首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A sounding rocket, launched into the expansive phase of an auroral substorm, measured bursts of electric field oscillations with a typical period of one second and a magnitude exceeding 20 mV/m. The oscillations appear to be due to an MHD wave propagating along the magnetic field. The bursts were observed as the sounding rocket passed over the southern border of an auroral arc. The southern border coincided with an increase in 1–5 keV electron flux and an increase in field-aligned current.  相似文献   

2.
The ionization structure of the auroral arc was measured on a sounding rocket which penetrated into a bright auroral arc. The E-region electron density becomes large (2 ~ 5 × 105 el/cm3 only in the moving auroral arc, whose N2+ 4278 Å brightness is 1 ~ 2·5 kR. The electron density in the D-region beneath the lower boundary of the arc (75 ~ 98 km in altitude) is also considerably enhanced to 2 ~ 5 × 104 el/cm3.The observed E-region electron density can be interpreted theoretically as due to the direct ionization by precipitating electrons, whose energy spectrum is approximately represented by an exponential type having the characteristic energy of 2 keV. The correlation between the electron density and the N2+ 4278 Å brightness can be reasonably explained by considering the simultaneous effects on the ionization and the optical excitation caused by the primary electrons having a flux of 9 × 109 el/cm2/sec per 1 kR of the 4278 Å emission.Further analyses using the electron density data from four other sounding rockets have shown that the D-region ionization has good correlations to the cosmic noise absorption (CNA) and the magnetic substorm activities observed simultaneously at the ground station, whereas it has poor correlation to the same quantity of the E-region measured in the same experiment. It is found that the observed D-region ionization is much larger than that predicted by the theory which takes into account the Bremsstrahlung X-ray ionization along with the direct impact ionization when it is applied to the precipitating electron flux spectrum consistent to the E-region ionization and optical excitation.After all the present experimental results suggest a dual nature of the electron precipitation spectrum in the substorm, i.e. the softer part which is localized in the auroral arc and the harder part which is spatially wide-spread over the substorm area.  相似文献   

3.
Simultaneous observations of precipitating electrons and protons in the energy range from 15 eV to 35 keV and magnetic field variations were made onboard a sounding rocket payload launched from the Andoya Rocket Range. The electric current density deduced from the electron precipitation observed during the passage over an auroral arc was comparable to that determined from the magnetic field variations. In addition, a downward current was observed by its magnetic field signature at the northern edge of the arc which was, however, not accompanied by significant particle fluxes in the energy range under consideration. It will be assumed that this current was carried by thermal electrons of ionospheric origin.  相似文献   

4.
We examine the electric field hypothesis as a possible explanation of a stable auroral red arc. An electric field perpendicular to the geomagnetic field in the ionosphere heats the ambient F-region electrons and ions. Given large enough electric fields, the electrons can be heated sufficiently to excite the OI (1D) term of atomic oxygen by electron impact, giving rise to the λ6300 emission characteristic of the red arc. The electron and ion heating rates are determined by the relative drift between the plasma and neutral gas.  相似文献   

5.
Radar and rocket electric field observations of auroral arcs have earlier been used to identify essentially four different arc types, namely anticorrelation and correlation arcs (with, respectively, decreased and increased arc-associated field) and asymmetric and reversal arcs. In this paper, rocket double probe and supplementary observations from the literature, obtained under various geophysical conditions, are used to organize the different arc types on a physical rather than morphological basis. This classification is based on the relative influence on the electric field pattern from the two current continuity mechanisms, polarization electric fields and Birkeland currents. In this context the tangential electric field plays an essential role and it is thus important that it can be obtained with both high accuracy and resolution. In situ observations by sounding rockets are shown to be better suited for this specific task than monostatic radar observations. Depending on the dominating mechanism, estimated quantitatively for a number of arc-crossings, the different arc types have been grouped into the following main categories: Polarization arcs, Birkeland current arcs and Combination arcs. Finally the high altitude potential distributions corresponding to some of the different arc types are presented.  相似文献   

6.
7.
The paper discusses electron intensities observed on two rocket flights over auroral arcs. On both occasions there was an order-of-magnitude increase in the electron phase-space density as the rocket moved northwards across the arc from a southern region of relatively hard precipitation to an adjacent northern region of softer (but still intense) precipitation. These two distinct regions formed northern and southern ‘curtains’ to the arcs. Electrons observed to the south of one of the arcs had the same phase-space density as those in the southern curtain of the arc. It is concluded that the electrons producing the auroral arcs were accelerated at the boundary between two source plasmas in the magnetosphere. The possible identity of the source plasmas is discussed. From the various types of election energy spectra encountered it is suggested that time-varying magnetic fields played an important part in the acceleration of the electrons that produced the auroral arcs.  相似文献   

8.
Low energy precipitated electrons have been measured with high time resolution through an auroral display by a series of high geometrical factor particle counters on a ‘mother-daughter’ sounding rocket, launched during wintertime near 2100 LT from Andenes, Norway.The observations show that the 0·5–3 keV electron fluxes are anisotropically distributed, with a maximum in a direction parallel to the local geomagnetic field vector at all latitudes covered by the rocket, except within the visual auroral forms where the pitch-angle distributions are isotropic or slightly peaked in a direction normal to the geomagnetic field. The 1 and 3 keV electron fluxes are weakly anticorrelated in the vicinity of the arcs, where also the 3 keV electron flux displays a more structured variation than the 0.5 and 1 keV electron fluxes.  相似文献   

9.
The POLAR 5 sounding rocket, launched from Andøya, Norway on 1 February, 1976 was of a “mother-daughter” configuration. An electron accelerator, mounted on the “daughter,” produced a pulsed electron beam with currents up to 130 mA and electron energies up to 10 keV. The waves, artificially stimulated by the injected electron beam, was studied using wave receivers, mounted on the “mother.” The receivers covered the frequency range from 0.1 kHz to 5 MHz.

In addition to the stimulated waves observed during beam injection, enhanced wave emissions were observed 10–20 ms after the end of beam injection. This emission seemed to be relatively independent of whether the electron beam is launched up or down along the geomagnetic field.

The high frequency emission observed after beam injection is found to be correlated with the passage through an auroral arc. In particular this emission is closely correlated with the flux of 4–5 keV auroral electrons.

The low frequency emissions observed after beam injection are concentrated in two bands below the lower hybrid frequency.

Different mechanisms for explaining the observed time delays between the beam injection and the observation of the emissions are discussed.  相似文献   


10.
High resolution electric field and particle data, obtained by the S23L1 rocket crossing over a discrete prebreakup arc in January 1979, are studied in coordination with ground observations (Scandinavian Magnetometer Array—SMA, TV and all-sky cameras) in order to clarify the electrodynamics of the arc and its surroundings. Height-integrated conductivities have been calculated from the particle data, including the ionization effects of precipitating protons and assuming a steady state balance between ion production and recombination losses. High resolution optical information of arc location relative to the rocket permitted a check of the validity of this assumption for each flux tube passed by the rocket. Another check was provided by a comparison between calculated (equilibrium values) and observed electron densities along the rocket trajectory. A way to compensate for the finite precipitation time when calculating the electron densities is outlined. The height-integrated HalI-Pedersen conductivity ratio is typically 1.4 within the arc and about 1 at the arc edges, indicative of a relatively softer energy spectrum there. The height-integrated conductivities combined with the DC electric field measurements permitted calculation of the horizontal ionospheric current vectors (J), Birkeland currents (from div J) and energy dissipation through Joule heating (ΣpE2). An eastward current of typically 1 A m?1 was found to be concentrated mainly to the arc region and equatorward of it. A comparison has been made with the equivalent current system deduced from ground based magnetometer data (SMA) showing a generally good agreement with the rocket results. An intense Pedersen current peak (1.2 A m?1) was found at the southern arc edge. This edge constituted a division line between a very intense (> 10 μA m?1) and localized (~ 6 km) downward current sheet to the south, probably carried by upward flowing cold ionospheric electrons and a more extended upward current sheet (> 10 μA m?2) over the arc carried by measured precipitating electrons. Joule and particle heating across the arc were anticorrelated, consistent with the findings of Evans et al. (1977) with a total value of about 100mW m?2.  相似文献   

11.
An auroral arc system excited by soft electrons was studied with a combination of in situ rocket measurements and optical tomographic techniques, using data from a photometer on a horizontal, spinning rocket and a line of three meridian scanning photometers. The ground-based scanner data at 4709, 5577, 8446 and 6300 Å were successfully inverted to provide a set of volume emission rate distributions in the plane of the rocket trajectory, with a basic time resolution of 24 s. Volume emission rate profiles, derived from these distributions peaked at about 150 km for 5577 and 4709 Å, while the 8446 Å emission peaked at about 170 km with a more extended height distribution. The rocket photometer gave comparable volume emission rate distributions for the 3914 Å emission as reported in a separate paper by McDade et al. (1991, Planet. Space Sci. 39, 895). Instruments on the rocket measured the primary electron flux during the flight and, in particular, the flux precipitating into the auroral arc overflown at apogee (McEwen et al., 1991; in preparation). The local electron density and temperature were measured by probes on the rocket (Margot and McNamara (1991; Can. J. Phys. 69, 950). The electron density measurements on the downleg were modelled using ion production rate data derived from the optical results. Model calculations of the emission height profile based on the measured electron flux agree with the observed profiles. The height distribution of the N2+ emission in the equatorward band, through which the rocket passed during the descent, was measured by both the rocket and the ground-based tomographic techniques and the results are in good agreement. Comparison of these profiles with model profiles indicates that the exciting primary spectrum may be represented by an accelerated Maxwellian or a Gaussian distribution centered at about 3 keV. This distribution is close to what would be obtained if the electron flux exciting the poleward form were accelerated by a 1–2 kV upward potential drop. The relative height profiles for the volume emission rate of the 5577 Å OI emission and the 4709 Å N2+ emission were almost indistinguishable from each other for both the forms measured, with ratios in the range 38–50; this is equivalent to I(5577)/I(4278) ratios of 8–10. The auroral intensities and intensity ratios measured in the magnetic zenith from the ground during the period before and during the rocket flight are consistent with the primary electron fluxes and height distributions measured from the rocket. Values of I(5577)/I(4278) in the range 8–10 were also measured directly by the zenith ground photometers over which the arc system passed. These values are slightly higher than those reported by Gattinger and Vallance-Jones (1972) and this may possibly indicate an enhancement of the atomic oxygen concentration at the time of the flight. Such an enhancement would be consistent with our result, that the observed values of I(5577) and I(8446) are also significantly higher than those modelled on the basis of the electron flux spectrum measured at apogee.  相似文献   

12.
An expression for the vertical velocity of the neutral atmosphere in the F-region is derived for Joule heating by the electric field that drives the auroral electrojet. When only vertical expansion is allowed, it is found that the vertical wind must always increase monotonically with altitude. The heating rate is proportional to the F-region ion density, so that appreciable heating, even during high electric fields, requires some production mechanism of ionization such as auroral secondary ionization or solar photoionization, in the lower F-region. Once started at night, when an ionizing source is present in the lower F-region, the expansion of the atmosphere transports ionization upward, thereby increasing the heating rate, and hence the expansion rate, i.e. positive feedback. Electric field strengths and F-region ion densities of 50 mV/m and 2 × 1011e/m3, respectively, will produce vertal neutral wind speeds of several tens of m/sec in the 300–500 km altitude range. During periods of high magnetic activity, i.e. high electric field, Joule heating can produce large increases in the relative N2 concentration in the upper F-region; computations made with a simple model suggest that tenfold increases can occur at 400 km altitude 12?1 hr after the onset of magnetic activity, a result in agreement with satellite observations. When the Joule heating theory is applied to incoherent scatter data taken during one period of high heating, the horizontal electric field in the F-region is found to decrease markedly, possibly approaching zero as the field penetrates a weak, discrete auroral arc; the decrease began 10–20 km from the arc.  相似文献   

13.
Electron spectra measured on a rocket flight AMD-VB-34 through and over a series of auroral forms at Fort Churchill, Canada on 23 January 1974 show what can be described as inverted V events. Comparison with all-sky photographs identify clearly three of the events with three periods when the aurora was successively to the south of, underneath and to the north of the field line on which the rocket was located. In each of these events the electron spectrum changed from one resembling a Maxwellian of characteristic energy 3–4 keV on either side of the form to a nearly flat one out to 18 keV while the rocket was over the form. There was no indication of any spectral peaks in these spectra, which were confined to pitch angles of 70–90°. During descent the rocket moved slowly from over a quiet, fading arc to the equatorward side. Detailed electron observations show the spectrum returning to a Maxwellian distribution with steadily decreasing characteristic energy to 2 keV.  相似文献   

14.
On 27 January 1979, three rocket payloads were launched from Kiruna, Sweden into different phases of two successive auroral substorrns. Among other experiments, the payloads carried the RIT double probe electric field experiments providing electric field, electron density and temperature data which are presented here. These data supported by rocket particle observations are discussed mainly in association with ground-based observations (magnetometer, TV) and very briefly with GEOS electric field data. The motions of the auroral forms as obtained from auroral pictures are compared with E × B/B2 drifts and the currents calculated from the rocket electric field and density measurements with the equivalent current system deduced from ground-based magnetometer data (Scandinavian Magnetometer Array).  相似文献   

15.
Height profiles of auroral emissions at 3914 Å, 4861 Å, and 5577 Å were obtained in two rocket flights through medium intensity stable aurora. The 3914 Å N2+ integral intensity data were compared with intensity variations predicted by an auroral model for a range of primary electron energy spectra. The observed profiles for the two flights were well reproduced respectively by a 5.6 keV mono-energtic flux and by a flux with an exponential spectrum cutting off around 12 to 15 keV. The data for 5577 Å (available only above 120 km) bear a constant ratio to that for 3914 Å. The emission profiles derived for 3914 Å, peak at 115 and 107 km respectively.  相似文献   

16.
Data from eight auroral ion composition measurements, seven of which have been reported in the literature, are analyzed and compared in terms of a single model format. We find, contrary to conclusions published previously for two of the experiments, that there is no discrepancy concerning O+ ions. In general, the mean CIRA 1972 neutral model is found to be quite suitable as a representative of the major gas composition required for auroral E-region calculations which agree with the data. Nitric oxide profiles inferred from analysis of the data range from about normal non-auroral E-region nitrix oxide distributions with peak concentrations near 108 cm?3 to profiles with peak populations near 109 cm?3. Although the higher concentrations are generally correlated with intense aurora, we acknowledge that the length and strength of auroral activity prior to the individual rocket flights can have an even greater bearing, at times, on the NO “snapshot” profile deduced from the auroral ion composition data.  相似文献   

17.
A double-probe electric field detector and two spatially separated fixed-bias Langmuir probes were flown on a Taurus-Tomahawk sounding rocket launched from Poker Flat Research Range in March 1982. Interesting wave data have been obtained from about 10s of the downleg portion of the flight during which the rocket passed through the auroral electrojet. Here the electric field receiver and both density fluctuation (δn/n) receivers responded to a broad band of turbulence centered at 105 km altitude and at frequencies generally below 4 kHz. Closer examination of the two (δn/n) turbulent waveforms reveals that they are correlated, and from the phase difference between the two signals, the phase velocity of the waves in the rocket reference frame is inferred. The magnitude and direction of the observed phase velocity are consistent either with waves which travel at the ion sound speed (Cs) or with waves which travel at the electron drift velocity. The observed phase velocity varies by about 50% over a 5 km altitude range—an effect which probably results from shear in the zonal neutral wind, although unfortunately no simultaneous neutral wind measurements exist to confirm this.  相似文献   

18.
On 9 December 1981 rocket borne energetic electron spectrometers measured energy spectra over a stable auroral arc. An associated microprocessor accurately timed the electron detection pulses to calculate auto-correlation functions for each of 16 energy levels between 300 eV and 19 keV.Energy spectra measured up to 230 km altitude contained a secondary peak around 5 keV, corresponding to the auroral beam. Derived velocity distribution functions contain a plateau or table extending round from 0 to 90° pitch angle with a weak positive gradient (+ ve d?(ν)/dν) near zero pitch angle. Autocorrelation functions made at energy levels corresponding to the location of the positive gradient showed the electrons of this region of phase space to be strongly modulated (~ 30%) at a frequency of 2.65 MHz or approximately at twice the electron gyrofrequency.This observation provides the most direct measurement of the auroral beam/ionospheric plasma interaction to date. It provides hard experimental evidence to support the theories which have previously predicted that a major wave-particle interaction responsible for the evolution of the auroral distribution function occurs at heights where the upper hybrid frequency equals twice the local electron gyrofrequency.  相似文献   

19.
Using particle aspect approach, the effect of multi-ions densities on the dispersion relation, growth rate, perpendicular resonant energy and growth length of electromagnetic ion cyclotron wave with general loss-cone distribution function in hot anisotropic multi-ion plasma is presented for auroral acceleration region. It is observed that higher He+ and O+ ions densities enhance the wave frequency closer to the H+ ion cyclotron frequency and growth rate of the wave. The differential heating of He+ ions perpendicular to the magnetic field is enhanced at higher densities of He+ ions. The waves require longer distances to achieve observable amplitude by wave-particle interactions mechanism as predicted by growth length. It is also found that electron thermal anisotropy of the background plasma enhances the growth rate and reduces the growth length of multi-ions plasma. These results are determined for auroral acceleration region.  相似文献   

20.
UBV measurements of the light of the night sky in the auroral zone during three seasons are presented. The mean brightness of the night sky in theV band is found to be equal one 18m1 star (arc sec)–2, with considerable variations. The observed meanB-V andU-B indicies are +0 . m 7 and –1 . m 6, respectively.Light curves of variable stars during strong auroral activities are also shown. On the basis of measurements we briefly discuss the possibility of accurate stellar photometry in the auroral region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号