首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of indoor radon concentration measurements in 120 dwellings of district Sudhnuti of Azad Kashmir. Measurements were taken with CR-39 passive alpha track detector. CR-39 based box type radon detectors were installed in a bedroom and living rooms of each house. The detectors were retrieved after exposing to indoor radon for period of 6 months and then etched in 6 M NaOH at 80°C for 16 h, the observed track densities were converted in to the indoor radon concentration. Indoor radon concentration varied from 20 ± 12 to 170 ± 4 Bq m−3 for the houses of the district Sudhnuti. Arithmetic mean (AM), geometric mean (GM) and geometric standard deviations (GSD) were found to be 82 ± 6, 77 ± 6 and 1.51, respectively. The minimum value of weighted average radon concentration was recorded in one of the house of Mang town, whereas the maximum value was found in the Pattan Sher Khan region. Doses due to indoor radon exposure vary from 0.50 ± 0.31 to 4.28 ± 0.11 mSv year−1 AM, GM and GSD. of mean effective doses were found to be 2.06 ± 0.13, 1.95 ± 0.18 and 1.51, respectively. According to the recommendations made by the Health Protection Agency, UK (200 Bq m−3) all the houses surveyed are within the safe limits.  相似文献   

2.
It has been established that radon and its airborne decay products can present serious radiation hazards. A long term exposure to high concentration of radon causes lung cancer. Besides, it is also known that out of the total radiation dose received from natural and man-made sources, 60% of the dose is due to radon and its progeny. Taking this into account, an attempt has been made to estimate radon concentration in dwellings in and around Guwahati using aluminium dosimeter cups with CR-39 plastic detectors. Results of preliminary investigation presented in this paper show that the mean concentration is 21.31 Bq m − 3.  相似文献   

3.
Primordial radionuclides in sand sediments that are often used as constructing materials are one of the sources of radiation hazard in dwellings. Activity concentrations of the primordial radionuclides of 40K, 226Ra and 232Th have been measured in sand sediments collected from streams and streamlets lying within and around the uranium mineralization deposit blocks of Kylleng-Pyndensohiong, Mawthabah Areas of West Khasi Hills District, Meghalaya, India. The technique of gamma-ray spectroscopy using a NaI(Tl) detector with a PC-based multi channel analyser was applied for determination of the activity concentrations. The activity of the sand sediments obtained in this study ranges from 95.3 to 1,088.8 Bq kg−1 for 40K; 38.3 to 784.1 Bq kg−1 for 226Ra and 78.0 to 316.1 Bq kg−1 for 232Th. Sand sediments from two sampling locations lying within the mineralization zone show highest concentrations of these radionuclides. The radiological hazards of the sand sediments were calculated using various models given in the literature. The radium equivalent activity was found to be higher than the accepted standard criterion value of 370 Bq kg−1 and the values of external and internal hazard indices were also found to be higher than unity in these two sampling locations. Besides these two sampling locations, a sampling location lying at a nearby distance from the mineralization zone also exhibits hazard indices values greater than unity.  相似文献   

4.
Radon is a radioactive hazardous and ubiquitous gas. It has been recognized to be one of the major contributors to natural radiation even causing lung cancer if present at enhanced levels. There are large variations in data available in the literature for radium content and radon exhalation rates of various materials. It is a well-documented fact that radon exhalation from the ground surface depends upon a number of parameters such as soil grain size, soil porosity and radium content. For this purpose, in this study the so-called can technique has been used to measure radium content and exhalation rates of radon in soil samples collected from different places of Aligarh, Etah and Mathura districts of Uttar Pradesh??a province in northern India. These districts lie within the subtropical region of the Indo-Gangetic plains. The values of effective radium content are found to vary from 8.11 to 112.83?Bq?kg?1 with a mean value of 33.21?Bq?kg?1 and a standard deviation of 28.15. The values of mass exhalation rates of radon vary from 0.76?×?10?6 to 15.80?×?10?6?Bq?kg?1?day?1 with a mean value of 4.21?×?10?6?Bq?kg?1?day?1, while the surface exhalation rates vary from 1.97?×?10?5 to 41.03?×?10?5?Bq?m?2?day?1 with a mean value of 10.93?×?10?5?Bq?m?2?day?1.  相似文献   

5.
The accepted standard state entropy of titanite (sphene) has been questioned in several recent studies, which suggested a revision from the literature value 129.3 ± 0.8 J/mol K to values in the range of 110–120 J/mol K. The heat capacity of titanite was therefore re-measured with a PPMS in the range 5 to 300 K and the standard entropy of titanite was calculated as 127.2 ± 0.2 J/mol K, much closer to the original data than the suggested revisions. Volume parameters for a modified Murgnahan equation of state: V P,T  = V 298° × [1 + a°(T − 298) − 20a°(T − 298)] × [1 – 4P/(K 298 × (1 – 1.5 × 10−4 [T − 298]) + 4P)]1/4 were fit to recent unit cell determinations at elevated pressures and temperatures, yielding the constants V 298° = 5.568 J/bar, a° = 3.1 × 10−5 K−1, and K = 1,100 kbar. The standard Gibbs free energy of formation of titanite, −2456.2 kJ/mol (∆H°f = −2598.4 kJ/mol) was calculated from the new entropy and volume data combined with data from experimental reversals on the reaction, titanite + kyanite = anorthite + rutile. This value is 4–11 kJ/mol less negative than that obtained from experimental determinations of the enthalpy of formation, and it is slightly more negative than values given in internally consistent databases. The displacement of most calculated phase equilibria involving titanite is not large except for reactions with small ∆S. Re-calculated baric estimates for several metamorphic suites yield pressure differences on the order of 2 kbar in eclogites and 10 kbar for ultra-high pressure titanite-bearing assemblages.  相似文献   

6.
Radon concentration was evaluated in dwellings of the urban area of Vila Real (Northern Portugal). The area is mainly composed of Hercynian granites and Cambrian metasediments, and CR-39 passive detectors (n = 112) were used for the purpose. The results obtained in winter conditions suggest that the most productive geological unit is the Hercynian granite G1 (geometric mean of 364 Bq/m3), while Cambrian metasediments of the Douro Group show the lowest average indoor radon concentration (236 Bq/m3). The geological, geochemical and radiological data obtained suggest that the most effective control on the radon concentrations of the area is related with the uranium content of the rocks; indeed, the highest contents were observed in granite G1 (21 ppm) and the lowest in the metasediments (3 ppm). This is also confirmed by the results obtained for groundwater, where granites present the highest concentrations of dissolved radon (up to 938 Bq/l), uranium (5–18 ppb) and gross α activities (0.47–0.92 Bq/l). No important radiometric anomalies were found in relation with geological structures such as faults, veins and contacts, but a moderate increase of the uranium content can occur locally in such structures. Petrographic observations and SEM studies show that uranium is mainly contained within the rock in heavy accessory minerals (apatite, zircon, monazite, xenotime), which reduces radon emanation. Notwithstanding, due to the high U contents granites show a significant potential to induce indoor radon concentrations in dwellings in excess of the recommended value of 400 Bq/m3. Overall, we can conclude that the region of Vila Real presents a moderate to high radon risk in dwellings and groundwater.  相似文献   

7.
The construction of the European Geogenic Radon Map in a proposed grid system 10 × 10 km requires the data test to derive the probability of exceeding the indoor action level 200 Bq m−3 from the geologically based data. The Czech Republic disposes both indoor and soil gas data sets to test the real probability to exceed 200 Bq m−3 from indoor radon measurements and to compare it with the probability calculated from soil gas radon concentrations. Comparison of real and calculated probability enables to delineate the areas, where under- or overestimation can be expected. The results of data processing show minor differences between processing the raw data in generalised polygons of geological units and in a grid net, when using the generalised geological characteristics of grid cells.  相似文献   

8.
Compositional depth profiles in the leached layer of feldspar surfaces are usually interpreted by using analytical solutions which introduce oversimplifying assumptions. Here we present a general multicomponent interdiffusion numerical model for simulating cation release from a preferentially leached layer on feldspar surfaces in acid solutions. The numerical model takes into account interdiffusion, dissolution of the solid phase (represented by a moving boundary problem), and adsorption in the leached layer. Effective diffusion coefficients of ions vary with concentration along the leached layer. Governing equations of ions diffusion in the leached layer are solved numerically with a finite element method implemented in a multicomponent reactive transport code, CORE3D, previously verified against analytical solutions of compositional depth profiles. The numerical model is tested with published X-ray photoelectron spectroscopy (XPS) data on early development of compositional profiles of labradorite leached in pH 2 HCl solutions. Model parameters are estimated by fitting depth profiles of Ca and Al measured at 12, 26, 48, 72, and 143 h. The best fit is achieved with tracer diffusion coefficients of 4 × 10−18, 8 × 10−17, 3.4 × 10−17, and 7 × 10−18 cm2/s for H, Na, Ca, and Al, respectively, which fall within the range of values reported in the literature. Our estimate of the retreat velocity corresponding to the dissolution rate is 3 × 10−13 cm/s. Results of sensitivity runs show that computed compositional profiles are sensitive to most model parameters.  相似文献   

9.
The Jinding Pb-Zn deposit in Yunnan Province is the representative of a Cd-enriched area and mining activities lead to the release of Cd into the hypergenic ecosystem, resulting in Cd pollution. The concentrations of Cd vary greatly from one type to another type of rocks in the mining district. In the host rock, Cd concentrations range from 50×10^-6 to 650×10^-6 with an average of 310×10^-6. In primary ores, Cd concentrations range from 14×10^-6 to 2800×10^-6 with an average of 767×10^-6. However, in oxidized ores, Cd concentrations are highest, varying within the range of 110×10^-6 to 8200×10^-6 , averaging 1661×10^-6. It is shown that the oxidized ores are the main carder and environmental source of Cd. Leaching test showed that Pb/Zn ores are easy to oxidize and thereafter release Cd and other harmful elements. These leached elements in the leachate may be precipitated rapidly in the order of Zn〉Pb〉Cd. As for the concentration distribution of Cd in the Bijiang River, it is estimated to be 15.7 μg/L Cd in water, 49.3 mg/L in suspended substances, and 203.7 mg/L in sediments. The average value of Cd in soil from the polluted area is 83.0 mg/kg. Natural weathering of Cd-rich rocks and minerals imposes a potential environmental risk on the aquatic ecosystem of the Bijiang catchment.  相似文献   

10.
Radon, thoron, and their progeny are largest contributors to the radiation dose received by human beings present in the natural environment. The indoor radon depends upon many factors such as building materials, meteorology, ventilation, and occupant’s behavior. This paper presents the measurements of indoor radon, thoron, and their progeny in four villages in rural area of district Kanshiram Nagar (Kasganj) in the state of Uttar Pradesh in Northern India. The concentration of indoor radon and thoron varies from 10.32 to 72.24 and 11.61 to 84.49 Bq m?3 with a geometric mean (GM) of 29.49 and 31.20 Bq m?3, respectively. The concentration of radon and thoron daughters was found to vary from 1.11 to 7.80 and 0.31 to 2.28 mWL, respectively. The annual exposure due to radon and thoron mainly vary from 0.05 to 0.30 WLM. The preliminary results (i.e., bare mode exposure of the LR-115 detectors fixed on cards) of this study have been separately published and compared this recent data with those results.  相似文献   

11.
Terra rossa and eutric cambisol soils were surveyed in Slovenia. At both sites, 6–13 boreholes were drilled in a regular 24 m × 24 m square grid. Soil samples from various depths were taken for gamma spectrometric analysis, and radon in soil gas was measured at a depth of 80 cm using an AlphaGuard instrument. The following ranges of activity concentration (Bq kg−1) were obtained for 238U, 226Ra, 228Ra, 40K and 137Cs: in terra rossa, 64–74, 70–84, 45–49, 293–345, 20–30 and, in eutric cambisol, 55–80, 132–147, 50–57, 473–529, 106–272. Radon activity concentrations in both soils ranged from about 100 kBq m−3 to 370 kBq m−3.  相似文献   

12.
Two years of in situ radon concentration measurements in the atmospheric surface layer have been collected in a central Italy town (L’Aquila), located in the Aterno river valley. These data have been analyzed in order to study the controlling mechanisms of surface radon abundance; observations of coincident meteorological parameters confirmed the role of dynamics on the local removal rate of this tracer. The relatively high negative correlation of hourly data of surface wind speed and radon activity concentration (R = −0.54, on annual scale) suggests that dynamical removal of radon is one of the most important controlling processes of the tracer accumulation in the atmospheric surface layer. An attempt is made to quantify the precipitation impact on radon soil fluxes. No anticorrelation of radon and precipitation comes out from the data (R = −0.15), as in previous studies. However, since the main physical parameter affecting the ground radon release is expected to be the soil accumulation of water, snow or ice, the emission flux has also been correlated with soil moisture; in this way a much clearer anticorrelation is found (R = −0.54).  相似文献   

13.
Symptoms of dental fluorosis have been observed in rural communities located in the Sierras Pampeanas de Córdoba, a mountainous area in Central Argentina. The clinical assessment was performed in the Charbonier Department, where the fluoride (F) intake was determined to be 3.90 ± 0.20 mg day−1 (n = 16). In this community, mild and severe fluorosis reach an incidence of 86.7% (total teeth surface = 636 teeth) among the children population. To determine the origin and distribution of fluorine in natural waters from the Charbonier Department and nearby regions, sampling was performed in the area covering the San Marcos River basin. The obtained results show that F concentrations vary between ~1 to ~2.5 mg l−1, with an outlier value of 8 mg l−1. The spatial distribution of F shows that the lowest concentrations are found at the basin’s catchments. Maximum values are located in two sectors of the basin: the Charbonier depression in the eastern part and at the San Marcos village, downstream the main collector, in the western part of the basin. In these two regions, the F contents in ground- and surface waters are >2.0 mg l−1 and nearly constant. Dissolved F in natural waters from the study area has its origin in the weathering of F-bearing minerals present in the region’s dominant lithology. The extent of mineral weathering is mostly determined by the residence time of water within the aquatic reservoir. Longer residence times and a major solid–water interaction lead to enhanced release of F. This explains the higher F concentrations found in basin areas with lower run off. The removal of F from water appears to occur by neither fluorite precipitation, nor by adsorption. Hence, variations in F concentrations seem to be more related to regional hydrological conditions.  相似文献   

14.
The heat capacity at constant pressure, C p, of chlorapatite [Ca5(PO4)3Cl – ClAp], and fluorapatite [Ca5(PO4)3F – FAp], as well as of 12 compositions along the chlorapatite–fluorapatite join have been measured using relaxation calorimetry [heat capacity option of the physical properties measurement system (PPMS)] and differential scanning calorimetry (DSC) in the temperature range 5–764 K. The chlor-fluorapatites were synthesized at 1,375–1,220°C from Ca3(PO4)2 using the CaF2–CaCl2 flux method. Most of the chlor-fluorapatite compositions could be measured directly as single crystals using the PPMS such that they were attached to the sample platform of the calorimeter by a crystal face. However, the crystals were too small for the crystal face to be polished. In such cases, where the sample coupling was not optimal, an empirical procedure was developed to smoothly connect the PPMS to the DSC heat capacities around ambient T. The heat capacity of the end-members above 298 K can be represented by the polynomials: C pClAp = 613.21 − 2,313.90T −0.5 − 1.87964 × 107 T −2 + 2.79925 × 109 T −3 and C pFAp = 681.24 − 4,621.73 × T −0.5 − 6.38134 × 106 T −2 + 7.38088 × 108 T −3 (units, J mol−1 K−1). Their standard third-law entropy, derived from the low-temperature heat capacity measurements, is S° = 400.6 ± 1.6 J mol−1 K−1 for chlorapatite and S° = 383.2 ± 1.5 J mol−1 K−1 for fluorapatite. Positive excess heat capacities of mixing, ΔC pex, occur in the chlorapatite–fluorapatite solid solution around 80 K (and to a lesser degree at 200 K) and are asymmetrically distributed over the join reaching a maximum of 1.3 ± 0.3 J mol−1 K−1 for F-rich compositions. They are significant at these conditions exceeding the 2σ-uncertainty of the data. The excess entropy of mixing, ΔS ex, at 298 K reaches positive values of 3–4 J mol−1 K−1 in the F-rich portion of the binary, is, however, not significantly different from zero across the join within its 2σ-uncertainty.  相似文献   

15.
Surface tension (σ) profoundly influences the ability of gas bubbles to nucleate in silicate melts. To determine how temperature impacts σ, experiments were carried out in which high-silica rhyolite melts with 5 wt% dissolved water were decompressed at temperatures that ranged from 775 to 1,085°C. Decompressions were also carried out using dacite melts with 4.3 wt% dissolved water at 1,150°C. Water bubbles nucleated in rhyolite only when decompressions exceeded 95 MPa at all temperatures. Bubbles nucleated in number densities that increased as decompression increased and at hotter temperatures at a given amount of decompression. After correcting decompression amounts for temperature differences, values for σ were estimated from nucleation rates and found to vary between 0.081 and 0.093 N m−1. Surface tension decreases as temperature increases from 775 to 875°C, but then increases as temperature increases to 1,085°C. Those values overlap previous results, but only when melt viscosity is less than 104 Pa s. For low-viscosity rhyolite, there is a strong correlation of σ with temperature, in which σ increases by 6.9 × 10−5 N m−1 C−1. That variation is robust for 5–9 wt% dissolved water, as long as melt viscosity is ≤104 Pa s. More viscous rhyolite deviates from that correlation probably because nucleation is retarded in stiffer melts. Bubbles nucleated in dacite when decompressions exceeded 87 MPa, and occured in one or more events as decompression increased. Surface tension is estimated to be 0.083 (±0.001) N m−1 and when adjusted for temperature agrees well with previous results for colder and wetter dacite melts. At a given water content, dacite melts have lower surface tensions than rhyolite melts, when corrected to a fixed temperature.  相似文献   

16.
A bulk geochemical study has been carried out on fluid inclusion leachates extracted from quartz veins from porphyry Cu deposits in Butte, Montana, USA and Bingham Canyon, Utah, USA. The leachates mostly represent low-salinity magmatic–hydrothermal fluid inclusions. Their halogen ratios (Br/Cl) of fluid inclusion leachates were determined by ion chromatography, and δ37Cl values of the leachates were measured by continuous-flow isotope ratio mass spectrometry. Br/Cl ratios from early pre-Main stage and later Main stage veins at Butte range from 0.60 to 1.88 × 10−3 M. Ratios are similar in pre-Main stage veins with sericite bearing selvages and Main stage samples ranging from 0.81 to 1.08 × 10−3 and from 0.92 to 1.88 × 10−3 M, respectively, clustering below seawater (1.54 × 10−3 M) and overlapping mantle values (~1–2 × 10−3 M). Two samples associated with early pre-Main stage potassic alteration yield distinctly lower Br/Cl ratios of 0.60 and 0.64 × 10−3 M. Butte δ37Cl values range from −0.8‰ to −2.3‰ with no significant difference between pre-Main stage and Main stage samples. Br/Cl ratios for quartz veins from Bingham Canyon range from 0.18 to 3.68 × 10−3 M. Br/Cl ratios from Bingham range above and below previously reported for porphyry copper deposits. In contrast to Butte, δ37Cl values for Bingham are lower, ranging from −0.9‰ to −4.1‰. In the absence of any processes which can significantly fractionate chlorine isotopes at high temperatures, we suggest that the porphyry system at Bingham, and to a lesser extent at Butte, have inherited negative chlorine isotopic signatures from the subducting slab generated at low temperatures.  相似文献   

17.
The activity concentration and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides (232Th, 226Ra and 40K) were determined in soil samples collected from ten different locations of Sirsa district of Haryana, using HPGe detector based on high-resolution gamma spectrometry system. The range of activity concentrations of 226Ra, 232Th and 40K in the soil samples from the studied areas varies from 19.18 Bq kg−1 (Moriwala) to 40.31 Bq kg−1 (Rori), 59.43 Bq kg−1 (Pipli) to 89.54 Bq kg−1 (Fatehpur) and 223.22 Bq kg−1 (Moriwala) to 313.32 Bq kg−1 (SamatKhera) with overall mean values of 27.94, 72.75 and 286.73 Bq kg−1 respectively. The absorbed dose rate calculated from activity concentration of 226Ra, 232Th and 40K ranges between 8.84 and 18.58, 37.02 and 55.78, and 9.24 and 12.97 nGy h−1, respectively. The total absorbed dose in the study area ranges from 60.40 to 82.15 nGy h−1 with an average value of 70.12 nGy h−1. The calculated values of external hazard index (H ex) for the soil samples of the study area range from 0.36 to 0.49 with an average value of 0.42.  相似文献   

18.
An attempt was made to evaluate background concentrations of Cd, Cu, Pb and Zn by means of geochemical and statistical approach. As many as 753 samples taken from 51 profiles located in Eastern Poland were analysed. For the estimation of geochemical background values, direct geochemical methods and a statistical analysis for the whole population of samples were applied. Average values of heavy metal concentration in loess sediments (bedrock) as well as in profiles not affected by human activity were measured. The iterative 2σ technique and calculated distribution function were chosen as statistical methods. The resulting values (background concentrations range) were as follows: Cd 0.5–0.9 mg kg−1, Cu 5–16 mg kg−1, Pb 12–26 mg kg−1 and Zn 31–47 mg kg−1. All the methods applied gave similar results. The highest deviation of the background was noted for Cu and the lowest for Zn. The lowest values of background were obtained for loess sediments and the highest in the case of the multiple 2σ method.  相似文献   

19.
1IntroductionOnthenorthernmarginoftheNorthChinaplatformislocatedoneofthemostimportantAu Ag polymetallicore concentratedzones,wherethereareavarietyoforetypes .Soithasbeenat tractingeverincreasingattentionofmanygeologists (PeiRongfuetal.,1 998;ShenBaofengetal.,1 994 ;LuSongnianetal.,1 997;HuShouxietal.,1 994 ;ChenYuchuan ,1 999;ZhaiYushengetal.,1 999) .Manyscholarspresentedtheirresearchresultsinvariousaspects.How ever ,thesourceofore formingmaterialshaslongbeenafocusofdiscussion .Studieso…  相似文献   

20.
The Zálesí vein-type deposit is hosted by Early Paleozoic high-grade metamorphic rocks on the northern margin of the Bohemian Massif. The mineralization is composed of three main stages: uraninite, arsenide, and sulfide. The mineral assemblages formed at low temperatures (~80 to 130°C, locally even lower) and low pressures (<100 bars). The salinity of the aqueous hydrothermal fluids (0 to 27 wt.% salts) and their chemical composition vary significantly. Early fluids of the oldest uraninite stage contain a small admixture of a clathrate-forming gas, possibly CO2. Salinity correlates with oxygen isotope signature of the fluid and suggests mixing of brines [δ 18O around +2‰ relative to standard mean ocean water (SMOW)] with meteoric waters (δ 18O around −4‰ SMOW). The fluid is characterized by highly variable halogen ratios (molar Br/Cl = 0.8 × 10−3 to 5.3 × 10−3; molar I/Cl = 5.7 × 10−6 to 891 × 10−6) indicating a dominantly external origin for the brines, i.e., from evaporated seawater, which mixed with iodine-enriched halite dissolution brine. The cationic composition of these fluids indicates extensive interaction of the initial brines with their country rocks, likely associated with leaching of sulfur, carbon, and metals. The brines possibly originated from Permian–Triassic evaporites in the neighboring Polish Basin, infiltrated into the basement during post-Variscan extension and were finally expelled along faults giving rise to the vein-type mineralization. Cenozoic reactivation by low-salinity, low-δ 18O (around −10‰ SMOW) fluids of mainly meteoric origin resulted in partial replacement of primary uraninite by coffinite-like mineral aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号