首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 870 毫秒
1.
【研究目的】本文旨在通过对比准噶尔盆地吉木萨尔地区二叠系芦草沟组高品位和低品位油页岩的品质和成因差异,揭示高品位油页岩的特殊成矿条件。【研究方法】对吉木萨尔地区两个剖面采集的露头样品,进行TOC、热解、含油率、微量、稀土元素测试,从而开展高品位和低品位油页岩有机地球化学特征,微量稀土元素特征及成矿条件差异分析。【研究结果】研究区高品位油页岩有机质类型为I型;低品位油页岩有机质类型为I-II1型。高品位和低品位油页岩中B、Ba、Cr、Nb、Sr、V、Zr等微量元素含量差异明显,高品位油页岩中各稀土元素平均含量和各样品稀土元素分布区间都小于低品位油页岩,且外源元素富集程度也相对更低,显示了更少的陆源碎屑输入。微量元素比值显示,研究区油页岩形成于温暖湿润气候,淡水—半咸水,还原环境。高品位油页岩与低品位油页岩相比,形成时水体盐度值更大,有机质生产力更高。【结论】温暖湿润气候背景下,相对较少的陆源碎屑供给,减少了对有机质的稀释和氧化破坏,同时较高的水体盐度值更利于水体分层,从而形成一个长时间的还原环境,再加上更高的有机质生产力,从而形成了高品位油页岩。  相似文献   

2.
《Applied Geochemistry》1993,8(5):473-481
The Maqarin area, northern Jordan, hosts some unusual, hyperalkaline (pH= 12.5) groundwaters discharging from thermally metamorphosed bituminous marls which formed through spontaneous, in situ combustion of the bitumen. The groundwaters have evolved geochemically through hydration, recarbonation and sulphatization of high temperature minerals. Mineralogical relations of the carbonate phases were examined by XRD and cathodoluminescence in conjunction with a detailed investigation of stable isotope ratios by Nd-YAG laser microsampling. Carbon-13 contents trace the sequence of alteration reactions, involving high temperature decarbonation of host biomic marl, followed by in situ recarbonation of secondary calcium hydroxide and calcium-silicate-hydrates (CSH).Carbonation took place shortly after thermal metamorphism, when non-saturated conditions allowed an atmosphere rich in CO2 from adjacent combustion zones to access reaction sites. Low δ18OCaCO3 values suggest that the earliest phase of recarbonation took place by reaction with hydroxide at elevated temperatures while later phases formed at cooler temperatures. Variable14 activities show that soil CO2 was a component of the later recarbonating atmosphere. Once saturated conditions prevailed in the alteration zone, recarbonation ended and alteration evolved to hydroxide and sulphate dissolution reactions. The recarbonation reactions are a field-scale analogue of recarbonation and14C attenuation in cementitious barriers for radioactive waste repositories.  相似文献   

3.
The partitioning of arsenate between Paraho indirectly retorted and directly retorted oil shales and a combusted oil shale was examined with batch equilibrium adsorption isotherms. Arsenate adsorption was found to conform to the Freundlich adsorption model, and the combusted oil shale was found to have the greatest affinity for arsenate. The indirectly and directly retorted oil shale samples did not have statistically different affinities for arsenate. The greater adsorption capacity of combusted oil shale for arsenate was attributed to greater surface area and free iron oxide. Arsenate adsorption by combusted oil shale was not reversible. Upon dilution of the solution phase, arsenate did not desorb. Upon dilution of the retorted oil shale solutions, arsenate continued to be removed from solution. An evaluation of metal arsenate stability in the spent oil shale systems indicated that the retorted oil shale solutions were highly supersaturated with respect to magnesium and barium arsenates, whereas the combusted oil shale solutions were not supersaturated. The data were interpreted to indicate that adsorption reactions control arsenate solubility at short reaction times. As reaction times increase, precipitation reactions control soluble arsenate concentrations.  相似文献   

4.
Crushed rock from two caprock samples, a carbonate-rich shale and a clay-rich shale, were reacted with a mixture of brine and supercritical CO2 (CO2–brine) in a laboratory batch reactor, at different temperature and pressure conditions. The samples were cored from a proposed underground CO2 storage site near the town of Longyearbyen in Svalbard. The reacting fluid was a mixture of 1 M NaCl solution and CO2 (110 bar) and the water/rock ratio was 20:1. Carbon dioxide was injected into the reactors after the solution had been bubbled with N2, in order to mimic O2-depleted natural storage conditions. A control reaction was also run on the clay-rich shale sample, where the crushed rock was reacted with brine (CO2-free brine) at the same experimental conditions. A total of 8 batch reaction experiments were run at temperatures ranging from 80 to 250 °C and total pressures of 110 bar (∼40 bar for the control experiment). The experiments lasted 1–5 weeks.Fluid analysis showed that the aqueous concentration of major elements (i.e. Ca, Mg, Fe, K, Al) and SiO2 increased in all experiments. Release rates of Fe and SiO2 were more pronounced in solutions reacted with CO2–brine as compared to those reacted with CO2-free brine. For samples reacted with the CO2–brine, lower temperature reactions (80 °C) released much more Fe and SiO2 than higher temperature reactions (150–250 °C). Analysis by SEM and XRD of reacted solids also revealed changes in mineralogical compositions. The carbonate-rich shale was more reactive at 250 °C, as revealed by the dissolution of plagioclase and clay minerals (illite and chlorite), dissolution and re-precipitation of carbonates, and the formation of smectite. Carbon dioxide was also permanently sequestered as calcite in the same sample. The clay-rich shale reacted with CO2–brine did not show major mineralogical alteration. However, a significant amount of analcime was formed in the clay-rich shale reacted with CO2-free brine; while no trace of analcime was observed in either of the samples reacted with CO2–brine.  相似文献   

5.
吉林省桦甸油页岩中稀土元素和微量元素的研究   总被引:5,自引:0,他引:5  
对桦甸油页岩及其灰渣的矿物成分、主量元素、稀土元素和微量元素含量进行测定。结果表明:油页岩中稀土元素含量低于北美页岩(NASC)中的平均含量,REE球粒陨石标准化的分布模式曲线表现为负斜率,(La/Yb)N的平均值大于1,属于轻稀土富集型;REE北美页岩标准化的分布模式曲线较平缓,(La/Yb)S的平均值接近于1,轻重稀土分馏不明显。与球粒陨石和北美页岩相比,Eu有较严重的正异常。油页岩中的微量元素与北美页岩和地壳的平均值相比较,Sb、Nb、Cs、Zn、Bi、W等元素具有较高的富集度。油页岩灰渣中稀土元素和微量元素富集度均高于油页岩。  相似文献   

6.
Summary This paper describes an experimental program that was conducted in 1981 through 1983 in the Anvil Points Oil Shale Mine near Rifle, Colorado. The objective was to examine the response of the kerogen rich oil shale to explosive charges in relatively large scale tests. Due to an alleged shortage of oil at that time the price per barrel of crude oil had reached nearly $40 and the United States was looking at oil shale as a possible source of hydrocarbon fuels.It was the intention of the fragmentation program to develop a modified in situ retort to recover the oil from the fragmented shale. Programs were already underway wherein the oil shale was being mined, transported to the surface, and retorted to remove the oil. This surface retorting resulted in a tremendous amount of spent shale (shale with the kerogen removed) which had to be handled and it was felt that this would lead to serious environmental problems. The scheme being investigated in the program at Anvil Points was one in which about 25% of the shale is mined, moved to the surface, and retorted. The remaining 75% of the shale was to be fragmented in place and an underground retort formed so that the oil could be removed without the necessity of transporting the shale to the surface.A successful method was not developed but the results of the program did provide information on the response of shale to both single hole and multiple hole explosive charges.  相似文献   

7.
页岩油实验测试分析在页岩油地质评价中发挥着重要作用,目前页岩油储层矿物组成、有机质类型、丰度、物性以及岩石脆性等诸多方面的评价参数均需要通过实验测试来获取。本文评述了页岩油储层评价中烃源岩特性、储层储集性、含油性、可动性及可压性等各项实验测试技术研究现状和趋势,重点阐述了各项实验测试技术的目的及方法。页岩油烃源岩特性要综合有机质类型,丰度,成熟度,生物标志化合物,主量、微量和稀土元素等进行全面准确的评价;储集性与页岩矿物组成、孔隙、裂缝等储集空间分布特征密切相关,结合页岩含油饱和度、页岩油黏度、密度等评价页岩含油性和可动性;页岩可压性评价需综合考虑页岩的矿物组成、岩石力学特征参数等因素。同时探讨了页岩油储层地质评价实验测试技术未来发展方向,指出多种方法联合表征页岩油储层储集空间分布特征、不同赋存状态页岩油的分布特征、天然裂缝发育分析等是页岩油储层地质评价技术的关键攻关方向。  相似文献   

8.
The Shengli River–Changshe Mountain oil shale zone represents a potentially large marine oil shale resource in China. With the aim of better understanding the geochemistry of trace elements in marine oil shale and its combustion residues, 40 raw samples, 27 oil shale combustion residues and 29 selected minerals from Changliang Mountain oil shale are studied for geochemical analyses. The contents of Se, Cd, Mo, As, Cs, Pb, Sr and U in the oil shale samples are enriched from 1.47 to 33.91 times as compared with the Clarke values, whereas the concentrations of other elements are slightly higher/lower than the respective worldwide means. The most enriched elements in oil shale combustion residues are Se, Cd, Mo, As and U with enrichment values from 4.78 to 50.92. Trace elements with high volatile behaviour such as As, Co, Ni, Sc, Sn and V occur predominantly in organic matter and/or sulphides. Other non-volatile or slightly volatile trace elements (e.g., Be, Bi, Cs, Cu, Ga, Hf, Li, Nb, Rb, Ta, Th, W, Zr and REEs) may occur mainly in original and relatively refractory minerals in raw oil shale. The potentially hazardous trace elements in Changliang Mountain oil shale include As, Cd, Mo and Se. Arsenic and Se are controlled mainly by Fe-bearing minerals (probably pyrite) in Changliang Mountain oil shale. Cadmium is present mainly in dolomite, while Mo occurs mainly in organic matter.  相似文献   

9.
常思阳  郭巍 《地质与资源》2016,25(5):464-469
油页岩成矿期的古环境控制着油页岩有机质类型与丰度,而油页岩的有机质类型和丰度对于研究油页岩成因及富集规律具有重要的意义.松辽盆地南部含油页岩层段总体为深湖-半深湖相稳定沉积,微量元素特征对古环境的变化敏感,可利用油页岩微量元素含量的测试及其比值分析的方法恢复油页岩成矿期的古环境.通过对松辽盆地南部油页岩样品中20余种微量元素含量的测试及其比值的分析,恢复了青山口组与嫩江组油页岩成矿期的古环境.研究结果表明,油页岩成矿期的古气候为温暖湿润-半湿润半干热的气候,水介质为微咸水-半咸水的还原环境.青山口期相对嫩江期气候和盐度变化较稳定,气候略为干热,盐度也略高.  相似文献   

10.
There is a dearth of information about the distribution of trace elements in kerogen from shale rocks despite several reports on trace element composition in many shale samples. In this study, trace elements in shale rocks and their residual kerogens were determined by inductively coupled plasma–mass spectrometry. The results from this study show redox-sensitive elements relatively concentrated in the kerogens as compared to the shales. This may be primarily due to the adsorption and complexation ability of kerogen, which enables enrichment in Ni, Co, Cu, and Zn. For the rare earth elements (REEs), distinct distribution characteristics were observed for shales dominated by terrigenous minerals and their kerogen counterparts. However, shales with less input of terrigenous minerals showed similar REE distribution patterns to their residual kerogen. It is speculated that the distribution patterns of the REEs in shales and kerogens may be source-related.  相似文献   

11.
The determination of trace element concentrations in oil shale before mining and retorting is required for proper solid-waste management planning. Using routine Fischer assay oil yield data collected during resource characterization as indicators of potential trace element concentrations could lead to a standard method of identifying strata containing high trace element levels. In order to determine a correlation between trace element concentrations and oil yield, shale samples were selected from four statigraphic zones of the Parachute Creek Member of the Green River Formation for analysis. All samples were analyzed for total elemental concentrations, mineralogy, and Fischer assay oil yield. The results of these analyses demonstrated that the Mahogany zone shales contain significantly greater trace element concentrations (antimony, arsenic, cadmium, chromium, copper, lead, lithium, mercury, molybdenum, nickel, selenium, silver, and vanadium) than the other three shale zones. These high trace element concentrations have been identified within well-defined interbedded tuff deposits in the Mahogany zone. In addition, all trace elements evaluated, except boron, show either increasing or decreasing concentrations as oil yield increases within all oil shale zones. With an increased number of analyses of existing oil shale cores, oil yield data will be correlated to specific stratigraphic units containing high trace element concentrations.  相似文献   

12.
《China Geology》2020,3(4):545-557
The composition of gas released under vacuum by crushing from the gas shale of Longmaxi Formation in Upper Yangtze Plate, Southern China was systematically investigated in this study. The effect of residual gas release on pore structures was checked using low-pressure nitrogen adsorption techniques. The influence of particle size on the determination of pore structure characteristics was considered. Using the Frenkel-Halsey-Hill method from low-pressure nitrogen adsorption data, the fractal dimensions were identified at relative pressures of 0−0.5 and 0.5−1 as D1 and D2, respectively, and the evolution of fractal features related to gas release was also discussed. The results showed that a variety component of residual gas was released from all shale samples, containing hydrocarbon gas of CH4 (29.58% −92.53%), C2H6 (0.97% −2.89%), C3H8 (0.01% −0.65%), and also some non-hydrocarbon gas such as CO2 (3.54% − 67.09%) and N2 (1.88%−8.07%). The total yield of residual gas was in a range from 6.1 μL/g to 17.0 μL/g related to rock weight. The geochemical and mineralogical analysis suggested that the residual gas yield was positively correlated with quartz (R2=0.5480) content. The residual gas released shale sample has a higher surface area of 17.20−25.03 m2/g and the nitrogen adsorption capacity in a range of 27.32−40.86 ml/g that is relatively higher than the original samples (with 9.22−16.30 m2/g and 10.84−17.55 ml/g). Clearer hysteresis loop was observed for the original shale sample in nitrogen adsorption-desorption isotherms than residual gas released sample. Pore structure analysis showed that the proportions of micro-, meso- and macropores were changed as micropores decreased while meso- and macropores increased. The fractal dimensions D1 were in range from 2.5466 to 2.6117 and D2 from 2.6998 to 2.7119 for the residual gas released shale, which is smaller than the original shale. This factor may indicate that the pore in residual gas released shale was more homogeneous than the original shale. The results indicated that both residual gas and their pore space have few contributions to shale gas production and effective reservoir evaluation. The larger fragments samples of granular rather than powdery smaller than 60 mesh fraction of shale seem to be better for performing effective pore structure analysis to the Longmaxi shale.  相似文献   

13.
Development of unconventional shale gas wells can generate significant quantities of drilling waste, including trace metal-rich black shale from the lateral portion of the drillhole. We carried out sequential extractions on 15 samples of dry-drilled cuttings and core material from the gas-producing Middle Devonian Marcellus Shale and surrounding units to identify the host phases and evaluate the mobility of selected trace elements during cuttings disposal. Maximum whole rock concentrations of uranium (U), arsenic (As), and barium (Ba) were 47, 90, and 3333 mg kg−1, respectively. Sequential chemical extractions suggest that although silicate minerals are the primary host for U, as much as 20% can be present in carbonate minerals. Up to 74% of the Ba in shale was extracted from exchangeable sites in the shale, while As is primarily associated with organic matter and sulfide minerals that could be mobilized by oxidation. For comparison, U and As concentrations were also measured in 43 produced water samples returned from Marcellus Shale gas wells. Low U concentrations in produced water (<0.084–3.26 μg L−1) are consistent with low-oxygen conditions in the wellbore, in which U would be in its reduced, immobile form. Arsenic was below detection in all produced water samples, which is also consistent with reducing conditions in the wellbore minimizing oxidation of As-bearing sulfide minerals.Geochemical modeling to determine mobility under surface storage and disposal conditions indicates that oxidation and/or dissolution of U-bearing minerals in drill cuttings would likely be followed by immobilization of U in secondary minerals such as schoepite, uranophane, and soddyite, or uraninite as conditions become more reducing. Oxidative dissolution of arsenic containing sulfides could release soluble As in arsenate form under oxic acidic conditions. The degree to which the As is subsequently immobilized depends on the redox conditions along the landfill flow path. The results suggest that proper management of drill cuttings can minimize mobilization of these metals by monitoring and controlling Eh, pH and dissolved constituents in landfill leachates.  相似文献   

14.
黑龙江省柳树河盆地始新统八虎力组发育多层油页岩。通过对油页岩样品元素地球化学分析测试,研究了其常量元素、微量元素和稀土元素特征,分析了油页岩沉积环境。研究结果表明,常量元素以富Al2O3、Fe和CaO,贫SiO2、MgO、Na2O和K2O为特征,微量元素总体上表现出不同程度的亏损特征,稀土元素总量平均为140.7×10-6,表现出轻稀土元素轻度富集特征。稀土元素具有较为一致的变化趋势,表明油页岩沉积时物源和沉积环境较为稳定。Mn/Ti值表明油页岩组成物质的搬运距离随着时间变化经历了远→近→远的变化,反映水体深度经历了深→浅→深的变化。Sr/Cu值和Rb/Sr值表明油页岩沉积时为相对炎热干旱的环境。Sr/Ba值反映当时为炎热干旱气候条件下的过渡相咸水湖泊沉积环境。V/(V+Ni)值、δEu和有机碳含量表明油页岩沉积时处于缺氧的还原沉积环境中。总体上,柳树河盆地油页岩发育于炎热干旱气候、咸水、缺氧条件下的湖泊沉积环境中。  相似文献   

15.
Sorption of the organic pollutant 4-nitrophenol (4-NP) by pyrolyzed and activated Jordanian oil-shale was studied. Pyrolyzed oil shale was prepared using a fluidized bed reactor at 520 °C in the presence of nitrogen. Physical activation was carried out by treating the pyrolyzed oil shale with CO2 at 830 °C, while chemical activation was achieved by using KOH and ZnCl2 as impregnating agents. Batch kinetics and isotherm studies were conducted to evaluate the sorption process. Effects of contact time, initial sorbate concentration, sorbent concentration, temperature, pH and inorganic salts (NaCl and KCl) on the sorption process by the different sorbents were considered. Chemically activated oil shale, pretreated with ZnCl2, gave the highest uptake of 4-NP. The isotherm experimental data fit reasonably well to Langmuir, Freundlich and Redlich-Paterson models. Three kinetic models, namely the Morris-Weber, Lagergren, and Pseudo-Second-Order model (PSOM), were applied to represent the experimental results for both pyrolyzed and ZnCl2-oil shale sorbents.  相似文献   

16.
Spark-source mass spectrometric analysis of pyrolyzed Green River oil shale for trace element distribution showed enhanced concentrations for only lithium and beryllium. In general, trace elemental concentrations were found to be below anticipated crustal amounts. There appears to be no promise of any substantial accumulation of any trace elements within the organic matrix of Green River oil shale.  相似文献   

17.
In order to determine the metal-bearing phases with special emphasis on Cu, a sequential extraction has been carried out on seven soil samples from a sulphide-bearing spodosol profile in Liikavaara Östra, close to the Aitik Copper Mine in northern Sweden. A reference spodosol profile with very low abundances of sulphides located far from anthropogenic emissions was also studied. Five fractions were selected for the extraction: (I) CH3COONa-extractable (exchangeable/adsorbed/carbonate); (II) Na4P2O7-extractable (labile organics); (III) 0.25 M NH2OH·HCl-extractable (amorphous Fe oxyhydroxides/Mn oxides); (IV) 1 M NH2OH·HCl-extractable (crystalline Fe oxides); and (V) KClO3/HCl-extractable (organics and sulphides). The distribution of trace elements (Co, Cr, Cu, Ni, Pb and Zn) in the profile in Liikavaara Östra is different from that in the reference profile. Possible explanations for these differences are (i) the presence of sulphides in the soil, (ii) atmospheric deposition of dust derived from mining activities at the Aitik Copper Mine, and (iii) mineralogical heterogeneities inherited from the deposition of the till. There is no straightforward correlation between the amount of the extracted phases and the metal extractability in the soils. This fact indicates that other factors are important for the retention of trace metals as well. The data presented in this study suggest that Co, Cr and Ni, to a fairly large extent, are associated with the organic matter in the B-horizon in both profiles, while in the C-horizon in Liikavaara Östra, sulphides are probably the more important carriers of these elements. For Co and Ni, Fe oxyhydroxides seem to be important. Most of the Cr occurred in the residual remaining after the leaching procedure. Copper and Zn seem to be associated with the organic matter to some extent in the B-horizon. The concentration of Cu in the C-horizon in Liikavaara Östra is high (2310 ppm), but only a very small fraction is likely to be hosted by sulphides. It is concluded that the major part of Cu in the C-horizon and a prominent fraction in the B-horizon in Liikavaara Östra are associated with some secondary phase that is extractable during extractions III and IV. Possible candidates for this phase are goethite and inclusions of native Cu in weathered biotite.  相似文献   

18.
通过野外采样、化学分析、电子探针(EPMA)和X射线衍射(XRD)分析等手段,研究了贵州织金地区黑色页岩矿物成分、化学组分、微量元素、稀土元素特征。研究区矿样化学成分以SiO_2和Al_2O_3为主,且具有高K低Na的特征。电子探针和X射线衍射分析表明,研究区黑色页岩主要矿物组成有石英、粘土矿物、白云石及黄铁矿等。织金黑色页岩中Pb、Ni、U、V、Cr等金属元素存在不同程度的富集,稀土元素总量为153.2×10~(-6)~224.89×10~(-6),属轻稀土元素富集型。同时从多金属层、页岩气、页岩提钾及近底部含磷铀矿资源等方面讨论了织金黑色页岩资源化利用。织金黑色页岩多金属层含有Mo、V、Ni、Ag及U等多金属元素,具综合利用价值;其中有机碳含量达到页岩气开发大于2%的条件,可进一步开展研究;页岩中伊利石含量较多,可提取黑色页岩中的钾制备含钾复合肥;黑色页岩底部与磷矿层接触带产出磷铀矿,主要为胶状磷铀矿,接触带可作为铀矿找矿的标志层。  相似文献   

19.
A model for the pathway of some trace elements during fluidized-bed combustion of israeli oil shale is suggested, based both on pilot plant and laboratory tests. This model demonstrates the role of carbonate matrix in suppressing the volatilization of trace elements due to fixation of most elements in new-formed silicates. The quality of leachates derived from oil shale combustion wastes can be predicted on the basis of the proposed model.  相似文献   

20.
Using trace elements to reconstruct paleoenvironment is a current hot topic in geochemistry. Through analytical tests of oil yield, ash yield, calorific value, total sulfur, major elements, trace elements, and X-ray diffraction, the quality, mineral content, occurrence mode of elements, and paleoenvironment of the Zhangjiatan oil shale of the Triassic Yanchang Formation in the southern Ordos Basin were studied. The analyses revealed relatively high oil yield (average 6.63%) and medium quality. The mineral content in the oil shale was mainly clay minerals, quartz, feldspar, and pyrite; an illite–smectite mixed layer comprised the major proportion of clay minerals. Compared with marine oil shale in China, the Zhangjiatan oil shale had higher contents of quartz, feldspar, and clay minerals, and lower calcite content. Silica was mainly in quartz and Fe was associated with organic matter, which is different from marine oil shale. The form of calcium varied. Cluster analyses indicated that Fe, Cu, U, V, Zn, As, Cs, Cd, Mo, Ga, Pb, Co, Ni, Cr, Sc, P, and Mn are associated with organic matter while Ca, Na, Sr, Ba, Si, Zr, K, Al, B, Mg, and Ti are mostly terrigenous. Sr/Cu, Ba/Al, V/(V + Ni), U/Th, AU, and δU of oil shale samples suggest the paleoclimate was warm and humid, paleoproductivity of the lake was relatively high during deposition of the shale—which mainly occurred in fresh water—and the paleo-redox condition was dominated by reducing conditions. Fe/Ti ratios of the oil shale samples suggest clear hydrothermal influence in the eastern portion of the study area and less conspicuous hydrothermal influence in the western portion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号