首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
魏凤英  宋巧云 《气象学报》2005,63(4):477-484
使用统计诊断的方法,探讨了近百年全球海表温度年代际尺度的空间分布结构与长江中下游梅雨异常变化的可能联系.采用三次样条函数拟合的方法将1885~2000-全球海表温度场和长江中下游梅雨雨量百分比序列的年代际变化分量分离出来,在分析各自年代际变化特征基础上,研究了全球海表温度的年代际尺度分布结构对长江中下游梅雨异常变化的影响.结果表明(1) 全球海表温度年代际尺度变化分量清晰地表征出气候背景的分布状态,其中太平洋年代际振荡(PDO)型态表现突出,特别是1976年以后太平洋的气候背景呈现暖事件增强的趋势.同时,印度洋及大西洋中部海域的海表温度也表现出明显的升温趋势.(2) 长江中下游梅雨年代际尺度变化趋势与全球海表温度的年代际变化趋势基本一致,特别是与PDO典型分布型态的变化趋势有很好的对应,当PDO暖事件趋势处于较强时期时,长江中下游梅雨为偏多的趋势,反之亦然.其中20世纪70胩代中期PDO出现暖位相增强的突变,长江中下游梅雨也在此时期转入增多的趋势.同时,印度洋、大西洋部分地区的海表温度的年代际变化与梅雨的年代际变化之间也有一定的关联.(3) PDO指数与西太平洋副热带高压面积指数的年代际变化趋势一致的统计事实,从一个侧面说明海洋的-代际变化最终通过副热带高压的变动影响梅雨的异常变化的可能性.  相似文献   

2.
Most major features of the interdecadal shift in boreal winter-spring precipitation over the American continents associated with the 1976–1977 transition are reproduced in atmospheric general circulation model (GCM) simulations forced with observed sea surface temperature (SST). The GCM runs forced with global and tropical Pacific SSTs produce similar multidecadal changes in precipitation, indicating the dominant influence of tropical Pacific SST. Companion experiments indicate that the shift in mean conditions in the tropical Pacific is responsible for these changes. The observed and simulated “post- minus pre-1976” difference in Jan–May precipitation is wet over Mexico and the southwest U.S., dry over the Amazon, wet over sub-Amazonian South America, and dry over the southern tip of South America. This pattern is not dramatically different from a typical El Niño-induced response in precipitation. Although the interdecadal (post- minus pre-1976) and interannual (El Niño?La Niña) SST anomalies differ in detail, they produce a common tropics-wide tropospheric warmth that may explain the similarity in the precipitation anomaly patterns for these two time scales. An analysis of local moisture budget shows that, except for Mexico and the southwest U.S. where the interdecadal shift in precipitation is balanced by evaporation, elsewhere over the Americas it is balanced by a shift in low-level moisture convergence. Moreover, the moisture convergence is due mainly to the change in low-level wind divergence that is linked to low-level ascent and descent.  相似文献   

3.
We assess the responses of North Atlantic, North Pacific, and tropical Indian Ocean Sea Surface Temperatures (SSTs) to natural forcing and their linkage to simulated global surface temperature (GST) variability in the MPI-Earth System Model simulation ensemble for the last millennium. In the simulations, North Atlantic and tropical Indian Ocean SSTs show a strong sensitivity to external forcing and a strong connection to GST. The leading mode of extra-tropical North Pacific SSTs is, on the other hand, rather resilient to natural external perturbations. Strong tropical volcanic eruptions and, to a lesser extent, variability in solar activity emerge as potentially relevant sources for multidecadal SST modes’ phase modulations, possibly through induced changes in the atmospheric teleconnection between North Atlantic and North Pacific that can persist over decadal and multidecadal timescales. Linkages among low-frequency regional modes of SST variability, and among them and GST, can remarkably vary over the integration time. No coherent or constant phasing is found between North Pacific and North Atlantic SST modes over time and among the ensemble members. Based on our assessments of how multidecadal transitions in simulated North Atlantic SSTs compare to reconstructions and of how they contribute characterizing simulated multidecadal regional climate anomalies, past regional climate multidecadal fluctuations seem to be reproducible as simulated ensemble-mean responses only for temporal intervals dominated by major external forcings.  相似文献   

4.
Interannual and interdecadal variabilities in the Pacific are investigated with a coupled atmosphere-ocean GCM developed at MRI, Japan. The model is run for 70 years with flux adjustments. The model shows interannual variability in the tropical Pacific which has several typical characteristics shared with the observed ENSO. A basin-scale feature of the principal SST variation for the ENSO time scale shows negative correlation in the central North Pacific with the tropical SST, similar to that of the observed one. Associated variation of the model atmosphere indicates an intensification of the Aleutian Low and a PNA-like teleconnection pattern as a response to the tropical warm SST anomaly. The ENSO time scale variability in the midlatitude ocean consists of the westward propagation of the subsurface temperature signal and the temperature variation within the shallow mixed layer forced by the anomalous atmospheric heat fluxes. For the interdecadal time scale, variation of the SST is simulated realistically with a geographical pattern similar to that for the ENSO time scale, but it has a larger relative amplitude in the northern Pacific. For the atmosphere, spatial structure of the variation in the interdecadal time scale is also similar to that in the ENSO time scale, but has smaller amplitude in the northern Pacific. Long oceanic spin-up time (>∼10 y) in the mid-high latitude, however, makes oceanic response in the interdecadal time scale larger than that in the ENSO time scale. The lagged-regression analysis for the ocean temperature variation relative to the wind stress variation indicates that interdecadal variation of the ocean subsurface at the mid-high latitudes is considered as enhanced ocean gyre spin-up process in response to the atmospheric circulation change at the mid-high latitudes, remotely forced by the interdecadal variation of the tropical SST. Received: 6 November 1995 / Accepted: 19 April 1996  相似文献   

5.
Impacts of regional sea surface temperature(SST)anomalies on the interdecadal variation of the cross-equatorial flows(CEFs)in Eastern Hemisphere are studied using numerical simulations with a global atmospheric circulation model(NCAR CAM3)driven with 1950-2000 monthly SSTs in different marine areas(the globe,extratropics,tropics,tropical Indian Ocean-Pacific,and tropical Pacific)and ERA-40reanalysis data.Results show that all simulations,except the one driven with extratropical SSTs,can simulate the interdecadal strengthening of CEFs around Somali,120oE,and 150oE that occurred in the midand late-1970s.Among those simulated CEFs,the interdecadal variability in Somali and its interdecadal relationship with the East Asian summer monsoon are in better agreement with the observations,suggesting that changes in the SSTs of tropical oceans,especially the tropical Pacific,play a crucial role in the interdecadal variability of CEFs in Somali.The interdecadal change of CEFs in Somali is highly associated with the interdecadal variation of tropical Pacific SST.As the interdecadal warmer(colder)SST happens in the tropical Pacific,a"sandwich"pattern of SST anomalies,i.e."+,-,+"("-,+,-"),will occur in the eastern tropical Pacific from north to south with a pair of anomalous anticyclone(cyclone)at the lower troposphere;the pair links to another pair of anomalous cyclone(anticyclone)in the tropical Indian Ocean through an atmospheric bridge,and thus strengthens(weakens)the CEFs in Somali.  相似文献   

6.
采用1950-2000年逐月观测的不同海域(全球、热带外、热带、热带印度洋-太平洋、热带印度洋及热带太平洋)海表温度分别驱动NCAR CAM3全球大气环流模式,进行了多组长时间积分试验,对比ERA-40和NCEP/NCAR再分析资料,讨论了这些海域海表温度异常对东亚夏季风年代际变化的影响。数值试验结果表明:全球、热带、热带印度洋-太平洋和热带太平洋海表温度变化对东亚夏季风的年代际变化具有重要作用,均模拟出了东亚夏季风在20世纪70年代中后期发生的年代际减弱现象,以及强、弱夏季风年代夏季大气环流异常分布的显著不同,这与观测结果较一致,表明热带太平洋是影响东亚夏季风此次年代际变化的关键海区;利用热带印度洋海表温度驱动模式模拟出的东亚夏季风在20世纪70年代中后期发生年代际增强现象,即当热带印度洋海表温度年代际偏暖(冷)时,东亚夏季风年代际增强(减弱),与热带太平洋海表温度变化对东亚夏季风年代际变化的影响相反;热带太平洋海表温度年代际背景的变化对东亚夏季风在20世纪70年代中后期的年代际减弱有重要作用。  相似文献   

7.
近百年全球海温异常变化与长江中下游梅雨   总被引:8,自引:5,他引:8  
周丽  魏凤英 《高原气象》2006,25(6):1111-1119
使用Butterworth带通滤波的方法,将1885年以来全球海温和长江中下游梅雨量进行2~3年、2.5~7年、11~13年和15~20年4个时间尺度周期带的滤波,分析了二者特定周期带振荡之间的相关关系。结果表明,全球海温与长江中下游梅雨特定周期带变化之间的相关比带通滤波前的相关显著,特别是较长时间尺度的周期带的相关更显著。  相似文献   

8.
马音  陈文  冯瑞权 《大气科学》2012,36(2):397-410
基于我国160站59年(1951~2009年)的月降水观测资料、美国气象环境预报中心和国家大气研究中心(NCEP/NCAR)提供的再分析资料和Hadley中心的海表温度(Sea Surface Temperature,简称SST)资料,对我国东部(100°E以东,15°N~40°N)梅雨期(6月和7月)降水的时空变化特...  相似文献   

9.
R. Krishnan  M. Sugi 《Climate Dynamics》2003,21(3-4):233-242
Recent studies have furnished evidence for interdecadal variability in the tropical Pacific Ocean. The importance of this phenomenon in causing persistent anomalies over different regions of the globe has drawn considerable attention in view of its relevance in climate assessment. Here, we examine multi-source climate records in order to identify possible signatures of this longer time scale variability on the Indian summer monsoon. The findings indicate a coherent inverse relationship between the inter-decadal fluctuations of Pacific Ocean sea surface temperature (SST) and the Indian monsoon rainfall during the last century. A warm (cold) phase of the Pacific interdecadal variability is characterized by a decrease (increase) in the monsoon rainfall and a corresponding increase (decrease) in the surface air temperature over the Indian subcontinent. This interdecadal relationship can also be confirmed from the teleconnection patterns evident from long-period sea level pressure (SLP) dataset. The SLP anomalies over South and Southeast Asia and the equatorial west Pacific are dynamically consistent in showing an out-of-phase pattern with the SLP anomalies over the tropical central-eastern Pacific. The remote influence of the Pacific interdecadal variability on the monsoon is shown to be associated with prominent signals in the tropical and southern Indian Ocean indicative of coherent inter-basin variability on decadal time scales. If indeed, the atmosphere–ocean coupling associated with the Pacific interdecadal variability is independent from that of the interannual El Niño-Southern Oscillation (ENSO), then the climate response should depend on the evolutionary characteristics of both the time scales. It is seen from our analysis that the Indian monsoon is more vulnerable to drought situations, when El Niño events occur during warm phases of the Pacific interdecadal variability. Conversely, wet monsoons are more likely to prevail, when La Niña events coincide during cold phases of the Pacific interdecadal variability.  相似文献   

10.
Interactions between the tropical and subtropical northern Pacific at decadal time scales are examined using uncoupled oceanic and atmospheric simulations. An atmospheric model is forced with observed Pacific sea surface temperatures (SST) decadal anomalies, computed as the difference between the 2000–2009 and the 1990–1999 period. The resulting pattern has negative SST anomalies at the equator, with a global pattern reminiscent of the Pacific decadal oscillation. The tropical SST anomalies are responsible for driving a weakening of the Hadley cell and atmospheric meridional heat transport. The atmosphere is then shown to produce a significant response in the subtropics, with wind-stress-curl anomalies having the opposite sign from the climatological mean, consistent with a weakening of the oceanic subtropical gyre (STG). A global ocean model is then forced with the decadal anomalies from the atmospheric model. In the North Pacific, the shallow subtropical cell (STC) spins down and the meridional heat transport is reduced, resulting in positive tropical SST anomalies. The final tropical response is reached after the first 10 years of the experiment, consistent with the Rossby-wave adjustment time for both the STG and the STC. The STC provides the connection between subtropical wind stress anomalies and tropical SSTs. In fact, targeted simulations show the importance of off-equatorial wind stress anomalies in driving the oceanic response, whereas anomalous tropical winds have no role in the SST signal reversal. We further explore the connection between STG, STC and tropical SST with the help of an idealized model. We argue that, in our models, tropical SST decadal variability stems from the forcing of the Pacific subtropical gyre through the atmospheric response to ENSO. The resulting Ekman pumping anomaly alters the STC and oceanic heat transport, providing a negative feedback on the SST. We thus suggest that extratropical atmospheric responses to tropical forcing have feedbacks onto the ocean dynamics that lead to a time-delayed response of the tropical oceans, giving rise to a possible mechanism for multidecadal ocean-atmosphere coupled variability.  相似文献   

11.
In the Pacific Ocean, the coherent pattern of interdecadal variations in sea surface temperature (SST) over the last 100 years has been termed the Interdecadal Pacific Oscillation (IPO). To examine past variations in the IPO we have generated time series of Sr/Ca and oxygen isotopes (18O) from South Pacific Porites coral colonies growing at Rarotonga (1997 to 1726) and Fiji (1997 to 1780). At both sites skeletal Sr/Ca is highly correlated with instrumental SST at least back to 1970 and 18O appears to reflect both SST and South Pacific Convergence Zone (SPCZ) effects on seawater 18O. Comparison of our results to a New Caledonia coral 18O record and to indices of interdecadal Pacific climate variability demonstrates that these South Pacific corals have accurately recorded twentieth century variations in the IPO and SPCZ. The coral records also indicate that higher amplitude and more spatially coherent IPO-related variability existed from 1880 to 1950 with notably poor between-site correlations in the mid-1800s. These observations suggest that the spatial IPO pattern in South Pacific SST was significantly more complex and/or poorly defined in the mid-1800s compared to that observed in the twentieth century. Comparison with North Pacific IPO indices also indicates that the degree of cross-hemispheric symmetry of interdecadal oceanographic variability has changed over time with a lower correlation between the North and South Pacific in the mid-1800s. This evidence suggests that the spatial pattern of the IPO at least in the South Pacific has varied over the last 300 years, with a major reorganization occurring after 1880 A.D.  相似文献   

12.
孙颖  徐海明  邓洁淳 《大气科学》2014,38(6):1055-1065
本文首先利用NCEP/NCAR和ERA-40再分析资料以及中国753站降水资料对太平洋—日本(Pacific-Japan,简称P-J)遥相关型在上世纪70年代末期气候突变前后的年代际变化特征进行了分析研究。结果表明,在气候突变前后,P-J遥相关型的位置发生了显著的变化,气候突变以后其位置明显向西向南偏移。这种位置的变化同样也反映在纬向风场、高度场上。研究结果还表明,气候突变前后P-J遥相关型的年代际变化与热带太平洋和印度洋海温变化有关。气候突变之前,P-J遥相关型的变化与前期热带太平洋和印度洋海温不存在显著的相关;但在气候突变之后,P-J遥相关型与前期冬春季的热带太平洋、印度洋海温之间存在大范围的显著相关区。这种P-J遥相关型与热带太平洋、印度洋海温相关关系的年代改变可能与1970年代中期以后赤道中东太平洋海温变化振幅明显增强有关。随后,本文采用一个高分辨率的大气环流模式,通过一系列的数值试验也进一步证实了1970年代末期热带太平洋和印度洋海温的年代际变化确实可致使P-J遥相关型位置发生相应的改变。  相似文献   

13.
Observed and simulated multidecadal variability in the Northern Hemisphere   总被引:19,自引:5,他引:14  
 Analyses of proxy based reconstructions of surface temperatures during the past 330 years show the existence of a distinct oscillatory mode of variability with an approximate time scale of 70 years. This variability is also seen in instrumental records, although the oscillatory nature of the variability is difficult to assess due to the short length of the instrumental record. The spatial pattern of this variability is hemispheric or perhaps even global in scale, but with particular emphasis on the Atlantic region. Independent analyses of multicentury integrations of two versions of the GFDL coupled atmosphere-ocean model also show the existence of distinct multidecadal variability in the North Atlantic region which resembles the observed pattern. The model variability involves fluctuations in the intensity of the thermohaline circulation in the North Atlantic. It is our intent here to provide a direct comparison of the observed variability to that simulated in a coupled ocean-atmosphere model, making use of both existing instrumental analyses and newly available proxy based multi-century surface temperature estimates. The analyses demonstrate a substantial agreement between the simulated and observed patterns of multidecadal variability in sea surface temperature (SST) over the North Atlantic. There is much less agreement between the model and observations for sea level pressure. Seasonal analyses of the variability demonstrate that for both the model and observations SST appears to be the primary carrier of the multidecadal signal. Received: 8 June 1999 / Accepted: 11 February 2000  相似文献   

14.
邓伟涛  孙照渤  曾刚 《大气科学》2009,33(4):835-846
采用中国160站降水资料、NOAA ERSST海温资料以及ERA-40大气再分析资料, 分析了中国东部夏季降水型的年代际变化特征及其与北太平洋海温的可能联系。结果表明: 中国东部夏季降水型在近50年中经历了两次年代际变化, 第1次发生在20世纪70年代中后期, 北太平洋中纬度地区冬季海温由正距平向负距平转变, 太平洋年代际振荡(PDO, Pacific decadal oscillation) 由负位相向正位相转变, 通过影响东亚夏季风环流, 使东亚夏季风减弱, 中国东部夏季降水从北到南呈现出“+-+” 转变为“-+-”的三极分布形态, 这次年代际变化体现了同一模态正负位相的转变; 第2次发生在20世纪80年代末90年代初, 北太平洋海温转变为日本以南西北太平洋的正距平分布, 同时菲律宾群岛附近海温偏暖, 西太平洋副热带高压偏南偏西, 使得中国东部夏季降水由北至南转变成“-+”的偶极分布形态, 这次年代际变化体现了一种模态向另一种模态的转变。  相似文献   

15.
Historically, El Nino-like events simulated in global coupled climate models have had reduced amplitude compared to observations. Here, El Nino-like phenomena are compared in ten sensitivity experiments using two recent global coupled models. These models have various combinations of horizontal and vertical ocean resolution, ocean physics, and atmospheric model resolution. It is demonstrated that the lower the value of the ocean background vertical diffusivity, the greater the amplitude of El Nino variability which is related primarily to a sharper equatorial thermocline. Among models with low background vertical diffusivity, stronger equatorial zonal wind stress is associated with relatively higher amplitude El Nino variability along with more realistic east–west sea surface temperature (SST) gradient along the equator. The SST seasonal cycle in the eastern tropical Pacific has too much of a semiannual component with a double intertropical convergence zone (ITCZ) in all experiments, and thus does not affect, nor is it affected by, the amplitude of El Nino variability. Systematic errors affecting the spatial variability of El Nino in the experiments are characterized by the eastern equatorial Pacific cold tongue regime extending too far westward into the warm pool. The time scales of interannual variability (as represented by time series of Nino3 SSTs) show significant power in the 3–4 year ENSO band and 2–2.5 year tropospheric biennial oscillation (TBO) band in the model experiments. The TBO periods in the models agree well with the observations, while the ENSO periods are near the short end of the range of 3–6 years observed during the period 1950–94. The close association between interannual variability of equatorial eastern Pacific SSTs and large-scale SST patterns is represented by significant correlations between Nino3 time series and the PC time series of the first EOFs of near-global SSTs in the models and observations. Received: 17 April 2000 / Accepted: 17 August 2000  相似文献   

16.
Tropical cyclone (TC) activity in the western North Pacific (WNP) has changed interdecadally with an approximately 20-year period between 1951 and 1999. The cause and mechanism of interdecadal variability of TC frequency in the WNP is investigated using NCEP/NCAR reanalysis and the result obtained from a high-resolution coupled general circulation model (CGCM). The interdecadal variability of TC activity in the WNP correlates with long-term variations in sea surface temperatures (SSTs) in the tropical central Pacific and with those of westerly wind anomalies associated with the monsoon trough that appears over the tropical WNP during the typhoon season of July to October. The westerly wind anomalies at near 10°N show positive feedback with the SST anomalies in the central Pacific. Therefore, the interdecadal variability of TC frequency is related to long-term variations in atmosphere–ocean coupling phenomena in the tropical North Pacific. A 50-year long-run simulation using the high-resolution CGCM showed the robustness of interdecadal variability of TC frequency.  相似文献   

17.
Using Joint Warning Typhoon Center (JTWC) best track data during the period 1948-2010, decadal and interdecadal changes of annual category 4 and 5 tropical cyclone (TC) frequency in the western North Pacific basin were examined. By allowing all of the observed TCs in the JTWC dataset to move along the observed TC tracks in a TC intensity model, the annual category 4 and 5 TC frequency was simulated. The results agreed well with observations when the TC intensity prior to 1973 was adjusted based on time-dependent biases due to changes in measurement and reporting practices. The simulated and adjusted time series showed significant decadal (12-18 years) variability, while the interdecadal (18-32 years) variability was found to be statistically insignificant. Numerical simulations indicated that changes in TC tracks are the most important factor for the decadal variability in the category 4 and 5 TC frequency in the western North Pacific basin, while a combined effect of changes in SST and vertical wind shear also contributes to the decadal variability. Further analysis suggested that the active phase of category 4 and 5 TCs is closely associated with an eastward shift in the TC formation locations, which allows more TCs to follow a longer journey, favoring the development of category 4 and 5 TCs. The active phase corresponds with the SST warming over the tropical central and eastern Pacific and the eastward extension of the monsoon trough, thus leading to the eastward shift in TC formation locations.  相似文献   

18.
Guojun Gu  Robert F. Adler 《Climate Dynamics》2013,40(11-12):3009-3022
This study explores how global precipitation and tropospheric water vapor content vary on the interdecadal/long-term time scale during past three decades (1988–2010 for water vapor), in particular to what extent the spatial structures of their variations relate to changes in surface temperature. EOF analyses of satellite-based products indicate that the first two modes of global precipitation and columnar water vapor content anomalies are in general related to the El Niño-Southern oscillation. The spatial patterns of their third modes resemble the corresponding linear fits/trends estimated at each grid point, which roughly represent the interdecadal/long-term changes happening during the same time period. Global mean sea surface temperature (SST) and land surface temperature have increased during the past three decades. However, the water vapor and precipitation patterns of change do not reflect the pattern of warming, in particular in the tropical Pacific basin. Therefore, other mechanisms in addition to global warming likely exist to account for the spatial structures of global precipitation changes during this time period. An EOF analysis of longer-record (1949–2010) SST anomalies within the Pacific basin (60oN–60oS) indicates the existence of a strong climate regime shift around 1998/1999, which might be associated with the Pacific decadal variability (PDV) as suggested in past studies. Analyses indicate that the observed linear changes/trends in both precipitation and tropospheric water vapor during 1988–2010 seem to result from a combined impact of global mean surface warming and the PDV shift. In particular, in the tropical central-eastern Pacific, a band of increases along the equator in both precipitation and water vapor sandwiched by strong decreases south and north of it are likely caused by the opposite effects from global-mean surface warming and PDV-related, La Niña-like cooling in the tropical central-eastern Pacific. This narrow band of precipitation increase could also be considered an evidence for the influence of global mean surface warming.  相似文献   

19.
利用一个全球海气耦合模式(BCM),结合观测资料,讨论了热带太平洋强迫对北大西洋年际气候变率的影响。研究表明,BCM能够相对合理地模拟赤道太平洋的年际变率模态及相应的海温距平型和大气遥相关型,尽管其准3年的振荡周期过于规则。来自数值模式和观测上的证据都表明,北大西洋冬季海温的主导性变率模态,即自北而南出现的“- -”的海温距平型,受到来自热带太平洋强迫的显著影响,其正位相与赤道中东太平洋冷事件相对应。换言之,赤道太平洋暖事件的发生,在太平洋-北美沿岸激发出PNA遥相关型,进而通过在北大西洋产生类似NAO负位相的气压距平型,削弱本来与NAO正位相直接联系的三核型海温距平。北大西洋三核型海温距平对热带太平洋强迫的响应,要滞后2—3个月的时间。  相似文献   

20.
A significant interdecadal climate shift of interannual variability and predictability of two types of the El Niño-Southern Oscillation (ENSO), namely the canonical or eastern Pacific (EP)-type and Modoki or central Pacific (CP) type, are investigated. Using the retrospective forecasts of six-state-of-the-art coupled models and their multi-model ensemble (MME) for December–January–February during the period of 1972–2005 along with corresponding observed and reanalyzed data, we examine the climate regime shift that occurred in the winter of 1988/1989 and how the shift affected interannual variability and predictability of two types of ENSO for the two periods of 1972–1988 (hereafter PRE) and 1989–2005 (hereafter POST). The result first shows substantial interdecadal changes of observed sea surface temperature (SST) in mean state and variability over the western and central Pacific attributable to the significant warming trend in the POST period. In the POST period, the SST variability increased (decreased) significantly over the western (eastern) Pacific. The MME realistically reproduces the observed interdecadal changes with 1- and 4-month forecast lead time. It is found that the CP-type ENSO was more prominent and predictable during the POST than the PRE period while there was no apparent difference in the variability and predictability of the EP-type ENSO between two periods. Note that the second empirical orthogonal function mode of the Pacific SST during the POST period represents the CP-type ENSO but that during the PRE period captures the ENSO transition phase. The MME better predicts the former than the latter. We also investigate distinctive regional impacts associated with the two types of ENSO during the two periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号