首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Analytical solutions for the steady‐state response of an infinite beam resting on a visco‐elastic foundation and subjected to a concentrated load moving with a constant velocity are developed in this paper. The beam responses investigated are deflection, bending moment, shear force and contact pressure. The mechanical resistance of the foundation is modeled using two parameters ks and ts — ks accounts for soil resistance due to compressive strains in the soil and ts accounts for the resistance due to shear strains. Since this model represents the ground behavior more accurately than the Winkler spring model, the developed solutions produce beam responses that are closer to reality than those obtained using the existing solutions for Winkler model. The dynamic beam responses depend on the damping present in the system and on the velocity of the moving load. Based on the study, dynamic amplification curves are developed for beam deflection. Such amplification curves for deflection, bending moment, shear force and contact pressure can be developed for any beam‐foundation system and can be used in design. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
3.
In the present paper, dynamic response of rigid pavements subjected to moving vehicular loads is presented using an analytical procedure based on the finite element method. The vehicle–pavement interaction effects are taken into account while developing the solution algorithm. The concrete pavement is discretized by finite and infinite beam elements. Infinite elements are helpful in appropriate modeling of end conditions. The main purpose of the development of infinite elements is to model the unbounded domain. The underlying soil medium is modeled by Pasternak model which assumes the existence of shear interaction between the spring elements. The moving vehicle is represented by a mass supported by a spring-dashpot system. The vehicle -pavement interaction force is modeled with Dirac-delta function. Dynamic equilibrium equation is solved with Newmark-Beta integration scheme. It has been observed that the dynamic interaction between the moving load and the pavement has significant effect on pavement response. Parametric study is carried out to investigate the effect of vehicle–pavement interaction (VPI) and soil parameters on the response of pavement.  相似文献   

4.
横观各向同性饱和土体三维粘弹性动力分析   总被引:2,自引:2,他引:0  
祝彦知  李冬霞  方志 《岩土力学》2005,26(10):1557-1564
采用针对横观各向同性饱和土体u-w形式三维粘弹性动力方程,考虑土骨架的粘弹性性质且基于粘弹性理论,通过运用Fourier 展开、Laplace 和Hankel 积分变换方法和引入中间变量,将含有粘弹性参数的六元二阶偏微分运动控制方程组,化为2组各含4个未知变量的常微分方程组,从而给出了柱坐标系下粘弹性横观各向同性饱和土体在非轴对称动力荷载作用下的瞬态反应的土骨架位移分量、孔隙流体相对于土骨架的位移分量瞬态反应一般解。在此基础上,引入初始条件和边界条件,对垂直向和水平向动力荷载作用下半空间边值问题进行了求解。根据动力时域解答的一般解,利用Laplace和Hankel 数值逆变换技术,编制了相应的数值计算程序。并进行了实例验证和弹性、粘弹性解的对比分析。结果表明,在进行横观各向同性饱和土体动力分析时,考虑土骨架的粘弹性是必要的。  相似文献   

5.
A Laplace transform is used to solve the problem of the steady state and transient response of a pinned head pile embedded into a viscoelastic Winkler soil medium. The pile is modeled as an Euler–Bernoulli beam while the soil medium is modeled using a Winkler subgrade approach. Two analytical solutions are developed to specifically address both steady state and transient loads encountered during dynamic pile testing. After choosing a proper contour integration in the complex plane, inverse integration is evaluated. The steady state solutions are associated to the residues of the integration around the poles while the transient solutions are associated to the integration paths along the contour integration. The derived solutions are applied to a case history for which results of dynamic pile tests are available. Dynamic pile flexion is generated by delivering eccentric impact using a dynamic loading test module. Validity of the proposed solution is discussed basing on geotechnical campaign and recorded pile head bending moment and rotation rate.  相似文献   

6.
为考虑土体剪切模量对陡坡段桥梁基桩内力计算的影响,首先探讨桩后土压力的分布形式,并根据陡坡段桥梁基桩的承载特性建立简化分析模型;其次,引入Pasternak双参数模型,建立可考虑土体剪切模量的地基抗力计算模型;并在此基础上分别对受荷段与嵌固段基桩微元进行受力分析,求得各段控制差分方程,从而进一步迭代求解桩身位移及内力;最后,分别用陡坡段桥梁基桩实测数据与Pasternak双参数模型算例对本文内力计算方法进行验算,结果表明:本文计算方法用于陡坡段桥梁基桩内力计算是合理的,可为同类工程提供参考。  相似文献   

7.
王俊林  祝彦知  张天航 《岩土力学》2007,28(7):1315-1322
在考虑横观各向同性含液饱和多孔介质固体骨架和流体可压缩性以及固体骨架的黏弹性特征下,基于横观各向同性含液饱和多孔介质u-w形式的三维动力控制方程,以固相位移u、液相相对位移w为基本未知量,综合运用Laplace变换、双重Fourier变换等方法,在直角坐标系下通过引入中间变量,将六元2阶动力控制方程组化为两组各含4个未知变量的常微分方程组,给出了直角坐标系下横观各向同性含液饱和多孔介质三维黏弹性动力反应的积分形式一般解;作为理论推导的验证,通过引入初始条件和边界条件,对横观各向同性含液饱和多孔介质半空间黏弹性瞬态反应问题进行了求解。解答的退化验证表明,所推导的理论解是正确的。  相似文献   

8.
This paper presents an analytical method for modeling the dynamic response of a rigid strip footing subjected to vertical-only loads. The footing is assumed to rest on the surface of a viscoelastic half-space; therefore, effects of hysteretic soil damping on the impedance of the foundation and the generated ground vibrations are considered in the solution. To solve the mixed boundary value problem, we use the Fourier transform to cast a pair of dual integral equations providing contact stresses, which are solved by means of Jacobi orthogonal polynomials. The resulting soil and footing displacements and stresses are obtained by means of the Fourier inverse transform. The solution provides more realistic estimates of footing impedance, compared to existing solutions for elastic soil, as well as of the attenuation of ground vibrations with distance of the footing. The latter is important for the estimation of machine vibration effects on nearby structures and installations.  相似文献   

9.
An analytical solution is presented in this paper to study the time‐dependent settlement behaviour of a rigid foundation resting on a transversely isotropic saturated soil layer. The governing equations for a transversely isotropic saturated soil, within Biot's poroelasticity framework, are solved by means of Laplace and Hankel transforms. The problem is subsequently formulated in the Laplace transform domain in terms of a set of dual integral equations that are further reduced to a Fredholm integral equation of the second kind and solved numerically. The developed analytical solution is validated via comparison with the existing analytical solution for an isotropic saturated soil case, and adopted as a benchmark to examine the sensitivities of the mesh refinement and the locations of truncation boundaries in the finite element simulations using ABAQUS. Particular attention is paid to the influences of the degree of soil anisotropy, boundary drainage condition, and the soil layer thickness on the consolidation settlement and contact stress of the rigid foundation. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
This investigation is concerned with the mathematical analysis of a viscoelastic prestressed pipe pile embedded in multilayered soil under vertical dynamic excitation. The pile surrounding soil is governed by the plane strain model, and the soil plug is assumed to be an additional mass connected to the pipe pile shaft by applying the distributed Voigt model. Meanwhile, the prestressed pipe pile is assumed to be a vertical, viscoelastic, and hollow cylinder governed by the one‐dimensional wave equation. Then, analytical solutions of the dynamic response of the pipe pile in the frequency domain are derived by means of the Laplace transform and impedance function transfer method. Subsequently, the corresponding quasi‐analytical solution in the time domain for the case of the prestressed pipe pile undergoing a vertical semi‐sinusoidal exciting force applied at the pile top is obtained by employing the inverse Fourier transform. Utilizing these solutions, selected results for the velocity admittance curve and the reflected wave curve are presented for different heights of the soil plug to examine the influence of weld properties on the vertical dynamic response of prestressed pipe pile. The reasonableness of the theoretical model is verified by comparing the calculated results based on the presented solutions with measured results. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
叶俊能 《岩土力学》2010,31(5):1597-1603
基于Biot波动理论,构建列车荷载-轨道系统-双层状横观各向同性饱和地基模型,将模型分为上覆路轨系统和地层系统。对上覆路轨系统和地层系统处理,并利用双重Fourier变换技术,在变换域中将横观各向同性饱和地基动力响应的求解简化为求解一个6阶控制方程的特征值问题,进而得到了列车荷载作用下双层横观各向同性饱和地基力响应的解析结果。利用离散Fourier逆变换得到数值计算结果,重点分析了上下土层的刚度和泊松比对位移和孔隙水压力和剪切应力响应的影响,结果表明,上、下土层刚度差异对地基动力响应有较大影响,土层各向异性参数中模量的影响较泊松比大。计算结果可为软土路基加固深度的确定提供理论依据。  相似文献   

12.
In this paper, an analytical expression for the deflection of a thin circular elastic plate resting on the Pasternak foundation is derived by adopting the strain energy approach. The parametric study is carried out to observe the location of the plate lift-off and the variation of the deflection profiles for comparing the variation pattern reported in the literature based on an approximate solution technique. It is found that the radial distance of the point of lift-off of the plate decreases with increase in the values of both the shear modulus and the modulus of subgrade reaction of the foundation soil; the reduction being more for their lower values. It is also observed that the variation in deflection of the plate at any radial distance due to change in soil subgrade conditions is significant for lower values of modulus of subgrade reaction.  相似文献   

13.
An analytical approach using the three‐dimensional displacement of a soil is investigated to provide analytical solutions of the horizontal response of a circular pile subjected to lateral loads in nonhomogeneous soil. The rocking stiffness coefficient of the pile shaft in homogeneous soil is derived from the analytical solution taking into account the three‐dimensional displacement represented in terms of scalar potentials in the elastic three‐dimensional analysis. The lateral stiffness coefficient of the pile shaft in nonhomogeneous soil is derived from the rocking stiffness coefficient taking into account the rocking rotation of a rigid pile shaft. The relationship between horizontal displacement, rotation, moment, and shear force of a pile subjected to horizontal loads in nonhomogeneous soil is obtainable in the form of the recurrence equation. The formulation of the lateral displacement and rotation of the pile base subjected to lateral loads in nonhomogeneous soils is presented by taking into account Mindlin's equation and the equivalent thickness for soil layers in the equivalent elastic method. There is little difference between lateral, rocking, and couple stiffness coefficients each obtained from both the two‐dimensional and three‐dimensional methods except for the case of Poisson's ratio near 0.5. The comparison of results calculated by the current method for a pile subjected to lateral loads in homogeneous and nonhomogeneous soils has shown good agreement with those obtained from analytical and numerical methods. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
张玲  赵明华  赵衡 《岩土力学》2012,33(8):2543-2550
将桩基承台梁视为置于弹性地基上的有限长梁,将竖向桩体及承台梁下桩间土体视为刚度不同的弹簧系列,基于Winkler弹性地基梁理论,推导出考虑桩土共同工作的承台梁竖向位移控制微分方程,并给出其幂级数半解析解,进而导得了在集中荷载、外加弯矩及分布荷载共同作用下桩基承台梁的竖向位移、转角、弯矩及剪力的计算公式。最后通过与链杆法、Newmark法的比较,验证了本文幂级数解答的正确性。在此基础上,探讨分析了基桩差异性、承台梁下土体作用、桩径及荷载形式等因素对桩基承台梁受力变形的影响。研究表明:当考虑上述因素影响时,桩基承台梁的竖向变形、弯矩及桩顶反力均发生不同程度的变化,因此,在实际的设计计算中应予以考虑。  相似文献   

15.
Luan  Lubao  Zheng  Changjie  Kouretzis  George  Ding  Xuanming  Poulos  Harry 《Acta Geotechnica》2020,15(12):3545-3558

Τhis paper presents an analytical method for calculating the steady-state impedance factors of pile groups of arbitrary configuration subjected to harmonic vertical loads. The derived solution allows considering the effect of the actual pile geometry on the contribution of pile-soil-pile interaction to the response of the group, via the introduction of a new dynamic interaction factor, defined on the basis of soil resistance instead of pile displacements. The solution is first validated against a published solution for single piles that accounts for the effect of pile geometry on the generated ground vibrations. Accordingly, we show that the derived soil attenuation factor agrees well with existing solutions for pile groups in the high frequency range, but considerable differences are observed in both the stiffness and damping components of the computed impedance when the relative spacing between piles decreases. Numerical results obtained for typical problem parameters suggest that ignoring pile geometry effects while estimating the contribution of pile-soil-pile interaction in the response may lead to inaccurate results, even for relative large pile group spacings.

  相似文献   

16.
周凤玺  曹永春  赵王刚 《岩土力学》2015,36(7):2027-2033
基于线弹性动力学理论,结合坐标变换,建立了移动荷载作用下非均匀弹性半平面地基的动力控制方程,利用半解析法研究了移动荷载作用下二维非均匀地基的动力响应问题。采用傅里叶(Fourier)级数展开,假设了响应函数的级数形式,通过理论推导获得了剪切模量随深度任意变化的非均匀地基在移动荷载作用下各物理量的解析表达式。考虑土体的剪切模量沿厚度方向按幂函数梯度变化,通过数值算例分析并讨论了地基非均匀参数、荷载移动速度以及地基表面的剪切模量等对地基力学响应的影响规律,并与均质地基的计算结果进行了比较。数值结果表明:地基中各点的竖向位移随着土体表面剪切模量和表征土体非均匀性的梯度因子的增大而减小,随着荷载移动速度的增大而增大。在移动荷载作用下,非均匀地基与均匀地基的动力响应有着显著的区别。  相似文献   

17.
提出一种多向荷载作用下层状地基中刚性桩筏基础的计算方法。基于剪切位移法,采用传递矩阵形式分析了竖向荷载下桩顶面-桩顶面相互作用;引入修正桩侧地基模量,采用有限差分法分析了水平荷载下桩顶面-桩顶面相互作用;基于层状弹性半空间理论,分析了多向荷载下桩顶面-土表面、土表面-桩顶面、土表面-土表面的相互作用关系。建立了桩土体系柔度矩阵,得到了多向荷载下层状地基中刚性桩筏基础的受力和变形的关系以及桩的内力和变形沿桩身分布规律。通过与有限元对比,验证了该方法的合理性和修正地基模量的优越性,并对多向荷载作用下的桩筏基础进行了计算分析,计算结果表明,水平力将会引起桩筏基础的倾斜。  相似文献   

18.
双层地基水平受荷桩受力变形分析   总被引:1,自引:0,他引:1  
张玲  赵明华  赵衡 《岩土力学》2011,32(Z2):302-305
基于双层地基中的水平受荷桩的特性,对其受力变形进行了分析。将水平受荷桩视为竖直放置的弹性地基梁,基于Winkler弹性地基梁理论,考虑桩土共同工作得到水平受荷桩位移控制微分方程及其幂级数解答,进而根据内力与位移的连续条件得到了由桩顶受力及变形条件表示任一深度处桩身的水平位移、转角、弯矩及剪力的计算矩阵表达式。通过一具体算例将幂级数解计算结果与《公路桥涵地基与基础设计规范》推荐的简化计算公式计算结果进行了比较。结果表明:当第1层地基土的厚度在某一定值时,《规范》简化计算方法所得结果与幂级数解接近;但当层厚不在该值附近时,两个方法计算结果存在差异。  相似文献   

19.
基于Terzaghi一维固结理论,分析了考虑半透水边界条件的分数阶导数黏弹性饱和土层在随时间变化的任意荷载作用下一维固结问题。首先,应用Laplace变换联立求解饱和土层一维固结微分方程和分数阶Kelvin-Voigt黏弹性本构方程,推导出有效应力和沉降在Laplace变换域内的解析解,采用Crump方法进行Laplace逆变换,得到了时间域内的半解析解。然后将本文得到的半解析解分别退化为半透水边界条件下基于黏弹性假设的一维固结半解析解和双面透水边界条件下基于分数阶黏弹性假设的一维固结半解析解,结果与已有文献的半解析解相同,验证了本研究所提出解的可靠性。最后通过算例分别考察了半透水边界参数、分数阶黏弹性模型参数和荷载参数对饱和土层固结沉降的影响。研究表明,半透水边界条件参数、分数阶次与黏滞系数主要影响饱和土层固结的发展快慢,而饱和土层的最终沉降量主要受到土层压缩模量的影响;另外,饱和土层的固结规律与外荷载变化规律一致。  相似文献   

20.
Axisymmetric consolidation of a poroelastic soil layer with a compressible fluid constituent induced by groundwater drawdown was studied based on Biot’s axisymmetric consolidation theory. Laplace and Hankel transforms were employed to solve the governing equation. Explicit analytical solutions are obtained in the Laplace–Hankel transform domain when groundwater drawdown is induced by a constant pumping well. Based on the solutions, numerical computations were performed to study the influences of the compressibility of the fluid constituent on the consolidation behavior of the soil layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号