首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of the charged particles are followed during contraction of a model of an interstellar cloud, with initial density number of n = 10 cm–3. The contraction is followed up to density increase by five orders of magnitude. Special care is given to the details of the negative ions. In addition, we have tested the ambipolar diffusion according to the results of the ion density.The results predict the importance of atomic ions in the diffuse regions. H+ and C+ are distinctly enhanced in the beginning of contraction but decrease as contraction proceeds. Molecular ions enhance as contraction proceeds and becomes important in dense regions. The most enhanced molecular ions are HCO+, O2 +, C2H3 +, H3O+ and SO+, H3 + is less abundant. The atomic ions (except metalic ions) decrease noticeably as density increases. In general the negative ions are of negligible fractional abundances. It has also been found that the time of ambipolar diffusion is shorter than the dynamical time, hence the magnetic field should be weakened in the central core as the central density increases to n = 104 cm–3.  相似文献   

2.
We have constructed models for a region of low mass star formation where stellar winds ablate material from dark dense cores and return it to a translucent intercore medium from which subsequent generations of cores condense. Depletion of gas phase species onto grains plays a major role in the chemistry. For reasonable agreement between model core chemical fractional abundances and measured TMC-1 fractional abundances to obtain, the core collapse, once started, must be relatively uninhibited by turbulence or magnetic fields and the core lifetime must fall in a limited range determined by the assumed depletion rates. In a core with the TMC-1 fractional abundances, CH, OH, C2H, H2CO, HCN, HNC, and CN are the only simple species that have been detected in TMC-1 at radio and millimeter wavelengths to have fractional abundances that are roughly constant or increasing with time; this result bears considerably on previous work concerned with searches for spectroscopic evidence for and the diagnosis of collapse during protostellar formation, but depends on the fractions of the OH and CH emissions that are associated with the core centre rather than more extended gas or a core-stellar wind boundary layer. Model results for the abundance ratios of H2O, CH4, and NH3 ices are in good agreement with those inferred for Halley's Comet.  相似文献   

3.
High velocity jets from young stars interact with the surrounding molecular environment and molecular outflows quite possibly are the result. This interaction can take place through the formation of a turbulent mixing layer. Models have been constructed (following Cant/'o and Raga) of a plane mixing layer in the boundary between a high velocity, atomic wind (i.e., the stellar jet) and a stationary, molecular environment, computed considering a detailed chemical network.The chemical composition of the mixing layer initially corresponds to the direct mixture of the (atomic) jet and (molecular) environmental material. However, we find that the mixing layer is hot (with temperatures exceeding 104 K), and the surprising only partial dissociation of H2 means that a number of molecules are either created or survive in the high velocity gas. This contrasts with the slower, cooler flows that have tended to be termed a molecular outflow.The emission from such atomic jet/molecular environment mixing layers is dominated by emission in the rotational and vibrational lines of H2. As a result of the high temperatures and velocities (ranging from zero to the jet velocity) of these mixing layers, the predicted H2 emission line spectrum has interesting characteristics.  相似文献   

4.
We have constructed a chemical reaction model in a contracting interstellar cloud including 104 species which are involved in a network of 557 reactions. The chemical kinetic equations were integrated as a function of time by using gear package. The evolution of the system was followed in the density range 10–107 particles cm-3.The calculated fractional abundances of the charged species are in good agreement with those given by other investigators. The charge density has been followed in diffuse, intermediate and dense regions. The most dominant ionic species are metallic ions, HCO+ and H 3 + in the shielded regions and atomic ions H+, C+, Si+, He+, S+ and metal ions in the diffuse and intermediate regions. The abundances of negatively charged ions were found to be negligible. The results of the calculations on the different metallic ions are interpreted.  相似文献   

5.
Measured fractional abundances for stratospheric positive ions are reported for the first time. The measurements which were obtained from balloon-borne ion mass spectrometer experiments relied on recent simulation studies of electric field induced cluster ion dissociation conducted at our laboratory.The ion abundance data provide strong support for identifications of the observed ions as H+(H2O)n and Hx+xL(H2O)m proposed previously. Moreover, it is found that x most likely cannot be identified as NaOH or MgOH which implies that gaseous metal compounds do not exist in the middle stratosphere in significant abundances.Implications of the present findings for the composition and chemistry of stratospheric ions as well as for stratospheric aerosols are discussed.  相似文献   

6.
The formation of first molecules, negative Hydrogen ions, and molecular ions in a model of the Universe with cosmological constant and cold dark matter is studied. The cosmological recombination is described in the framework of modified model of the effective 3-level atom, while the kinetics of chemical reactions is described in the framework of the minimal model for Hydrogen, Deuterium, and Helium. It is found that the uncertainties of molecular abundances caused by the inaccuracies of computation of cosmological recombination are approximately 2–3%. The uncertainties of values of cosmological parameters affect the abundances of molecules, negative Hydrogen ions, and molecular ions at the level of up to 2%. In the absence of cosmological reionization at redshift z = 10, the ratios of abundances to the Hydrogen one are 3.08 × 10–13 for H, 2.37 × 10–6 for H2, 1.26 × 10–13 for H2+, 1.12 × 10–9 for HD, and 8.54 × 10–14 for HeH+.  相似文献   

7.
Photoionization of the upper atmosphere of Titan by sunlight is expected to produce a substantial ionospheric layer. We have solved one-dimensional forms of the mass, momentum, and energy conservation equations for ions and electrons and have obtained electron number densities of about 103 cm?3, using various model atmospheres. The significant ions in a CH4H2 atmosphere are H+, H3+, CH5+, CH5+, CH3+, and C2H5+. Electron temperatures may be as high as 1000°K, depending on the abundance of hydrogen in the high atmosphere. Interaction of the solar wind with the ionosphere is also discussed.  相似文献   

8.
On 14 December 1971, during the maximum of the Geminid Meteor Shower, the positive ion composition was measured in the D- and E-regions above Sardinia. The payload was launched at 12:11 UT, and measurements were made between 68.5 and 152 km altitude. A magnetic sector type mass spectrometer with dual collector and a liquid helium cryopump was used. The instrument covered the mass range from 11 to 73 AMU and had a resolution at the 1 % level of MM = 60.In the E-region two distinct metal ion layers were observed, centred at 95 and 119 km, respectively. In the lower layer Fe+ and Mg+ were the most abundant metal ions, and in the upper layer Si+ was dominant. Si+ ions were conspicuously absent in the lower layer (Si+/Mg+ < 2 × 10−3). This particular behaviour of Si could be due to the inability of atomic oxygen to reduce SiO, whereas in the upper layer Si+ions might be formed directly by the charge rearrangement reaction SiO + O+ → Si++ O2. In addition, Na+, Al+, K+, Ca+, Ti+, Cr+, Ni+ and Co+ were also identified. The metal oxide ions AlO+ and SiO+ were detected, and probably also MgO+ and SiOH+. The concentrations of NO+ and O2+ show a deep minimum at the maximum of the lower metal ion layer. A very high neutral metal density of 6 × 107 cm−3 would be required to explain this feature as resulting from charge transfer reactions between the molecular and metal ions Such a high metal density is in contradiction to direct measurements and to cosmic dust influx rates. The isotopic ratios of Mg+, Si+, and of the major isotopes of Fe+ and Ni+ were measured, some of them with an accuracy of a few per cent (25Mg+/24Mg+ = 0.124 ± 0.006; 26Mg+/24Mg+ = 0.139 ± 0.008; 29Si+/28Si+ = 0.050 ± 0.004; 54Fe+/56Fe+ = 0.069 ± 0.005; 57Fe+/56Fe+ = 0.029 ± 0.004; 60Ni+/58Ni+ = 0.31 ± 0.12). The isotopic ratios agree within the experimental errors with the corresponding terrestrial ratios, thus giving evidence that these elements have the same isotopic composition in the Geminid meteors as in the Earth's crust, in chrondrites, and in lunar material.In the D-region the ions Na+H2O, Na+(H2O)2, NaO+ and NaOH+ were tentatively identified. Below 95 km altitude the relative abundances of the ions 32+, 33+ and 34+ deviate from the values expected for molecular oxygen isotopes. Their abundances can not be explained by the presence of S-ions only, and we conclude that HO2+ and H2O2+ are present.The ion density profiles of the major D-region constituents show some remarkable deviations from typical D-region conditions. These deviations are related to the winter anomaly in ionospheric absorption observed over Spain during the launch day, and our data represent the first ion composition measurements during such conditions. In particular, H+(H2O)2 is the major ion only up to 77 km, and at 80 km altitude the NO+ concentration exceeds the total water cluster ion density by almost two orders of magnitude. An increase of the mesospheric NO, O3 and O concentrations as well as of the O/H2O ratio could explain the observed ion profiles. The low NO+/O2+ ratios of approximately unity measured in the E-region are in agreement with a strong downward transport of NO and/or O into the mesosphere during the launch day. A simple four-ion model was used to interpret our D-region data. The calculated neutral NO concentration increases from about 2 × 107 cm−3 at 85 km to 5 × 107 cm−3 at 80 km. In addition, evidence for an increased O2+ production rate above 83 km was found, probably due to an enhanced O3 concentration. We conclude that our data strongly support vertical transport of minor neutral consituents as cause of the winter anomaly.  相似文献   

9.
S.K. Atreya  T.M. Donahue 《Icarus》1975,25(2):335-338
The role of hydrocarbons as a possible sink for H+ and H3+ ions in the lower ionosphere of the outer planets is examined. Calculations indicate that H+ and H3+ are efficiently converted to hydrocarbon ions on reaction with methane. The terminal ions, CH5+ and C2H5+ are rapidly neutralized in dissociative recombination with electrons. Extreme ultraviolet photolysis of hydrocarbons as a potential additional source of lower elevation ions in investigated.  相似文献   

10.
Mass spectrometric measurements of the neutrals and positive ions in the Space Shuttle environment have indicated the presence of large amounts of contaminants, particularly CO2+ and H2O+. The ionic abundances are analyzed in terms of known ion-neutral kinetics and from this analysis absolute abundances of CO2 and H2O are calculated. The implication of these results for optical measurements is considered.  相似文献   

11.
S.A. Haider 《Icarus》2005,177(1):196-216
In this paper we have studied the chemistry of C, H, N, O, and S compounds corresponding to ions of masses ?40 amu in the inner coma of the Comet 1P/Halley. The production rates, loss rates, and ion mass densities are calculated using the Analytical Yield Spectrum approach and solving coupled continuity equation controlled by the steady state photochemical equilibrium condition. The primary ionization sources in the model are solar EUV photons, photoelectrons, and auroral electrons of the solar wind origin. The chemical model couples ion-neutral, electron-neutral, photon-neutral and electron-ion reactions among ions, neutrals, electrons, and photons through over 600 chemical reactions. Of the 46 ions considered in the model the chemistry of 24 important ions (viz., CH3OH+2, H3CO+, NH+4, H3S+, H2CN+, H2O+, NH+3, CO+, C3H+3, OH+, H3O+, CH3OH+, C3H+4, C2H+2, C2H+, HCO+, S+, CH+3, H2S+, O+, C+, CH+4, C+2, and O+2) are discussed in this paper. At radial distances <1000 km, the electron density is mainly controlled by 6 ions, viz., NH+4, H3O+, CH3OH+2, H3S+, H2CN+, and H2O+, in the decreasing order of their relative contribution. However, at distances >1000 km, the 6 major ions are H3O+, CH3OH+2, H2O+, H3CO+, C2H+2, and NH+4; along with ions CO+, OH+, and HCO+, whose importance increases with further increase in the radial distance. It is found that at radial distances greater than ∼1000 km (±500 km) the major chemical processes that govern the production and loss of several of the important ions in the inner coma are different from those that dominate at distances below this value. The importance of photoelectron impact ionization, and the relative contributions of solar EUV, and auroral and photoelectron ionization sources in the inner coma are clearly revealed by the present study. The calculated ion mass densities are compared with the Giotto Ion Mass Spectrometer (IMS) and Neutral Mass Spectrometer (NMS) data at radial distances 1500, 3500, and 6000 km. There is a reasonable agreement between the model calculation and the Giotto measurements. The nine major peaks in the IMS spectra between masses 10 and 40 amu are reproduced fairly well by the model within a factor of two inside the ionopause. We have presented simple formulae for calculating densities of the nine major ions, which contribute to the nine major peaks in the IMS spectra, throughout the inner coma that will be useful in estimating their densities without running the complex chemical models.  相似文献   

12.
One-dimensional radial models of the chemistry in cometary comae have been constructed for heliocentric distances ranging from 2 to 0.125 AU. The coma's opacity to solar radiation is included and photolytic reaction rates are calculated. A parent volatile mixture similar to that found in interstellar molecular clouds is assumed. Profiles through the coma of number density and column density are presented for H2O, OH, O, CN, C2, C3, CH, and NH2. Whole-coma abundances are presented for NH2, CH, C2, C3, CN, OH, CO+, H2O+, CH+, N2+, and CO2+.  相似文献   

13.
Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10 to 1400 cm−1 (1000-7 μm). In this paper we analyze a zonally averaged set of CIRS spectra taken at the highest (0.48 cm−1) resolution, firstly to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the ν4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm−1. Stratospheric temperatures at 5 mbar are generally warmer in the north than the south by 7-8 K, while tropospheric temperatures show no such asymmetry. Both latitudinal temperature profiles however do show a pattern of maxima and minima which are largely anti-correlated between the two levels. We then use the derived temperature profiles to infer the vertical abundances of C2H2 and C2H6 by modeling tropospheric absorption (∼200 mbar) and stratospheric emission (∼5 mbar) in the C2H2ν5 and C2H6ν9 bands, and also emission of the acetylene (ν4+ν5)−ν4 hotband (∼0.1 mbar). Acetylene shows a distinct north-south asymmetry in the stratosphere, with 5 mbar abundances greatest close to 20° N and decreasing from there towards both poles by a factor of ∼4. At 200 mbar in contrast, acetylene is nearly flat at a level of ∼3×10−9. Additionally, the abundance gradient of C2H2 between 10 and 0.1 mbar is derived, based on interpolated temperatures at 0.1 mbar, and is found to be positive and uniform with latitude to within errors. Ethane at both 5 and 200 mbar shows increasing VMR towards polar regions of ∼1.75 towards 70° N and ∼2.0 towards 70° S. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors of 2.7 and 3.5, respectively, at latitude 70°. However, the lifetime of C2H6 in the stratosphere (3×1010 s at 5 mbar) is much longer than the dynamical timescale for meridional mixing inferred from Comet SL-9 debris (5-50×108 s), and therefore the rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite occurs, with the relatively short photochemical lifetime (3×107 s), compared to meridional mixing times, ensuring that the expected photochemical trends are visible.  相似文献   

14.
The M17SW molecular cloud core has been mapped at high resolution in the C17OJ = 3 2 transition and in 450, 600, 800, 1100 and 1300µm continuum emission, using the JCMT. The clumpy nature of the cloud core is clearly revealed and the northern condensation has been resolved into 3 main clumps, each of which lies close to an H2O maser, suggesting that they may contain young embedded stellar objects.  相似文献   

15.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

16.
Abstract. We have constructed a chemical reaction system in a contracting interstellar cloud. In paper (I) we have presented the details of the physical and chemical scheme and the method of solution. The results of our chemical model produce fractional abundances of H2CO, CO, OH, H2O, SO and OCS which are in good agreement with the results of observations. On the other hand, the results of chlorine-bearing species are not in agreement with those of the observations. The calculated abundances of H2CO, CO, OH, H2O, SO, OCS and Cl+ are in agreement with the results of previous theoretical studies.  相似文献   

17.
Rate coefficients for several two- and three-body ion-molecule reactions involving hydrocarbons have been determined at thermal energies and above using drift tube-mass spectrometer techniques. The measured rates for clustering and breakup reactions involving CH5+ and C2H5+ ions in methane are found to be strongly temperature dependent in the range from 80 to 240 K. The equilibrium constants determined for these reactions differ somewhat from those of Hiraoka and Kebarle. Rate coefficients for two-body reactions of CH5+, C2H5+, N+, H+ and D+ ions with methane and/or ethane have been measured. The results indicate that the product yields of several of the fast ion-molecule reactions depend strongly on ion energy (temperature), and therefore previous room-temperature results may be of limited value for model calculations of Titan's atmosphere.  相似文献   

18.
High‐resolution mass spectrometry (HRMS) imaging by desorption electrospray ionization (DESI) coupled with Orbitrap MS using methanol (MeOH) spray was performed on a fragment of the Murchison (CM2) meteorite in this study. Homologues of CnH2n–1N2+ (= 7–9) and CnH2nNO+ (= 9–14) were detected on the sample surface by the imaging. A high‐performance liquid chromatography (HPLC)/HRMS analysis of MeOH extracts from the sample surface after DESI/HRMS imaging indicated that the CnH2n–1N2+ homologues corresponds to alkylimidazole, and that a few isomers of the CnH2nNO+ homologues present in the sample. The alkylimidazoles and CnH2nNO+ homologues displayed different spatial distributions on the surface of the Murchison fragment, indicating chromatographic separation effects during aqueous alteration. Moreover, the distribution pattern of compounds is also different among homologues. This is probably also resulting from the separation of isomers by similar chromatographic effects, or different synthetic pathways. Alkylimidazoles and the CnH2nNO+ homologues are mainly distributed in the matrix region of the Murchison by mineralogical observations, which is consistent with previous reports. Altered minerals (e.g., Fe‐oxide, Fe‐sulfide, and carbonates) occurred in this region. However, no clear relationship was found between these minerals and the organic compounds detected by DESI/HRMS imaging. Although this result might be due to scale differences between the spatial resolution of DESI/HRMS imaging and the grain size in the matrix of the Murchison, our results would indicate that alkylimidazoles and the CnH2nNO+ homologues in the Murchison fragment were mainly synthesized by different processes from hydrothermal alteration on the parent body.  相似文献   

19.
Simon Petrie 《Icarus》2004,171(1):199-209
We report results of quantum chemical calculations of Mg+/ligand bond dissociation energies involving ligands identified as major constituents of Titan's upper atmosphere. Trends identified in these results allow elucidation of the important bimolecular and termolecular reactions of Mg+, and of simple molecular ions containing Mg+, arising from meteoric infall into Titan's atmosphere. Our study highlights, and includes calculated rate coefficients for, crucial ligand-switching and ligand-stripping reactions which ensure that a dynamic equilibrium exists between atomic and molecular ions of Mg+. Neutralization of ionized meteoric Mg is expected to produce the radical MgNC in high yield. The highly polar MgNC radical should provide an excellent nucleation site for condensation of polar (e.g., HCN, CH3CN, and HC3N) and highly unsaturated (e.g., C2H2, C4H2, and C2N2) neutrals at comparatively high altitude, leading to precipitation of Mg-doped tholin-like material. The implications for Titan's prebiotic chemical evolution, of the surface deposition of such material (which may feasibly contain magnesium porphyrins, or other bioactive Mg-containing complexes) remain to be assessed.  相似文献   

20.
We have investigated the dependences of the fractional abundances of a number of species on the selective depletions of elemental carbon, nitrogen, oxygen and sulphur, as well as metals. Of the most commonly observed species, HCO+ is the one having the fractional abundance that is least sensitive to the selective elemental depletions and for this reason is a particularly appropriate species to study in efforts to diagnose collapse dynamics in star formation from the analysis of infall signatures in spectral line profiles. We suggest that a combination of molecules could be the focus of observations aimed at the investigation of collapse dynamics. Comparisons of the profiles of spectral features of these species would also give insight into the behaviours of the selective depletions of the different elements in the infalling gas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号