首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The tectonic system of the eastern flank of Mt. Etna volcano (Sicily, Italy) is the source of most of the strongest earthquakes occurring in the area over the last 205 years. A total of 12 events with epicentre intensities ≥VIII EMS have occurred at Mt. Etna, 10 of which were located on the eastern flank. This indicates a mean recurrence time of about 20 years. This area is highly urbanised, with many villages around the volcano at altitudes up to 700 m a.s.l. The southern and eastern flanks are particularly highly populated areas, with numerous villages very close to each other. The probabilistic seismic hazard due to local faults for Mt. Etna was calculated by adopting a site approach to seismic hazard assessment. Only the site histories of local volcano-tectonic earthquakes were considered, leaving out the effects due to strong regional earthquakes that occurred in north-eastern and south-eastern Sicily. The inventory used in this application refers to residential buildings. These data were extracted from the 1991 census of the Italian National Institute of Statistics, and are grouped according to the census sections. The seismic vulnerability of the elements at risk belonging to a given building typology is described by a vulnerability index, in accordance with a damage model based on macroseismic intensities. For the estimation of economic losses due to physical damage to buildings, an integrated impact indicator was used, which is equivalent to the lost building volume. The expected annualised economic earthquake losses were evaluated both in absolute and in relative terms, and were compared with the geographical distribution of seismic hazard and with similar evaluations of losses for other regions.  相似文献   

2.
In the Central Mediterranean region, the production of chemically diverse volcanic products (e.g., those from Mt. Etna and the Aeolian Islands archipelago) testifies to the complexity of the tectonic and geodynamic setting. Despite the large number of studies that have focused on this area, the relationships among volcanism, tectonics, magma ascent, and geodynamic processes remain poorly understood. We present a tomographic inversion of P-wave velocity using active and passive sources. Seismic signals were recorded using both temporary on-land and ocean bottom seismometers and data from a permanent local seismic network consisting of 267 seismic stations. Active seismic signals were generated using air gun shots mounted on the Spanish Oceanographic Vessel ‘Sarmiento de Gamboa’. Passive seismic sources were obtained from 452 local earthquakes recorded over a 4-month period. In total, 184,797 active P-phase and 11,802 passive P-phase first arrivals were inverted to provide three different velocity models. Our results include the first crustal seismic active tomography for the northern Sicily area, including the Peloritan–southern Calabria region and both the Mt. Etna and Aeolian volcanic environments. The tomographic images provide a detailed and complete regional seismotectonic framework and highlight a spatially heterogeneous tectonic regime, which is consistent with and extends the findings of previous models. One of our most significant results was a tomographic map extending to 14 km depth showing a discontinuity striking roughly NW–SE, extending from the Gulf of Patti to the Ionian Sea, south-east of Capo Taormina, corresponding to the Aeolian–Tindari–Letojanni fault system, a regional deformation belt. Moreover, for the first time, we observed a high-velocity anomaly located in the south-eastern sector of the Mt. Etna region, offshore of the Timpe area, which is compatible with the plumbing system of an ancient shield volcano located offshore of Mt. Etna.  相似文献   

3.
In this work we present seismological and ground deformation evidence for the phase preparing the July 18 to August 9, 2001 flank eruption at Etna. The analysis performed, through data from the permanent seismic and ground deformation networks, highlighted a strong relationship between seismic strain release at depth and surface deformation. This joint analysis provided strong constraints on the magma rising mechanisms. We show that in the last ten years, after the 1991–1993 eruption, an overall accumulation of tension has affected the volcano. Then we investigate the months preceding the 2001 eruption. In particular, we analyse the strong seismic swarm on April 20–24, 2001, comprising more than 200 events (Mmax = 3.6) with prevalent dextral shear fault mechanisms in the western flank. The swarm showed a ca. NE-SW earthquake alignment which, in agreement with previous cases, can be interpreted as the response of the medium to an intrusive process along the approximately NNW-SSE volcano-genetic trend. These mechanisms, leading to the July 18 to August 9, 2001 flank eruption, are analogous to ones observed some months before the 1991–1993 flank eruption and, more recently, in January 1998 before the February-November 1999 summit eruption.  相似文献   

4.
A method for mapping lava-flow hazard on the SE flank of Mt. Etna (Sicily, Southern Italy) by applying the Cellular Automata model SCIARA-fv is described, together with employed techniques of calibration and validation through a parallel Genetic Algorithm. The study area is partly urbanised; it has repeatedly been affected by lava flows from flank eruptions in historical time, and shows evidence of a dominant SSE-trending fracture system. Moreover, a dormant deep-seated gravitational deformation, associated with a larger volcano-tectonic phenomenon, affects the whole south-eastern flank of the volcano.  相似文献   

5.
Archaeoseismology can provide a useful chronological tool for constraining earthquakes and documenting significant evidence that would otherwise be lost. In this paper, we report a case of surface faulting on ancient man-made structures belonging to the archaeological site of Santa Venera al Pozzo situated along the eastern flank of Mt. Etna volcano in eastern Sicily (southern Italy), which is affected by well-developed tectonic faults. Geological surveys highlight a set of fractures affecting the archaeological ruins, suggesting the occurrence of a capable fault zone across the area. An integrated geophysical survey was carried out in order to identify the main subsurface tectonic discontinuity ascribable to the fault zone. The information derived from different geophysical techniques, such as electrical resistivity tomography, seismic refraction tomography, ground-penetrating radar, and magnetic surveys allowed us to infer that the fractures observed at the surface could have been produced by coseismic rupture. They are conceivably linked to a strong earthquake that probably occurred in the Roman period, around mid-end of the third-century AD; time constraints are inferred through the dating of buildings of the archaeological site.  相似文献   

6.
The July 17 – August 9, 2001 flank eruption of Mt. Etna was preceded and accompanied by remarkable changes in volcanic tremor. Based on the records of stations belonging to the permanent seismic network deployed on the volcano, we analyze amplitude and frequency content of the seismic signal. We find considerable changes in the volcanic tremor which mark the transition to different styles of eruptive activity, e.g., lava fountains, phreatomagmatic activity, Strombolian explosions. In particular, the frequency content of the signal decreases from 5 Hz to 3 Hz at our reference station ETF during episodes of lava fountains, and further decreases at about 2 Hz throughout phases of intense lava emission. The frequency content and the ratios of the signal amplitude allow us to distinguish three seismic sources, i.e., the peripheral dike which fed the eruption, the reservoir which fed the lava fountains, and the central conduit. Based on the analysis of the amplitude decay of the signal, we highlight the migration of the dike from a depth of ca. 5 km to about 1 km between July 10 and 12. After the onset of the effusive phase, the distribution of the amplitude decay at our stations can be interpreted as the overall result of sources located within the first half kilometer from the surface. Although on a qualitative basis, our findings shed some light on the complex feeding system of Mt. Etna, and integrate other volcanological and geophysical studies which tackle the problem of magma replenishment for the July–August, 2001 flank eruption. We conclude that volcanic tremor is fundamental in monitoring Mt. Etna, not only as a marker of the different sources which act within the volcano edifice, but also of the diverse styles of eruptive activity. An erratum to this article is available at .  相似文献   

7.
Soil CO2 flux measurements were carried out along traverses across mapped faults and eruptive fissures on the summit and the lower East Rift Zone of Kilauea volcano. Anomalous levels of soil degassing were found for 44 of the tectonic structures and 47 of the eruptive fissures intercepted by the surveyed profiles. This result contrasts with what was recently observed on Mt. Etna, where most of the surveyed faults were associated with anomalous soil degassing. The difference is probably related to the differences in the state of activity at the time when soil gas measurements were made: Kilauea was erupting, whereas Mt. Etna was quiescent although in a pre-eruptive stage. Unlike Mt. Etna, flank degassing on Kilauea is restricted to the tectonic and volcanic structures directly connected to the magma reservoir feeding the ongoing East Rift eruption or in areas of the Lower East Rift where other shallow, likely independent reservoirs are postulated. Anomalous soil degassing was also found in areas without surface evidence of faults, thus suggesting the possibility of previously unknown structures. Received: November 2003, revised: January 2005, accepted: January 2005  相似文献   

8.
The papers deals with the seismic activity occurred on Mt. Etna from 1978 to 1983, and special emphasis is given to the seismicity linked to eruptive phenomena that took place during that period.Location of epicentres and hypocentres of all earthquakes occurred during the considered years and in association with each eruption has shown to be a useful tool to investigate relationships between seismicity and characteristics of various eruptions.A preliminary model is proposed to explain seismo-eruptive mechanisms controlling the uprise of magma and subsequent eruptions of Mt. Etna. The complexity of phenomena observed in the Etnean area could be interpreted as the result of the combined effect of regional stress field and local changes of it due to the volcano structural inhomogeneities. Thus, the earthquakes occurring in the studied area may cause either partial intrusion of magma at various depth, or final opening of surface fractures and subsequent output of lava.  相似文献   

9.
A seismic swarm of more than 7200 earthquakes occurred in Aysen Fjord, southern Chile, from January to June 2007. It started suddenly on 23 January 2007 with an earthquake of magnitude Mw=5.3, followed by five earthquakes with magnitudes increasing from Mw=5.2 to 6.2 within three months. Two large earthquakes of magnitudes Mw=6.1 and 6.2 occurred on 02 and 21 April 2007, respectively. The latest earthquake generated landslides that induced a tsunami within the fjord, killing 10 people. This swarm has been examined using international seismic catalogues and seismicity located with a local seismic network; in particular its double tectonic and volcanic origin has been explored. All the focal mechanisms are compatible with the long- and short-term tectonics of the Liquiñe-Ofqui Fault Zone, a major intra-arc fault system of the Patagonian fjord land. The space, time, and size distributions of these earthquakes, that occurred within an active volcanic area revealed by the presence of several Holocene monogenetic volcanoes, may be explained both by fluid-induced (magma and/or hydrothermal fluids) activity combined with tectonic activity. The co-existence of these two tectonic and volcanic phenomena is a good example of retroactive links between fluids and tectonic fractures.  相似文献   

10.
闫坤  王伟君  王琼  杨峰  刘宁  寇华东 《地震》2019,39(3):43-60
北天山地震带地处中国大陆强震高发区, 孕震构造复杂, 近年来陆续发生了2016年呼图壁MS6.2地震和2017年精河MS6.6地震。 由于测震台网相对比较稀疏, 该区域微震监测能力较弱。 本文主要采用波形模板扫描法对北天山中段(43.5°N~44.5°N; 85°E~87.5°E)进行微震事件检测, 并反演精细的一维速度结构, 重新定位地震; 深入分析该区域的地震活动性和孕震构造特征。 经过微震检测, 得到该地区2014年1月至2018年9月期间57902个地震事件, 是原地震目录的10倍, 完备震级从1.2降至0.5。 结果显示, 北天山中段地震十分活跃, 主要分布在北天山山前霍尔果斯—玛纳斯—吐谷鲁背斜带南翼的浅部和南玛纳斯—齐古背斜带深部, 呼图壁地震震后地震活动性有增强的趋势。 研究期间沿背斜构造带走向地震分布不均, 霍尔果斯—玛纳斯—吐谷鲁背斜带西段地震活动多于东段, 南玛纳斯—齐古背斜带东段地震活动显著强于西段。 经过重定位, 发现研究区的地震事件主要发生在褶皱内部的“盲断层”上, 这些隐伏断裂与区域活动断裂和背斜构造共同组成的断层系孕育了北天山山前活跃的地震活动, 并可能成为未来强震的发震构造。  相似文献   

11.
We carried out a study of the seismicity and ground deformation occurring on Mt. Etna volcano after the end of the 2002–2003 eruption and before the onset of the 2004–2005 eruption. Data were recorded by the permanent local seismic network run by Istituto Nazionale di Geofisica e Vulcanologia – Sezione di Catania and by geodetic surveys carried out in July 2003 and July 2004 on the GPS network. Most earthquakes were grouped in two main clusters located in the northeastern and southeastern sectors of the volcano. The areal distribution of seismic energy associated with the recorded earthquakes allowed us to highlight the main seismogenic areas of Mt. Etna. In order to better understand the kinematic processes of the volcano, 3D seismic locations were used to compute fault plane solutions, and a selected dataset was inverted to determine stress and strain tensors. The focal mechanisms in the northeastern sector show clear left-lateral kinematics along an E-W fault plane, consistent with events occurring along the Pernicana Fault system. The fault plane solutions in the southeastern sector show mainly right-lateral kinematics along a NNE and ENE fault plane and left lateral-kinematics along NW fault planes that together suggest roughly E-W oriented compression. Surface ground deformation affecting Mt. Etna measured by GPS surveys highlighted a marked inflation during the same period and exceptionally strong seawards motion of its eastern flank. The 2D geodetic strain tensor distribution was calculated and the results show mainly ENE-WSW extension coupled with WNW-ESE contraction, indicating right-lateral shear along a NW-SE oriented fault plane. The different deformation of the eastern sector of the volcano, as measured by seismicity and ground deformation, must be interpreted by considering the different depths of the two signals. Seismic activity in the southeastern sector of volcano is located between 3 and 8 km b.s.l. and can be associated with a very strong additional E-W compression induced by a pressurizing source just westwards and at the same depth, located by inverting GPS data. Ground deformation, in contrast, is mainly affected by the shallower dynamics of the fast moving eastern flank which produces a shallower opposing E-W extension. The entire dataset shows that two different processes affect the eastern flank at the same time but at different depths; the boundary is clearly located at a depth of 3 km b.s.l. and could represent the décollement surface for the mobile flank.  相似文献   

12.
Seismic data from the MVT-SLN sesmic station located 7 km from the summit area of Mt Etna volcano, which has been operating steadily for the last two decades, have been analysed together with the volcanic activity during the same period. Cross-correlation techniques are used to investigate possible relationships between seismic and volcanic data and to evaluate the statistical significance of the results. A number of significant correlations have been identified, showing that there is an evident relation between seismic events and flank eruptions, and a less clear relation with summit activity, which appears more linked to tremor rather than to the low-frequency events. Particularly interesting are the low-frequency events whose rate of occurrence increases, starting from 17 to 108 days, prior to the onset of the flank activity and are candidates for a useful precursor. On the other hand, a tendency towards the increase in both the duration and the occurrence rate of transients in the volcanic tremor was observed before the onset of summit eruptions. As a result of this study different stages in the volcanic activity of Mt Etna, represented by changes in the characteristics of the recorded seismic phenomena, are identified.  相似文献   

13.
The character and location of seismic activity accompanying the onset of the 1991–1993 eruption at Mt. Etna are compatible with the surface evidence of the volcanic pile rupture. Both the epicentral distribution and the focal mechanisms of a swarm that occurred on December 14, 1991, agree with magma ascent occurring along the main NNW-SSE-trending structure of the volcano and the consequent opening of a system of effusive fissures with the same trend. A typical mainshock-aftershock sequence, recorded the day after and indicating transcurrent displacement occurring along the second-principal structure of Etna (NE-SW), depicts the tectonic response of the volcanic pile and the underlying basement to major stresses applied by the magma push.  相似文献   

14.
On January 30, 1974, an explosive eruption began on the western side of Etna. The activity evolved into two eruptive periods (January 30–February 17 and March 11–29). Two spatter cones (Mount De Fiore I and Mount De Fiore II) were formed at a height of about 1650 m a.s.l. and a distance of 6 km from the summit area. The effusive activity was very irregular with viscous lava flows of modest length.A seismic network of four stations was established around the upper part of the volcano on February 3. Moreover additional mobile stations were set up at several different sites in order to obtain more detailed informations on epicenter locations and spectral content of volcanic tremor.The volcanic activity is discussed in relation to the distribution of epicenters and the time-space distribution of the spectral characteristics of volcanic earthquakes and tremor. The characteristics of the seismic activity suggest that the flank eruption of Mount Etna was probably feed by a lateral branch of the main conduit yielding the activity at the Central Crater.  相似文献   

15.
In this work, we report the results of an integrated approach using both seismological and geodetic data provided by the INGV-CT (Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania) Stromboli volcano monitoring systems, in order to improve the knowledge of its plumbing system. In particular, we investigated the relationships between the June 1999 seismic swarm, occurring in the area of Stromboli, and the possible activation of the NE–SW oriented volcano-tectonic structure. We analyzed this seismic swarm proposing new locations and a morphological analysis of the waveforms. This approach allowed us to demonstrate that there are relationships between the tectonic activity near Stromboli and the rising of magma. This evidence supports the hypothesis that during the 1999 swarm an intrusive process started from a crustal level where earthquakes were located (about 10–15 km b.s.l.).  相似文献   

16.
The tectonic escarpments locally known as ‘Timpe’ cut a large sector of the eastern flank of Etna, and allow an ancient volcanic succession dating back to 225 ka to be exposed. Geological and volcanological investigations carried out on this succession have allowed us to recognize relevant angular unconformities and volcanic features which are the remnants of eruptive fissures, as well as important changes in the nature, composition and magmatic affinity of the exposed volcanics. In particular, the recognition in the lower part of the succession of important and unequivocal evidence of ancient eruptive fissures led us to propose a local origin for these volcanics and to revise previous interpretations which attributed their westward-dipping to the progressive tectonic tilting of strata. These elements led us to reinterpret the main features of the volcanic activity occurring since 250 ka BP and their relationship with tectonic structures active in the eastern flank of Etna. We propose a complex paleo-environmental and volcano-tectonic evolution of the southeastern flank of Mt. Etna, in which the Timpe fault system played the role of the crustal structure that allowed the rise and eruption of magmas in the above considered time span.  相似文献   

17.
A fissural eruption occurred from the northern flank of Mt. Etna on March 17, 1981, and the associated earthquake activity, recorded by the seismic network operating on the volcano, was carefully examined to detect possible variations ofb values, according to the frequency-magnitude relationship, before the start of the eruption. The analysis of 4000B-type earthquakes was carried out according to the maximum likelihood method. A significant increase in theb value was noticed since the beginning of February 1981, followed by a sharp decrease in the days before the eruption started. The observed variation pattern was related to possible changes on the stress field acting on the volcano.  相似文献   

18.
A morphostructural analysis has been performed on the eastern flank of Mt Etna, located between the towns of St. Alfio and Linera and the Ionian Sea. The research has been carried out through analysis of aerial photographs, and has allowed recognition of morphoneotectonic elements such as: some scarps with rectilinear trend, laterally becoming morphological flexures, according to the lithology; anomalies in the hydrographic network, such as rectilinear tracts of drainage, valleys with simple or double bends, hanging valleys and truncated valleys, narrow deeply engraved valleys with meanders and fluvial captures. All these elements are caused by a fault system oriented NNW–SSE, with a mainly vertical component. Seismic events with very shallow foci have been recorded in the study area; these earthquakes triggered several small landslides on the fault scarps and large series of coseismic and coaxial fractures. It is possible to show that the morphostructures examined have been reactivated during many of the seismic events that have occurred in the area. The combination of these elements verifies that the morphostructures have a real neotectonic cause, which is associated with uplifts which have occurred in the area at different times.  相似文献   

19.
The 2002–03 Mt Etna flank eruption began on 26 October 2002 and finished on 28 January 2003, after three months of continuous explosive activity and discontinuous lava flow output. The eruption involved the opening of eruptive fissures on the NE and S flanks of the volcano, with lava flow output and fire fountaining until 5 November. After this date, the eruption continued exclusively on the S flank, with continuous explosive activity and lava flows active between 13 November and 28 January 2003. Multi-disciplinary data collected during the eruption (petrology, analyses of ash components, gas geochemistry, field surveys, thermal mapping and structural surveys) allowed us to analyse the dynamics of the eruption. The eruption was triggered either by (i) accumulation and eventual ascent of magma from depth or (ii) depressurisation of the edifice due to spreading of the eastern flank of the volcano. The extraordinary explosivity makes the 2002–03 eruption a unique event in the last 300 years, comparable only with La Montagnola 1763 and the 2001 Lower Vents eruptions. A notable feature of the eruption was also the simultaneous effusion of lavas with different composition and emplacement features. Magma erupted from the NE fissure represented the partially degassed magma fraction normally residing within the central conduits and the shallow plumbing system. The magma that erupted from the S fissure was the relatively undegassed, volatile-rich, buoyant fraction which drained the deep feeding system, bypassing the central conduits. This is typical of most Etnean eccentric eruptions. We believe that there is a high probability that Mount Etna has entered a new eruptive phase, with magma being supplied to a deep reservoir independent from the central conduit, that could periodically produce sufficient overpressure to propagate a dyke to the surface and generate further flank eruptions.Editorial responsibility: J. Donnelly-Nolan  相似文献   

20.
Local seismic activity consisting of sharp earthquakes accompanied by thunderous noise was reported starting in late December 1985 around Tacaná volcano (15.13°N, 92.10°W). Portable seismic stations were established in the area by late January 1986 and sampling of the only known thermal spring on the volcano flanks started at the same time. A marked increase in SO42− concentration in the spring water preceded by two months the occurrence of a seismic swarm crisis and a small phreatic explosion. A model involving a crystalline basement fractured by tectonic stresses is proposed to explain the chemical and seismic anomalies, and the consequences on risk of volcanic activity are briefly discussed in terms of the observed behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号