首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

2.
This paper presents a comprehensive ground response study for the municipality of Villa Collemandina in Northern Tuscany (Italy). This site was selected following a macroseismic analysis of the 1920 Garfagnana earthquake (Mw=6.5), which, at Villa Collemandina, produced damage and losses that were larger than at any other site near the earthquake epicentre, thus indicating the presence of possible site effects. Hence, both experimental and numerical methods are applied in order to investigate the ground response at different locations within the Villa Collemandina municipality. Results obtained from the spectral analysis of earthquake recordings using the reference site method and those from a 2-dimensional dynamic simulation reveal the presence of site effects due to the buried geomorphology (basin-like effects), allowing us to explain the severe damage and losses produced by the 1920 Garfagnana earthquake. As a further result, horizontal to vertical spectral ratio techniques and 1D soil modelling are proved to be inadequate for an effective characterization of the ground response at sites that, like Villa Collemandina, present a complex local geology.  相似文献   

3.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

4.
In this work, the macroseismic effects of the Kultuk earthquake (M W = 6.3), which took place on August 27, 2008 in the southwestern closure of the Baikal Lake, are under consideration. The intensity of shocks in inhabited localities located in the epicentral zone reached 7–8 points on the MSK-64 scale. The earthquake was named after the local settlement of Kultuk, which was the mostly damaged area by the earthquake. The considered seismic event caused significant material damage (about 250 million rubles according to preliminary estimates). In inhabited localities of Southern Pribaikalie thousands of cases of damaged ovens and chimneys were registered. Some buildings were highly damaged and, accordingly, they are unfit for further use. The earthquake was the cause of numerous rockslides, rockfalls, and landslides on steep natural and artificial slopes. A macroseismic survey allowed us to establish the asymmetrical distribution of the intensity of shocks relative to the epicenter.  相似文献   

5.
This paper overviews the procedures and tools used for a systematic study of the macroseismic consequences caused by a strong earthquake that struck Southern Italy. The event referred to the 23 November 1980 (Io = X MCS, Ms = 6.9) which affected the Campania and Basilicata regions. Two aspects are addressed here: to broaden the knowledge of the macroseismic field and delineate damage maps of the sites affected on an urban scale. The target area of this study is the Basilicata region about which the current macroseismic information is poor. This research study, based only on unpublished documentary sources, supplies about 50 new assessments and about 30 new re-assessments of the macroseismic site intensity (MCS scale) as outputs. Moreover, about 80 thematic maps showing the damage pattern of the sites affected are also supplied. It is the first time that a large earthquake has been the subject of such extensive studies from a macroseismic point of view, with special attention to the analysis of damage effects at town scale.  相似文献   

6.
The year 2017 marks the 350th anniversary of the great 6 April 1667 Dubrovnik earthquake that caused extensive damage in a wide area around this old Dalmatian town (today in Croatia). This article presents the effects of the 1667 earthquake and examines the first few weeks following the catastrophe. Macroseismic data are reanalysed, for the first time available data are collected of the damage on the territory of Bosnia and Herzegovina (the territory which was in the 17th century under the Ottoman reign) and a new map of macroseismic intensities is presented. This map is in good agreement with the macroseismic field modelled using the SAF (Strong Attenuation at Fault Zones) model. We highlight some problems in the collection of macroseismic information, which are mainly a consequence of the complex political situation in the areas affected by the earthquake. The 1667 earthquake heavily impacted Dubrovnik and the Dalmatian coast. This event is thought to be the biggest one in the history of Dalmatia and practically defines seismic hazard in the coastal area of Croatia. For this reason, the main goals in this article are the improvement of the epicenter location and the determination of the moment magnitude.  相似文献   

7.
This paper presents the results from a macroseismic survey of the impact and consequences of the M W = 7.6 April 20(21), 2006 Olyutorskii earthquake in the area of the Koryak Autonomous Okrug and the adjacent areas in Kamchatka and Magadan regions. The earthquake was felt over an area of about 400000 sq. km with intensities of II to IX–X on the MSK-64 scale. Information was gathered from 37 population centers situated in this area and was used to present a summary of felt effects, to construct an isoseismals map, and to determine the macroseismic magnitude.  相似文献   

8.
传统农村房屋地震灾害平均损失率的统计分析   总被引:1,自引:0,他引:1  
在多年来地震宏观震害资料整理、研究的基础上,对传统农村房屋的类型进行了划分,统计出农村房屋地震灾害的平均损失率与地震烈度之间的关系,以便在地震发生后能较快地初评估地震在农村地区所造成的经济损失,为快速判断震灾规模提供依据。  相似文献   

9.
The 23 April 1909 earthquake, with epicentre near Benavente (Portugal), was the largest crustal earthquake in the Iberian Peninsula during the twentieth century (M w = 6.0). Due to its importance, several studies were developed soon after its occurrence, in Portugal and in Spain. A perusal of the different studies on the macroseismic field of this earthquake showed some discrepancies, in particular on the abnormal patterns of the isoseismal curves in Spain. Besides, a complete list of intensity data points for the event is unavailable at present. Seismic moment, focal mechanism and other earthquake parameters obtained from the instrumental records have been recently reviewed and recalculated. Revision of the macroseismic field of this earthquake poses a unique opportunity to study macroseismic propagation and local effects in central Iberian Peninsula. For this reasons, a search to collect new macroseismic data for this earthquake has been carried out, and a re-evaluation of the whole set has been performed and it is presented here. Special attention is paid to the observed low attenuation of the macroseismic effects, heterogeneous propagation and the distortion introduced by local amplifications. Results of this study indicate, in general, an overestimation of the intensity degrees previously assigned to this earthquake in Spain; also it illustrates how difficult it is to assign an intensity degree to a large town, where local effects play an important role, and confirms the low attenuation of seismic propagation inside the Iberian Peninsula from west and southwest to east and northeast.  相似文献   

10.
根据地震现场宏观烈度调查资料,介绍了1999年3月25日广东河源市M  相似文献   

11.
利用2008年汶川M8.0地震获得的强震动记录数据,根据《仪器地震烈度计算暂行规程》计算得到各台站处的仪器地震烈度值,分析仪器地震烈度与宏观地震烈度的对应关系,研究该仪器烈度计算方法的适用性。结果表明,利用该算法所得的仪器烈度值与宏观烈度完全吻合的比率为47.5%,偏差±1度以内的比率为89.1%,说明二者对应情况较为理想,仪器烈度可在一定程度上客观反映实际的震害情况;在各宏观烈度区内仪器烈度值虽然具有一定的离散性,但其均值与宏观烈度区值的偏差相对较小,均控制在±0.3度以内。另外,文中还绘制了汶川地震仪器烈度分布图,虽然与宏观烈度在整体分布上具有一定的对应关系,但受多种因素的影响,仪器烈度分布与宏观烈度分布不可能完全一致。仪器烈度与宏观烈度的概念和属性有所差异,发挥的作用也不尽相同,不应混淆和相互替代。  相似文献   

12.
13.
The area of the Koryak Autonomous Okrug was hit by an M S 7.7 earthquake on April 20(21), 2006, the largest to have occurred in the area during the period of historical and instrumental observation. This event is now referred to as the Olyutorskii earthquake. We present results from a study of the associated macroseismic effects as observed in the villages of Korf and Tilichiki. The intensity was IX at Korf and VIII at Tilichiki on the MSK-64 scale.  相似文献   

14.
The 2003 Ml = 5.4 Rambervillers earthquake, north-east of France, is the largest seismic event recorded north of the Alps since the 1992 Ms = 5.3, I0 = VII, Roermond earthquake, Netherlands. With a maximum macroseismic intensity of VI-VII EMS-98, the 2003 event was broadly felt to a distance of 300 km from the epicentre. It provides a unique opportunity to test and compare the different procedures used in France, Germany and Switzerland when evaluating macroseismic intensities. The main purpose of this paper is to present a common transfrontier macroseismic map based on the EMS-98 intensity scale. Maximum horizontal accelerations recorded in the area are compared to the intensity values, and we propose to use a differential technique to re-estimate the magnitude of the 1682 Remiremont, I0 = VIII, earthquake, which occurred 40 km south of Rambervillers.  相似文献   

15.
On Oct. 4th, 1983 the area of Phlegraean Fields, near Naples (Southern Italy) was shaked by an earthquake of magnitude (M L) 4.0 that caused some damage in the town of Pozzuoli and its surroundings. This seismic event was the largest one recorded during the recent (1982–84) inflation episode occurred in the Phlegraean volcanic area, and a detailed macroseismic reconstruction of the event was carried out.Failing macroseismic data on other earthquakes occurred in Phlegraean Fields, the attenuation law of the intensity as a function of the distance as obtained for the Oct. 4th earthquake was compared with those obtained for other volcanic areas in central Italy —i.e., Tolfa, Monte Amiata — in order to check the reliability of the results obtained for Phlegraean Fields.The Blake's model of the earthquake of Oct. 4th, 1983 does not agree with the experimental data because isoseismals contain areas larger than those shown by the model. This result has been interpreted as an effect of energy focusing due to a reflecting layer 6–8 km deep.  相似文献   

16.
This study analyses the performance of residential buildings in the town of Hveragerði in South Iceland during the 29 May 2008 Mw 6.3 Ölfus Earthquake. The earthquake occurred very close to the town, approximately 3–4 km from it. Ground shaking caused by the earthquake was recorded by a dense strong-motion array in the town. The array provided high-quality three-component ground acceleration data which is used to quantify a hazard scenario. In addition, surveys conducted in the town in the aftermath of the earthquake have provided information on macroseismic intensity at various locations in the town. Detailed information regarding the building stock in the town is collected, and their seismic vulnerability models are created by using building damage data obtained from the June 2000 South Iceland earthquakes. Damage to buildings are then simulated by using the scenario hazard and vulnerability models. Damage estimates were also obtained by conducting a survey. Simulated damage based on the scenario macroseismic intensity is found to be similar to damage estimated from survey data. The buildings performed very well during the earthquake—damage suffered was only 5 % of the insured value on the average. Correlation between actual damage and recorded ground-motion parameters is found to be statistically insignificant. No significant correlation of damage was observed, even with macroseismic intensity. Whereas significant correlation was observed between peak ground velocity and macroseismic intensity, neither of them appear to be good indicators of damage to buildings in the study area. This lack of correlation is partly due to good seismic capacity of buildings and partly due to the ordinal nature of macroseismic intensity scale. Consistent with experience from many past earthquakes, the survey results indicate that seismic risk in South Iceland is not so much due to collapse of buildings but rather due to damage to non-structural components and building contents.  相似文献   

17.
A comprehensive study is presented for empirical seismic vulnerability assessment of typical structural types, representative of the building stock of Southern Europe, based on a large set of damage statistics. The observational database was obtained from post-earthquake surveys carried out in the area struck by the September 7, 1999 Athens earthquake. After analysis of the collected observational data, a unified damage database has been created which comprises 180,945 damaged buildings from/after the near-field area of the earthquake. The damaged buildings are classified in specific structural types, according to the materials, seismic codes and construction techniques in Southern Europe. The seismic demand is described in terms of both the regional macroseismic intensity and the ratio αg/ao, where αg is the maximum peak ground acceleration (PGA) of the earthquake event and ao is the unique value PGA that characterizes each municipality shown on the Greek hazard map. The relative and cumulative frequencies of the different damage states for each structural type and each intensity level are computed in terms of damage ratio. Damage probability matrices (DPMs) and vulnerability curves are obtained for specific structural types. A comparison analysis is fulfilled between the produced and the existing vulnerability models.  相似文献   

18.
The M s7.0 Lushan earthquake on April 20, 2013 is another destructive event in China since the M s8.0 Wenchuan earthquake in 2008 and M s7.1 Yushu earthquake in 2010. A large number of strong motion recordings were accumulated by the National Strong Motion Observation Network System of China. The maximum peak ground acceleration (PGA) at Station 51BXD in Baoxing Country is recorded as ?1,005.3 cm/s2, which is even larger than the maximum one in the Wenchuan earthquake. A field survey around three typical strong motion stations confirms that the earthquake damage is consistent with the issued map of macroseismic intensity. For the oscillation period 0.3–1.0 s which is the common natural period range of the Chinese civil building, a comparison shows that the observed response spectrums are considerably smaller than the designed values in the Chinese code and this could be one of the reasons that the macroseismic intensity is lower than what we expected despite the high amplitude of PGAs. The Housner spectral intensities from 16 stations are also basically correlated with their macroseismic intensities, and the empirical distribution of spectral intensities from Lushan and Wenchuan Earthquakes under the Chinese scale is almost identical with those under the European scale.  相似文献   

19.
In many countries such as Spain earthquake databases still mainly comprise macroseismic data from felt effects. The full exploit of this information is of basic importance for seismic risk assessment and emergency planning, given the strict link between macroseismic intensity and damage. A probabilistic procedure specifically developed to handle macroseismic data, mostly relying on site information and seismogenic-source free, has been applied to evaluate seismic hazard in SE-Spain (Alicante-Murcia region). Present seismicity is moderate-low with largest magnitudes slightly over Mw5.0. The historical record includes very destructive earthquakes, maximum EMS98 intensities reaching IX–X and X in the nineteenth century (e.g., Torrevieja 1829 earthquake). Very recently, two events in the area on 11 May 2011 (Mw4.5, Mw5.2) killed nine people, injured 300, and produced important damage in the city of Lorca. Regional hazard maps for the area together with specific hazard curves at selected localities are obtained. Results are compared with the maximum observed intensities in the period 1300–2012, and with the values in the seismic hazard map from the Spanish Building Code in force. In general, the maximum felt intensity values are closer to the hazard values calculated for 2 % probability of exceedance in 50 years, using felt and expected intensity. The intensity-based probabilistic hazard maps obtained through the applied approach reduce the inherent smoothing of those based on standard probabilistic seismic hazard assessment approaches for the region, allowing identifying possible over- or sub-estimates of site hazard values, providing very valuable information for risk reduction strategies or for future updates of the building code hazard maps.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号