首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coherency of the source model of the 1991 Racha earthquake in the Greater Caucasus with different data types is analyzed. Authors, when interpreting macroseismic data, accept complex nature of macroseismic effects generation but, nevertheless, consider that its spatial distribution follows certain regularities. First time in the practice, method of evaluation of the mecroseismic material completeness is proposed based on the intensity attenuation along with distance. It is demonstrated the character of macroseismic intensity attenuation can be used for verification of the source model elements constructed based on other seismological data. Dependence of the macroseismic effect distribution on azimuth in near field of the 1991 Racha earthquake is recognized.  相似文献   

2.
An instrumental validation is attempted of an innovative approach devoted to the quick individuation, from macroseismic data, of site amplification phenomena able to significantly modify seismic hazard levels expected on the basis of average propagation effects only. According to this methodology, two evaluations of hazard are performed at each investigated locality: the former, obtained by epicentral intensity data ‘reduced’ at the site through a probabilistic attenuation function and, the latter, computed by integrating such data with seismic effects actually observed at the site during past earthquakes. The comparison, for each locality, between these two hazard estimates allow to orientate the identification of those sites where local amplifications of earthquake ground motion could be significant. In order to check such methodology, indications obtained in this way from macroseismic data are compared with the estimates of transfer functions performed through the HVSR technique applied to microtremors. Results concerning municipalities located in a seismic area of Northern Italy indicate a good agreement between macroseismic and instrumental estimates.  相似文献   

3.
Seismic intensity, measured through the Mercalli–Cancani–Sieberg (MCS) scale, provides an assessment of ground shaking level deduced from building damages, any natural environment changes and from any observed effects or feelings. Generally, moving away from the earthquake epicentre, the effects are lower but intensities may vary in space, as there could be areas that amplify or reduce the shaking depending on the earthquake source geometry, geological features and local factors. Currently, the Istituto Nazionale di Geofisica e Vulcanologia analyzes, for each seismic event, intensity data collected through the online macroseismic questionnaire available at the web-page www.haisentitoilterremoto.it. Questionnaire responses are aggregated at the municipality level and analyzed to obtain an intensity defined on an ordinal categorical scale. The main aim of this work is to model macroseismic attenuation and obtain an intensity prediction equation which describes the decay of macroseismic intensity as a function of the magnitude and distance from the hypocentre. To do this we employ an ordered probit model, assuming that the intensity response variable is related through the link probit function to some predictors. Differently from what it is commonly done in the macroseismic literature, this approach takes properly into account the qualitative and ordinal nature of the macroseismic intensity as defined on the MCS scale. Using Markov chain Monte Carlo methods, we estimate the posterior probability of the intensity at each site. Moreover, by comparing observed and estimated intensities we are able to detect anomalous areas in terms of residuals. This kind of information can be useful for a better assessment of seismic risk and for promoting effective policies to reduce major damages.  相似文献   

4.
Modelling seismic attenuation is one of the most critical points in the hazard assessment process. In this article we consider the spatial distribution of the effects caused by an earthquake as expressed by the values of the macroseismic intensity recorded at various locations surrounding the epicentre. Considering the ordinal nature of the intensity, a way to show its decay with distance is to draw curves—isoseismal lines—on maps, which bound points of intensity not smaller than a fixed value. These lines usually take the form of closed and nested curves around the epicentre, with highly different shapes because of the effects of ground conditions and of complexities in rupture propagation. Forecasting seismic attenuation of future earthquakes requires stochastic modelling of the decay on the basis of a common spatial pattern. The aim of this study is to consider a statistical methodology that identifies a general shape, if it exists, for isoseismal lines of a set of macroseismic fields. Data depth is a general nonparametric method for analysis of probability distributions and datasets. It has arisen as a statistical method to order points of a multivariate space, e.g., Euclidean space \({\mathbb {R}}^{p}\), \(p \ge 1\), according to the centrality with respect to a distribution or a given data cloud. Recently, this method has been extended to the ordering of functions and trajectories. In our case, for a fixed intensity decay \(\varDelta I\), we build a set of convex hulls that enclose the sites of felt intensity \(I_s \ge I_0 -\varDelta I\), one for each macroseismic field of a set of earthquakes that are considered as similar from the attenuation point of view. By applying data depth functions to this functional dataset, it is possible to identify the most central curve, i.e., the attenuation pattern, and to consider other properties like variability, outlyingness, and possible clustering of such curves. Results are shown for earthquakes that occurred on the Central Po Plain in May 2012, and on the eastern flank of Mt. Etna since 1865.  相似文献   

5.
1844年8月大关北地震是马边一永善地震带中历史上较强的一次地震,过去一直很少有人研究,以前的地震目录对此次地震有不同认识,本文拟通过查阅历史地震资料,实地考查这次地震的地面破坏情况以及询访当地居民,初步认为,1844年8月地震的震中应元亨一带,露级在7级左右,极震区烈度为IX度,与1974与大关-永善7.1级地震的宏观震中基本一致。  相似文献   

6.
Further information on the macroseismic field in the Balkan area   总被引:1,自引:0,他引:1  
Papazachos and Papaioannou (1997) (called PP97 hereinafter) studied the macroseismic field in the Balkan area (Greece, Albania, former Yugoslavia, Bulgaria and western Turkey) with the purpose of deriving attenuation and scaling relations useful for seismic hazard assessment and study of historical earthquakes. In his comment, Trifunac suggests that our analysis might exhibit certain bias for all countries except Greece due to problems mainly associated with the database (completeness, etc.), conversion of local intensity scales used in the Balkan countries, as well as to the local variations of the attenuation relation due to the variation of the geotectonic environment in this area. Specifically, his most important comments can be summarized as follows: a) The large participation of Greek data probably biased the scaling relations proposed in the study. b) The conversion relations used between local macroseismic scales are less accurate than their proposed such relations. c) The variation of attenuation (geometrical and anelastic) in different regions of the study area is important and local relations (instead of the proposed single relation) should be determined for seismic hazard assessment. In the following, we study in detail each of these possible bias sources. Additional work on the macroseismic field of the Balkan area shows that none of the previously described factors, suggested by Trifunac, introduces bias in the results presented by PP97. Specifically, it is shown that the database used by PP97 fulfills the basic requirements for a reliable determinations of attenuation and scaling relations proper for seismic hazard assessment in all five countries of this area. Evidence is presented that no strong geographical variation of the attenuation of macroseismic intensities of shallow earthquakes is observed. Relations between local version of intensity scales suggested by Shebalin et al. (1974) are shown to be reliable. Finally, it is demonstrated that national practices for estimation of macroseismic intensities may affect the results of seismic hazard assessment but proper formulation can be applied (PP97) which allows to take into account such differences in national practices. This formulation allows also to introduce and correct for anisotropic radiation at the seismic source as well as the incorporation of site effects.  相似文献   

7.
8.
On October 27, 2004, a moderate size earthquake occurred in the Vrancea seismogenic region (Romania). The Vrancea seismic zone is an area of concentrated seismicity at intermediate depths beneath the bending area of the southeastern Carpathians. The 2004 M w?=?6 Vrancea subcrustal earthquake is the largest seismic event recorded in Romania since the 1990 earthquakes. With a maximum macroseismic intensity of VII Medvedev–Sponheuer–Kárník (MSK-64) scale, the seismic event was felt to a distance of 600 km from the epicentre. This earthquake caused no serious damage and human injuries. The main purpose of this paper is to present the macroseismic map of the earthquake based on the MSK-64 intensity scale. After the evaluation of the macroseismic effects of this earthquake, an intensity dataset has been obtained for 475 sites in the Romanian territory. Also, the maximum horizontal accelerations recorded in the area by the K2 network are compared to the intensity values.  相似文献   

9.
首都圈强震动观测台相对密集,区域强震动观测能力较强。2020年7月12日6时38分在河北省唐山市古冶区发生MS5.1地震,强震动台和烈度台共收集到三分量强震动记录363组。通过强震动记录数据处理绘制了PGA和PGV的空间分布图,初步认识到此次地震强烈的地震动主要集中于震中附近区域,远离震中的天津塘沽—宁河—宝坻三角区域也观测到“异常增大趋势”的地震动,这与1976年唐山地震的宏观烈度异常区较为一致。同时分析了强震动记录PGA、PGV随距离的衰减规律,通过与为第五代区划图编制建立的东部强震区衰减关系的计算值对比,可以看出与此次地震中PGA、PGV的衰减具有一致的趋势。   相似文献   

10.
According to the idea now widespread that macroseismic intensity should be expressed in probabilistic terms, a beta-binomial model has been proposed in the literature to estimate the probability of the intensity at site in the Bayesian framework and a clustering procedure has been adopted to define learning sets of macroseismic fields required to assign prior distributions of the model parameters. This article presents the results concerning the learning sets obtained by exploiting the large Italian macroseismic database DBM1I11 (Locati et al. in DBMI11, the 2011 version of the Italian Macroseismic Database, 2011. http://emidius.mi.ingv.it/DBMI11/) and discusses the problems related to their use in probabilistic modelling of the attenuation in seismic regions of the European countries partners of the UPStrat-MAFA project (2012), namely South Iceland, Portugal, SE Spain and Mt Etna volcano area (Italy). Anisotropy and the presence of offshore earthquakes are some of the problems faced. All the work has been carried out in the framework of the Task B of the project.  相似文献   

11.
This paper details the evolution, precision and completeness of the earthquake catalogue compiled by the Spanish National Geographic Institute. Over 100,000 earthquakes are included in this database, occurred in a region embracing Spain, Portugal, Morocco, Andorra and parts of France and Algeria. The catalogue has improved along time, thanks to the development of the seismic network and the upgrades of the routine data acquisition and analysis. The location precision is found to be much better on the Iberian Peninsula than offshore and benefitted especially from the implementation of modern automatic procedures for hypocentral determinations. The different magnitude scales reported in the catalogue, and effects of their changes, are reviewed. In the Iberian Peninsula, Canary Islands and surroundings, detailed successive maps of magnitude of completeness show an overall improvement over the last decades, particularly sudden when the digital broadband network was deployed. Earthquakes are found to be more frequently recorded during nights and weekends, thanks to the lower artificial noise. Despite most blasts have been filtered out of the catalogue, examples of remaining ones are identified by their spatial clustering around mines and quarries, and their timing at the intervals at which blasts are set off (even at night, in contrast to the common assumption that they only occur during daytime). This work highlights the importance of unveiling the spatial and temporal heterogeneities of earthquake catalogues and aims to help future analyses of the seismicity in the region.  相似文献   

12.
Estimates of site seismicity rates using ill-defined macroseismic data   总被引:2,自引:0,他引:2  
A new approach to the problem of site seismic hazard analysis is proposed, based on intensity data affected by uncertainties. This approach takes into account the ordinal and discrete character of intensities, trying to avoid misleading results due to the assumption that intensity can be treated as a real number (continuous distribution estimators, attenuation relationships, etc.). The proposed formulation is based on the use of a distribution function describing, for each earthquake, the probability that site seismic effects can be described by each possible intensity value. In order to obtain site hazard estimates where local data are lacking, the dependence of this distribution function with the distance from the macroseismic epicenter and with epicentral intensity is examined. A methodology has been developed for the purpose of combining such probabilities and estimating site seismicity rates which takes into account the effect of uncertainties involved in this kind of analysis. An application of this approach is described and discussed.  相似文献   

13.
--A study of the intensity distribution of the earthquake of December 5th 1456, which affected a large area of central and southern Italy was carried out, verifying, through a recently proposed methodology, the two hypotheses assumed by different authors for one single seismic event and three distinct and close ones. This methodology is based on a vectorial modelling of the macroseismic intensity distribution which aims at determining the epicentre and the principal (minimum and maximum) attenuation directions.¶The study was structured, considering each of the two assumed hypotheses, in a set of tests obtained for the macroseismic field and the intensity map, by analysing different configurations of the observed intensity distribution.¶The results obtained are in agreement with the hypothesis of the time coexistence of three distinct seismic events, for which the calculated epicentres and the principal attenuation directions are compatible with the observed intensity distribution and with the tectonic trend of the Apennine region, respectively.  相似文献   

14.
The little-known work by Ludwig Heinrich Jeitteles (1830–1883) on the 1858 Žilina strong earthquake in the Carpathian Mountains is commemorated and analysed. Besides his detailed macroseismic analysis of the earthquake — including the construction of isoseismal lines according to local macroseismic reports — Jeitteles was the first to superimpose the macroseismic field over a generalized geological map, which enabled him to describe the earthquake effects in relation to the geological structure of the affected region. These achievements allow us to acknowledge L.H. Jeitteles as one of founding fathers of seismological research of midnineteen century.  相似文献   

15.
The elastic and anelastic structure of the lithosphere and asthenosphere of the Iberian Peninsula is derived by means of tomographic techniques applied to local phase and group velocities and local attenuation coefficients of Rayleigh wave fundamental mode. The database consists of surface wavetrains recorded at the broadband stations located in the Iberian Peninsula on the occasion of the ILIHA project. Path-averaged phase and group velocities and attenuation coefficients were previously obtained by standard filtering techniques of surface wavetrains and, subsequently, local dispersion curves were computed according to the Yanovskaya-Ditmar formulation. First, a principal component analysis (PCA) and the average linkage (AL) clustering algorithm are applied to these local values in order to classify the Iberian Peninsula in several rather homogeneous domains from the viewpoint of the similarity of the corresponding local dispersion curves, without previous seismotectonic constraints. Second, averaged phase and group velocities and attenuation coefficients representing each homogeneous region are used to derive the respective elastic and anelastic models of the lithosphere and asthenosphere. This purpose is achieved by using the uncoupled causal inversion of phase and group velocities and attenuation coefficients. The main features of the homogeneous regions are discussed by taking as reference the Hercynic, Alpine and Neogene domains of the Iberian Peninsula, and two questions affecting the reliability of the elastic-anelastic models are revised. First, the coherence of the shear-velocity and Qβ−1 models obtained by causal uncoupled inversion for each region is analysed. Second, the influence of the causal phase and group velocities on the shear-velocity models is evaluated by comparing elastic and anelastic models derived from causal uncoupled inversion with those deduced from non-causal inversion.  相似文献   

16.
Seismotectonic position of the Kaliningrad September 21, 2004, earthquake   总被引:1,自引:1,他引:0  
The paper presents an alternative consistent seismotectonic model of the Kaliningrad (Russia) September 21, 2004, earthquake according to which source zones of the two strongest shocks were confined to a N-S fault off the Sambiiskii Peninsula in the Kaliningrad region. A left-lateral deformation fractured a local crustal zone between the town of Yantarnyi and the settlement of Bakalino. The model was constructed with the use of a method developed by the authors for structural analysis of gravity and magnetic data. Initial materials are revised in terms of the EMS-98 macroseismic scale, and modified maps showing the shaking intensity in the NW part of the Sambiiskii Peninsula are compiled.  相似文献   

17.
The points with normal, anomalously low, and anomalously high shaking intensities are recognized in the spatial distribution of macroseismic effects from the 1991 Racha earthquake, Greater Caucasus. Distribution of these points in the epicentral area is not random. Comparison between this distribution and the results of local tomography reveals that seismic wave velocities do not increase in the upper layers (from 0 to 3 km) beneath the points with anomalously high intensity, while a sharp increase in velocity is observed in the depth interval from 6 to 9 km. An original method of b-value mapping is suggested. Application of the method demonstrates that anomalously low intensities correlate to high b-values. This likely reflects higher intensity attenuation associated with higher b-value.  相似文献   

18.
通过多变(相关分析)和趋势分析等统计方法对宏观调查数据进行了解释.这种方法使我们通过评定不同宏观效应叠加的程度、估计调查数据的不确定性更客观地评定烈度.通过滤波确定烈度场的区域分量,使我们消除观测中的局部变化.给出了选取适当滤波参数的准则.本文应用这一方法对发生在意大利的一次地震的调查数据进行了处理.  相似文献   

19.
This paper overviews the procedures and tools used for a systematic study of the macroseismic consequences caused by a strong earthquake that struck Southern Italy. The event referred to the 23 November 1980 (Io = X MCS, Ms = 6.9) which affected the Campania and Basilicata regions. Two aspects are addressed here: to broaden the knowledge of the macroseismic field and delineate damage maps of the sites affected on an urban scale. The target area of this study is the Basilicata region about which the current macroseismic information is poor. This research study, based only on unpublished documentary sources, supplies about 50 new assessments and about 30 new re-assessments of the macroseismic site intensity (MCS scale) as outputs. Moreover, about 80 thematic maps showing the damage pattern of the sites affected are also supplied. It is the first time that a large earthquake has been the subject of such extensive studies from a macroseismic point of view, with special attention to the analysis of damage effects at town scale.  相似文献   

20.
On October 10, 1995, an ML= 4.8 (ING) earthquake occurred in the region of Lunigiana (northwestern Italy). The shock was felt over a large area and produced significant damage. We performed a macroseismic survey and damage zonation and assessed a maximum intensity VII MCS in the epicentral area. The damage pattern, that we investigated in detail for some of the villages in the most heavily damaged area, emphasises the role of surface geology in amplifying the effects. Topographic effects and near-surface geology are largely responsible for broadening the damage area. Given the moderate size of the earthquake, many of the macroseismic observations, including rotations of objects and the propagation of visible waves in the ground, are suggestive of amplification phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号