首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
This paper presents a fast, economical particle-multiple-mesh N -body code optimized for large- N modelling of collisionless dynamical processes, such as black hole wandering or bar–halo interactions, occurring within isolated galaxies. The code has been specially designed to conserve linear momentum. Despite this, it also has variable softening and an efficient block-time-step scheme: the force between any pair of particles is calculated using the finest mesh that encloses them both (respecting Newton's third law) and is updated only on the longest time-step of the two (which conserves momentum). For realistic galaxy models with   N ≳ 106  , it is faster than the fastest comparable tree code by factors ranging from ∼2 (using single time-steps) to ∼10 (multiple time-steps in a concentrated galaxy).  相似文献   

2.
The numbered Jupiter family comets (orbital periods   P < 20 yr  ) have a median orbital inclination of about     . In this paper, we integrate the orbits of these comets into the future, under the influence of both typical non-gravitational forces and planetary perturbation, using a Bulirsch–Stoer integrator. In the case where non-gravitational forces were not acting, the median inclination of those comets that remained on   P < 20 yr  orbits increased at the rate of  (1.92 ± 0.12) × 10−3 deg yr−1  for the first 3600 yr of the integration. During this time the population of the original family decreases, such that the half-life is about 13 200 ± 800 yr. The introduction of non-gravitational forces slows down the rate of increase in inclination to a value of around  (1.23 ± 0.16) × 10−3 deg yr−1  . This rate of increase in inclination was found to be only weakly dependent on the non-gravitational parameters used during the integration. After a few thousand years, the rate of change in inclination decreases, and after 20 000 yr the inclinations of those initial Jupiter family members that still have orbits with   P < 20 yr  become constant at about     , independent of whether non-gravitational forces are acting or not. The presently known Jupiter family of comets is losing members at the rate of one in every 67 yr. To maintain the family in equilibrium, Jupiter has to capture comets at a similar rate, and these captured comets have to be of low inclination to compensate for the pumping up of inclinations by gravitational perturbation.  相似文献   

3.
We construct test-particle orbits and simple N -body models that match the properties of the giant stellar stream observed to the south of M31, using the model of M31's potential derived in the companion paper by Geehan et al. We introduce a simple approximation to account for the difference in position between the stream and the orbit of the progenitor; this significantly affects the best-fitting orbits. The progenitor orbits we derive have orbital apocentre  ∼60 kpc  and pericentre  ∼3 kpc  , though these quantities vary somewhat with the current orbital phase of the progenitor which is as yet unknown. Our best combined fit to the stream and galaxy properties implies a mass within 125 kpc of M31 of  (7.4 ± 1.2) × 1011 M  . Based on its length, width, luminosity, and velocity dispersion, we conclude that the stream originates from a progenitor satellite with mass   M s∼ 109 M  , and at most modest amounts of dark matter; the estimate of M s is again correlated with the phase of the progenitor. M31 displays a large number of faint features in its inner halo which may be progenitors or continuations of the stream. While the orbital fits are not constrained enough for us to conclusively identify the progenitor, we can identify several plausible candidates, of which a feature in the planetary nebula distribution found by Merrett et al. is the most plausible, and rule out several others. We make predictions for the kinematic properties of the successful candidates. These may aid in observational identification of the progenitor object, which would greatly constrain the allowed models of the stream.  相似文献   

4.
Possible orbital histories of the Sgr dwarf galaxy are explored. A special-purpose N -body code is used to construct the first models of the Milky Way–Sgr dwarf system in which both the Milky Way and the Sgr dwarf are represented by full N -body systems and followed for a Hubble time. These models are used to calibrate a semi-analytic model of the Sgr dwarf's orbit that enables us to explore a wider parameter space than is accessible to the N -body models. We conclude that the extant data on the Sgr dwarf are compatible with a wide range of orbital histories. At one extreme the Sgr dwarf initially possesses ∼1011 M and starts from a Galactocentric distance R D(0)≳200 kpc. At the other extreme the Sgr dwarf starts with ∼109 M and R D(0)∼60 kpc, similar to its present apocentric distance. In all cases the Sgr dwarf is initially dark matter dominated and the current velocity dispersion of the Sgr dwarf's dark matter is tightly constrained to be 21±2 km s−1. This number is probably compatible with the smaller measured dispersion of the Sgr dwarf's stars because of (i) the dynamical difference between dark and luminous matter, and (ii) velocity anisotropy.  相似文献   

5.
It has recently been shown by Rauch 38 Tremaine that the rate of angular momentum relaxation in nearly Keplerian star clusters is greatly increased by a process termed 'resonant relaxation'; it was also argued, via a series of scaling arguments, that tidal disruption of stars in galactic nuclei containing massive black holes could be noticeably enhanced by this process. We describe here the results of numerical simulations of resonant tidal disruption which quantitatively test the predictions made by Rauch 38 Tremaine. The simulation method is based on an N -body routine incorporating cloning of stars near the loss cone and a semirelativistic symplectic integration scheme. Normalized disruption rates for resonant and non-resonant nuclei are derived at orbital energies both above and below the critical energy, and the corresponding angular momentum distribution functions are found. The black hole mass above which resonant tidal disruption is quenched by relativistic precession is determined. We also briefly describe the discovery of chaos in the Wisdom–Holman symplectic integrator applied to highly eccentric orbits and propose a modified integration scheme that remains robust under these conditions. We find that resonant disruption rates exceed their non-resonant counterparts by an amount consistent with the predictions; in particular, we estimate the net tidal disruption rate for a fully resonant cluster to be about twice that of its non-resonant counterpart. No significant enhancement in rates is observed outside the critical radius. Relativistic quenching of the effect is found to occur for hole masses M  >  M Q  = (8 ± 3) × 107  M . The numerical results combined with the observed properties of galactic nuclei indicate that for most galaxies the resonant enhancement to tidal disruption rates will be very small.  相似文献   

6.
The purpose of this article is to show that when dynamically cold, dissipationless self-gravitating systems collapse, their evolution is a strong function of the symmetry in the initial distribution. We explore with a set of pressureless homogeneous fluids the time evolution of ellipsoidal distributions and map the depth of potential achieved during relaxation as function of initial ellipsoid axis ratios. We then perform a series of N -body numerical simulations and contrast their evolution with the fluid solutions. We verify an analytic relation between collapse factor and particle number N in spherical symmetry, such that  ∝ N 1/3  . We sought a similar relation for axisymmetric configurations, and found an empirical scaling relation such that  ∝ N 1/6  in these cases. We then show that when mass distributions do not respect spherical or axial symmetry, the ensuing gravitational collapse deepens with increasing particle number N but only slowly: 86 per cent of triaxial configurations may collapse by a factor of no more than 40 as   N →∞  . For   N ≈105  and larger, violent relaxation develops fully under the Lin–Mestel–Shu instability such that numerical N -body solutions now resolve the different initial morphologies adequately.  相似文献   

7.
Using eight dark matter haloes extracted from fully self-consistent cosmological N -body simulations, we perform microlensing experiments. A hypothetical observer is placed at a distance of 8.5 kpc from the centre of the halo measuring optical depths, event durations and event rates towards the direction of the Large Magellanic Cloud. We simulate 1600 microlensing experiments for each halo. Assuming that the whole halo consists of massive astronomical compact halo objects (MACHOs),   f = 1.0  , and a single MACHO mass is   m M= 1.0 M  , the simulations yield mean values of  τ= 4.7+5.0−2.2× 10−7  and  Γ= 1.6+1.3−0.6× 10−6  events star−1 yr−1. We find that triaxiality and substructure can have major effects on the measured values so that τ and Γ values of up to three times the mean can be found. If we fit our values of τ and Γ to the MACHO collaboration observations, we find   f = 0.23+0.15−0.13  and   m M= 0.44+0.24−0.16  . Five out of the eight haloes under investigation produce f and m M values mainly concentrated within these bounds.  相似文献   

8.
We present BeppoSAX observations of Nova Velorum 1999 (V382 Vel), carried out in a broad X-ray band covering 0.1–300 keV only 15 d after the discovery and again after 6 months. The nova was detected at day 15 with the BeppoSAX instruments which measured a flux F x≃1.8×10−11 erg cm−2 s−1 in the 0.1–10 keV range and a 2 σ upper limit F x<6.7×10−12 erg cm−2 s−1 in the 15–60 keV range. We attribute the emission to shocked nebular ejecta at a plasma temperature kT ≃6 keV . At six months no bright component emerged in the 15–60 keV range, but a bright central supersoft X-ray source appeared. The hot nebular component previously detected had cooled to a plasma temperature kT <1 keV . There was strong intrinsic absorption of the ejecta in the first observation and not in the second, because the column density of neutral hydrogen decreased from N (H)≃1.7×1023 to N (H)≃1021 cm−2 (close to the interstellar value). The unabsorbed X-ray flux also decreased from F x=4.3×10−11 to F x≃10−12 erg cm−2 s−1 .  相似文献   

9.
We present Chandra and XMM–Newton observations of 12 bright  [ f (2–10 keV) > 10−13 erg cm−2 s−1]  sources from the ASCA search for the High Energy Extragalactic Population (SHEEP) survey. Most of these have been either not observed or not detected previously with the ROSAT mission, and therefore they constitute a sample biased towards hard sources. The Chandra observations are important in locating the optical counterpart of the X-ray sources with accuracy. Optical spectroscopic observations show that our sample is associated with both narrow-line (NL) (six objects) and broad-line (BL) active galactic nuclei (AGN) (five objects), with one source remaining unidentified. Our sources cover the redshift range 0.04–1.29, spanning luminosities from 1042 to  1045 erg s−1  (2–10 keV). The NL sources have preferentially lower redshift (and luminosity) compared to the BL ones. This can be most easily explained in a model where the NL AGN are intrinsically less luminous than the BL ones in line with the results of Steffen et al. The X-ray spectral fittings show a roughly equal number of obscured  ( N H > 1022 cm−2)  and unobscured  ( N H < 1022 cm−2)  sources. There is a clear tendency for obscured sources to be associated with NL AGN and unobscured sources with BL ones. However, there is a marked exception with the highest obscuring column observed at a BL AGN at a redshift of z = 0.5.  相似文献   

10.
We discuss the evolution of the magnetic flux density and angular velocity in a molecular cloud core, on the basis of three-dimensional numerical simulations, in which a rotating magnetized cloud fragments and collapses to form a very dense optically thick core of  >5 × 1010 cm−3  . As the density increases towards the formation of the optically thick core, the magnetic flux density and angular velocity converge towards a single relationship between the two quantities. If the core is magnetically dominated its magnetic flux density approaches  1.5( n /5 × 1010 cm−3)1/2 mG  , while if the core is rotationally dominated the angular velocity approaches  2.57 × 10−3 ( n /5 × 1010 cm−3)1/2 yr−1  , where n is the density of the gas. We also find that the ratio of the angular velocity to the magnetic flux density remains nearly constant until the density exceeds  5 × 1010 cm−3  . Fragmentation of the very dense core and emergence of outflows from fragments will be shown in the subsequent paper.  相似文献   

11.
We propose a model for the source of the X-ray background (XRB) in which low-luminosity active nuclei ( L  ∼ 1043 erg s−1) are obscured ( N  ∼ 1023 cm−2) by nuclear starbursts within the inner ∼ 100 pc. The obscuring material covers most of the sky as seen from the central source, rather than being distributed in a toroidal structure, and hardens the averaged X-ray spectrum by photoelectric absorption. The gas is turbulent with velocity dispersion ∼ few × 100 km s−1 and cloud–cloud collisions lead to copious star formation. Although supernovae tend to produce outflows, most of the gas is trapped in the gravity field of the star-forming cluster itself and the central black hole. A hot ( T  ∼ 106 − 107 K) virialized phase of this gas, comprising a few per cent of the total obscuring material, feeds the central engine of ∼ 107 M⊙ through Bondi accretion, at a sub-Eddington rate appropriate for the luminosity of these objects. If starburst-obscured objects give rise to the residual XRB, then only 10 per cent of the accretion in active galaxies occurs close to the Eddington limit in unabsorbed objects.  相似文献   

12.
We perform a stability test of triaxial models in Modified Newtonian Dynamics (MOND) using N -body simulations. The triaxial models considered here have densities that vary with   r −1  in the centre and   r −4  at large radii. The total mass of the model varies from 108 to  1010 M  , representing the mass scale of dwarfs to medium-mass elliptical galaxies, respectively, from deep MOND to quasi-Newtonian gravity. We build triaxial galaxy models using the Schwarzschild technique, and evolve the systems for 200 Keplerian dynamical times (at the typical length-scale of 1.0 kpc). We find that the systems are virial overheating, and in quasi-equilibrium with the relaxation taking approximately 5 Keplerian dynamical times (1.0 kpc). For all systems, the change of the inertial (kinetic) energy is less than 10 per cent (20 per cent) after relaxation. However, the central profile of the model is flattened during the relaxation and the (overall) axis ratios change by roughly 10 per cent within 200 Keplerian dynamical times (at 1.0 kpc) in our simulations. We further find that the systems are stable once they reach the equilibrium state.  相似文献   

13.
We present radio observations of comet 9P/Tempel 1 associated with the Deep Impact spacecraft collision of 2005 July 4. Weak 18-cm OH emission was detected with the Parkes 64-m telescope, in data averaged over July 4–6, at a level of  12 ± 3 mJy km s−1  , corresponding to OH production rate  2.8 × 1028  molecules s−1 (Despois et al. inversion model, or  1.0 × 1028 s−1  for the Schleicher & A'Hearn model). We did not detect the HCN 1–0 line with the Mopra 22-m telescope over the period July 2–6. The 3σ limit of 0.06 K km s−1 for HCN on July 4 after the impact gives the limit to the HCN production rate of  <1.8 × 1025 s−1  . We did not detect the HCN 1–0 line, 6.7 GHz CH3OH line or 3.4-mm continuum with the Australia Telescope Compact Array (ATCA) on July 4, giving further limits on any small-scale structure due to an outburst. The 3σ limit on HCN emission of 2.5 K km s−1 from the ATCA around impact corresponds to limit < 4 × 1029 HCN molecules released by the impact.  相似文献   

14.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   

15.
We present J , H and K -band spectroscopy of Cygnus A, spanning 1.0–2.4 μm in the rest-frame and hence several rovibrational H2, H recombination and [Fe  ii ] emission lines. The lines are spatially extended by up to 6 kpc from the nucleus, but their distinct kinematics indicate that the three groups (H, H2 and [Fe  ii ]) are not wholly produced in the same gas. The broadest line, [Fe  ii ] λ 1.644, exhibits a non-Gaussian profile with a broad base (FWHM≃1040 km s−1), perhaps because of the interaction with the radio source. Extinctions to the line-emitting regions substantially exceed earlier measurements based on optical H recombination lines.
Hard X-rays from the quasar nucleus are likely to dominate the excitation of the H2 emission. The results of Maloney, Hollenbach & Tielens are thus used to infer the total mass of gas in H2 v=1–0 S(1)-emitting clouds as a function of radius, for gas densities of 103 and 105 cm−3, and stopping column densities N H=1022–1024 cm−2. Assuming azimuthal symmetry, at least 2.3×108 M of such material is present within 5 kpc of the nucleus, if the line-emitting clouds see an unobscured quasar spectrum. Alternatively, if the bulk of the X-ray absorption to the nucleus inferred by Ueno et al. actually arises in a circumnuclear torus, the implied gas mass rises to ∼1010 M. The latter plausibly accounts for 109 yr of mass deposition from the cluster cooling flow, for which within this radius.  相似文献   

16.
The wavelength and Einstein A coefficient are calculated for all rotation–vibration transitions of  4He1H+, 3He1H+, 4He2H+  and  3 He2H+  , giving a complete line list and the partition function for  4HeH+  and its isotopologues. This opacity is included in the calculation of the total opacity of low-metallicity stars and its effect is analysed for different conditions of temperature, density and hydrogen number fraction. For a low helium number fraction (as in the Sun), it is found that HeH+ has a visible but small effect for very low densities  (ρ≤ 10−10 g cm−3)  , at temperatures around 3500 K. However, for high helium number fraction, the effect of HeH+ becomes important for higher densities  (ρ≤ 10−6 g cm−3)  , its effect being most important for a temperature around 3500 K. Synthetic spectra for a variety of different conditions are presented.  相似文献   

17.
We present a semi-analytic treatment of galactic winds within high-resolution, large-scale cosmological N -body simulations of a Λ cold dark matter (ΛCDM) universe. The evolution of winds is investigated by following the expansion of supernova-driven superbubbles around the several hundred thousand galaxies that form in an approximately spherical region of space with diameter 52  h −1 Mpc and mean density close to the mean density of the universe. We focus our attention on the impact of winds on the diffuse intergalactic medium. Initial conditions for mass loss at the base of winds are taken from Shu, Mo & Mao. Results are presented for the volume filling factor and the mass fraction of the intergalactic medium (IGM) affected by winds, and their dependence on the model parameters is carefully investigated. The mass-loading efficiency of bubbles is a key factor to determine the evolution of winds and their global impact on the IGM: the higher the mass loading, the later the IGM is enriched with metals. Galaxies with 109 < M < 1010 M are responsible for most of the metals ejected into the IGM at   z = 3  , while galaxies with   M < 109 M   give a non-negligible contribution only at higher redshifts, when larger galaxies have not yet assembled. We find a higher mean IGM metallicity than Lyα forest observations suggest, and we argue that the discrepancy may be explained by the high temperatures of a large fraction of the metals in winds, which may not leave detectable imprints in absorption in the Lyα forest.  相似文献   

18.
We have searched for molecular absorption lines at millimetre wavelengths in 11 gravitational lens systems discovered in the JVAS/CLASS surveys of flat spectrum radio sources. Spectra of only one source 1030+074 were obtained in the 3-, 2- and 1.3-mm bands at the frequencies corresponding to common molecular transitions of CO and HCO+ as continuum emission was not found in any of the other sources. We calculated upper limits to the column density in molecular absorption for 1030+074, using an excitation temperature of 15 K, to be N CO<6.3×1013 cm−2 and N HCO+<1.3×1011 cm−2 , equivalent to hydrogen column density of the order N H<1018 cm−2 , assuming standard molecular abundances. We also present the best upper limits of the continuum at the lower frequency for the other 10 gravitational lenses.  相似文献   

19.
We report a Chandra observation of the   z =3.395  radio galaxy B2 0902+343. The unresolved X-ray source is centred on the active nucleus. The spectrum is well fitted by a flat power law of photon index of  Γ∼1.1  with intrinsic absorption of  8×1022 cm-2  , and an intrinsic  2–10 keV  luminosity of  3.3×1045 erg s-1  . More complex models that allow for a steeper spectral index cause the column density and intrinsic luminosity to increase. The data limit any thermal luminosity of the hot magnetized medium, assumed responsible for high Faraday rotation measures seen in the radio source, to less than ∼1045 erg s−1.  相似文献   

20.
We present analyses of the ASCA X-ray spectra of two Seyfert galaxies, Tololo 0109383 and ESO 138G1. In both cases, spectral fitting reveals two statistically acceptable continuum models: Compton reflection and partial covering. Both spectra have strong iron K lines, with equivalent widths greater than 1.5 keV. These large equivalent widths are suggestive of heavier obscuration than that directly indicated by the partial-covering models (  21023 cm-2),  with the actual column densities being 'Compton-thick' (i.e.   N H1.51024 cm-2).  We use the hard X-ray/[O  iii ] flux correlation for Seyferts and data from the literature to provide additional support for this hypothesis. Since Tololo 0109383 is known to have optical type 1 characteristics such as broad Balmer line components and Fe  ii emission, this result marks it as a notable object.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号