粒径指示晚全新世东亚冬季风波动频繁,呈现出3个各具特点的阶段:2.90-2.65ka B.P.属于中等频率波动的冬季风强盛期;2.64ka B.P.左右东亚冬季风由强转弱,2.60-2.35ka B.P.冬季风先减弱后增强;2.35-1.82ka B.P.为相对稳定的冬季风弱期。东亚冬季风的演化趋势在其他气候记录中也发现相应的降温证据,揭示全球气候变化的区域性响应。研究同时发现晚全新世研究区东亚冬、夏季风在百年尺度上呈现反相位关系。  相似文献   

9.
基于卫星数据改进计算白冠覆盖率的模型   总被引:2,自引:1,他引:1  
本文基于白冠覆盖率的历史研究,总结了计算白冠覆盖率的参数化方案和海浪破碎统计模型,并分析比较其优缺点。通过结合基于卫星数据的参数化公式,利用最优拟合的方法,得到不同限制条件下模型中的系数Cenn。通过分析考虑海浪破碎条件,确定了适用于一般海浪状况的系数值。通过比较白冠覆盖率的卫星数据和原始模型的模拟结果,可知改进后模型的结果更合理,同时与历史研究结论相符。文中还分析了从1998年到2008年十年平均的全球白冠覆盖率的季节性分布特征。在中高纬度海域,全年白冠覆盖率的值最大,而在低纬度和赤道海域,白冠覆盖率小于0.5%,全球白冠覆盖率的平均值大约为1% ~3%。北半球中高纬度海域的白冠覆盖率的季节性变化显著大于南半球。  相似文献   

10.
在多通道量子亏损理论框架下,利用相对论多通道理论,分别在冻结实近似和考虑偶极极化下计算钪原子的Jπ=(3/2)-,(5/2)-的三个收敛于 3d4s(1D2)的自电离里德伯系列的能级.对3d4s(1D2)np2D3/2和3d4s(1  相似文献   

11.
We report records of land plant-derived long-chain n-alkanes since 37 ka b.p. from a sediment core in the middle Okinawa Trough, East China Sea. The data show the content and carbon preference index (CPI; degree of freshness) of n-alkanes generally decreasing as sea level rose, which could be explained by coastline retreat resulting in an increased transport route of n-alkanes toward the study site. The n-alkane CPI returned to higher values during the Holocene highstand, however, suggesting sea-level rise was not the only cause for the decline of freshness of n-alkanes. Paleovegetation changes in terms of C3 vs. C4 contributions inferred from n-alkane δ13C are overall consistent with published marine and terrestrial records during two distinct intervals: from 37.0 to 15.2 ka b.p., and from 7.6 ka b.p. to the present. However, n-alkane δ13C excursions from 15.2 to 7.6 ka b.p. are difficult to reconcile with terrestrial signatures. This disagreement, along with other possible causes for the decline of freshness of n-alkanes, and the higher-energy sedimentary environment inferred from increased mean grain sizes and silt/clay ratios during this time period, is consistent with existing knowledge of offshore transport of materials previously stored on the extensive continental shelf during the post-glacial transgression. We therefore suggest that n-alkane records from the Okinawa Trough should be used only cautiously to infer deglacial vegetation and sea-level changes.  相似文献   

12.
Woei-Lih Jeng   《Marine Chemistry》2006,102(3-4):242-251
The n-alkane average chain length (ACL) is the weight-averaged number of carbon atoms of the higher plant C25–C33 n-alkanes. The abundance of individual n-alkanes from higher plant sources generally increases with increasing carbon number in coastal marine sediments around Taiwan, but this trend is reversed for petrogenic hydrocarbons. The ACL would potentially be lowered if petrogenic hydrocarbons were added to sediments containing biogenic hydrocarbons alone. To test this idea, a marine environment off southwestern Taiwan known to contain both biogenic and petrogenic hydrocarbons and two nearby rivers were selected for investigating possible difference in ACL values between their sediments. The average CPI of C25–C33 n-alkanes was 4.08 ± 2.04 (range 1.90–8.96, n = 15) for the river sediments and 1.70 ± 0.16 (range 1.43–1.97, n = 15) for the marine sediments. The ACL of C25–C33 n-alkanes for river sediments ranged from 29.2 to 30.5 (average 29.9 ± 0.4), and for marine sediments from 28.4 to 29.3 (average 28.9 ± 0.3). The ACL difference between marine and river sediments was significant (Student's t test at 99% confidence) although it appeared small. It is suggested that the ACL can be an additional indicator for detection of petrogenic hydrocarbons in coastal marine sediments.  相似文献   

13.
《Marine Geology》1999,153(1-4):303-318
Organic geochemistry and micropaleontology are used to determine the origin of sapropel S1 in the Aegean Sea. Low-molecular-weight (C15, C17 and C19) n-alkane data show that net primary productivity (NPP) increased from ∼14,000 to 10,000 yr BP at the glacial interglacial transition, but the onset of S1 at 9600 yr BP marks a sharp decline in NPP, which remained low until ∼8200 yr BP. The start of sapropel deposition is marked by increased total organic carbon (TOC) and pollen-spore concentrations, together with increased high-molecular-weight (C27, C29, C31 and C33) n-alkanes. Pollen assemblages show large influx of tree pollen from central-northern European forests. Increases in high-molecular-weight n-alkanes suggest greater influx of fresh vascular plant material at the start of S1, although the amount is small compared to other insoluble organic matter. Palynological studies showed that most of this insoluble organic matter are flocks of dark-brown amorphous kerogen, typical of terrigenous humic compounds. From ∼8200 yr BP to the top of S1 at ∼6400 yr BP, there is a decline in high-molecular-weight n-alkanes and terrigenous kerogen, and an increase in low-molecular-weight n-alkanes, suggesting that NPP recovered during the later deposition of S1 in the Aegean Sea. The increase in low-molecular-weight n-alkanes coincides with the recovery of coccolithophores and dinoflagellates, suggesting that these phytoplankton are primarily responsible for the low-molecular-weight n-alkane variations. These data from the Aegean Sea support the model for sapropel deposition resulting from increased influx of TOC during times of stagnant bottom water, but disagree with Mediterranean models prescribing a large increase in marine productivity.  相似文献   

14.
Elemental (TOC, TN, C/N) and stable carbon isotopic (δ13C) compositions and n-alkane (nC16–38) concentrations were measured for Spartina alterniflora, a C4 marsh grass, Typha latifolia, a C3 marsh grass, and three sediment cores collected from middle and upper estuarine sites from the Plum Island salt marshes. Our results indicated that the organic matter preserved in the sediments was highly affected by the marsh plants that dominated the sampling sites. δ13C values of organic matter preserved in the upper fresh water site sediment were more negative (−23.0±0.3‰) as affected by the C3 plants than the values of organic matter preserved in the sediments of middle (−18.9±0.8‰) and mud flat sites (−19.4±0.1‰) as influenced mainly by the C4 marsh plants. The distribution of n-alkanes measured in all sediments showed similar patterns as those determined in the marsh grasses S. alterniflora and T. latifolia, and nC21 to nC33 long-chain n-alkanes were the major compounds determined in all sediment samples. The strong odd-to-even carbon numbered n-alkane predominance was found in all three sediments and nC29 was the most abundant homologue in all samples measured. Both δ13C compositions of organic matter and n-alkane distributions in these sediments indicate that the marsh plants could contribute significant amount of organic matter preserved in Plum Island salt marsh sediments. This suggests that salt marshes play an important role in the cycling of nutrients and organic carbon in the estuary and adjacent coastal waters.  相似文献   

15.
Dissolved material and recent sediment from the Amazon continental shelf have been analyzed for hydrocarbons to study the sources and potential fate of the transported organic matter. Dissolvedn-alkanes are present at low concentrations (ppb level) and are dominated by lipids from marine phytoplankton with carbon number maxima (Cmax) at C18/C22 and an even-to-odd carbon predominance < C30 (CPI17–27 from 0.18 to 0.54). In the sediments, bimodal distributions ofn-alkane chain length suggest a mixed input of terrestrial (Cmax at C27/C29/C31 and CPI25–33 from 0.75 to 1.82) and phytoplanktonic/microbial (Cmax at C20 and CPI15–25 from 0.38 to 0.62) organic matter. Sesquiterpenes were the most significant cyclic compounds in all the dissolved samples analyzed reflecting a contribution from resinous trees to the terrestrial organic pool. On the other hand, enhanced concentrations of these compounds in the dissolved phase on the northwest portion of the Amazon shelf, contrasting with decreased concentrations in the sediment samples, suggest that dissolved lipids are released from solid phase in the intensely stirred seabed. Structured organic matter in the sediment has been characterized as being composed of, on average: 19% plant cuticles, 25% woody tissue, 13% pollens and spores, 24% amorphous material, 7% bituminite and 12% altered organic material.  相似文献   

16.
A study on the bulk distributions and molecular structures of n-alkanes and polycyclic aromatic hydrocarbons (PAH) in organic matter of the sediments from the Bay of Bengal and the Eastern and Central Indian Basins was undertaken. The former two regions represent areas characterised by “normal” sedimentation while the third one mainly represents a region of “active tectonism”. Content of the hydrocarbons in the sediments of “normal” sedimentation ranges between 4.6 and 10.5 μg/g and aromatic hydrocarbons ranges between 0 and 0.38 μg/g. n-Alkanes in the sediments of the northern deep part of the Bay of Bengal consist mostly of long-chain structures (total C25–C33 up to 70%) with a high carbon preference index (CPI=3.01–3.43), indicating a large contribution of organic matter from terrigenous sources. The sediments from the Eastern Indian Basin have n-alkane distributions in which the long-chain components did not exceed 52.5% and the CPI was 1.7–1.90, indicating that the hydrocarbons are mostly derived from marine sources. Sharp increases of hydrocarbons are found in the vicinity of the tectonically active region of the Central Indian Basin, particularly in the sediments collected from the fracture zone. The total concentration of hydrocarbons increase to 170 μg/g and the aromatic hydrocarbons fraction to 156.3 μg/g. The proportion of short-chain n-alkanes increases up to 70%, CPI decreases to 0.76–1.12, and high concentrations of n-C16 (16–40%) occur, all of which are absent in the other samples. The molecular content of PAH includes the unsubstituted individual structures: biphenyl, fluorene, pyrene, perylene, benzo(ghi)perylene, and the groups of homologues of naphthalene, benzofluorene, phenanthrene and chrysene. The association of the PAH and composition of paraffin hydrocarbons in the surficial sediments of deformation zone indicate that these are the resultant products of hydrothermal processes. It is, therefore, suggested that the association and composition of the hydrocarbons in sediments can be utilised as a paleoceanographic parameter to decipher the history of tectonism of an area.  相似文献   

17.
Sources of sedimentary organic matter to a Morse River, Maine (USA) salt marsh over the last 3390 ± 60 RCYBP (Radiocarbon Years Before Present) are determined using distribution patterns of n-alkanes, bulk carbon isotopic analysis, and compound-specific carbon isotopic analysis. Marsh foraminiferal counts suggest a ubiquitous presence of high marsh and higher-high marsh deposits (dominated by Trochammina macrescens forma macrescens, Trochammina comprimata, and Trochammina inflata), implying deposition from ∼0.2 m to 0.5 m above mean high water. Distributions of n-alkanes show a primary contribution from higher plants, confirmed by an average chain length value of 27.5 for the core sediments, and carbon preference index values all >3. Many sample depths are dominated by the C25 alkane. Salicornia depressa and Ruppia maritima have similar n-alkane distributions to many of the salt marsh sediments, and we suggest that one or both of these plants is either an important source to the biomass of the marsh through time, or that another unidentified higher plant source is contributing heavily to the sediment pool. Bacterial degradation or algal inputs to the marsh sediments appear to be minor. Compound-specific carbon isotopic analyses of the C27 alkane are on average 7.2‰ depleted relative to bulk values, but the two records are strongly correlated (R2 = 0.89), suggesting that marsh plants dominate the bulk carbon isotopic signal. Our study underscores the importance of using caution when applying mixing models of plant species to salt marsh sediments, especially when relatively few plants are included in the model.  相似文献   

18.
The spatial distributions of δ13C, δ15N, and n-alkanes were investigated to determine the source and transportation of allochthonous organic matter from the mouth of the Seomjin River to the southern inner shelf break of Korea. Total organic carbon (%) ranged from 0.3% to 1.6% (average = 0.80%, n = 81), and the C/N ratio varied from 2.4 to 12.4 (average = 6.76, n = 81). The δ13C values ranged from ?25.86 to ?20.26‰ (average = ?21.47‰, n = 81), and δ15N values ranged from 4.37‰ to 8.57‰ (average = 6.72‰, n = 81). The contribution of the terrestrial fraction of organic matter to the total ranged from 4.4% to 97.7% (average = 24.4%, n = 81), suggesting higher amounts around the catchment area and lower amounts in the offshore area. The concentration of total n-alkanes (nC25 ? nC35) was higher at the boundary between the outer bay and inner shelf break (BOBIS). Average chain length and the carbon preference index both indicated that major leaf wax n-alkanes accounted for the observed distribution of terrestrial organic matter, and were dominant in the inner shelf break (around BOBIS) and outer shelf break. Based on the spatial distribution of the total n-alkanes and the sum of nC27, nC29, and nC31, the terrestrial organic matter distribution was considered to be controlled by local oceanographic conditions, especially at the center of the BOBIS. In addition to enabling the distribution and source of terrestrial organic matter to be identified, the n-alkanes indicated that minor anthropogenic allochthonous organic materials were superimposed on the total organic materials in the central part of Yeosu Bay and the catchment area. The n-alkane indices revealed weathered petroleum contamination, with contamination levels being relatively low at the present time.  相似文献   

19.
Twelve surface sediments from the southern Okinawa Trough (OT) and nine surface sediments from a nearby river, the Lanyang River (LR), with high sediment discharge were analyzed for comparison of their aliphatic hydrocarbon distributions. Performing cluster analysis on all hydrocarbon data of LR and OT sediments showed that the two areas had a similarity level of only 0.15, meaning that they were quite dissimilar. The average ratio of terrigenous to aquatic n-alkanes was 0.99 for LR sediments and 9.64 for OT sediments, indicating that the concentrations of n-alkanes in LR and OT sediments were quite different. Furthermore, the mean pristane/phytane ratios for LR and OT sediments were 1.01 and 2.57, respectively; the difference between them was significant (Student's t test, at the 99% significance level). The carbon preference index (CPI) of C25–C33 n-alkanes averaged 3.26 (range 2.16–4.59) for LR sediments and 2.92 (range 2.35–5.24) for OT sediments; no significant difference was found between the two CPI averages (Student's t test, at the 99% confidence level). However, higher plant n-alkanes generally maximized at C29 for LR sediments, but maximized at C31 for all OT sediments, strongly indicating significant differences in the origins of the hydrocarbons in these two areas. All present results appear to suggest that LR sediments are not a major hydrocarbon source for OT sediments. In addition, there was no positive, linear correlation between diploptene (hop-22(29)-ene) and terrestrial higher plant n-alkanes for LR and OT sediments.  相似文献   

20.
Organic matter in eolian dusts over the Atlantic Ocean   总被引:1,自引:0,他引:1  
The elemental and mineralogical composition and the microfossil and detritus content of particulate fallout from the lower troposphere over the Atlantic Ocean have been extensively documented in earlier work, and it was possible to ascribe terrigenous source areas to such fallout. A brief review of the organic geochemistry of eolian dust is also presented here. The lipids of eolian dusts sampled from the air mass over the eastern Atlantic from about 35°N to 30°S were analyzed here.These lipids consisted mainly of normal alkanes, carboxylic acids and alcohols. The n-alkanes were found to range from n-C23 to n-C35, with high CPI values and maximizing at n-C27 in the North Atlantic, at n-C29 in the equatorial Atlantic and at n-C31 in the South Atlantic. The n-fatty acids had mostly bimodal distributions, ranging from n-C12 to n-C30 (high CPI), with maxima at n-C16 and in the northern samples at n-C24 and in the southern samples at n-C26. The n-alcohols ranged from n-C12 to n-C32, with high CPI values and maxima mainly at n-C28. The compositions of these lipids indicated that their terrigenous sources were comprised mainly of higher plant vegetation and desiccated lacustrine mud flats on the African continent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号