首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Michael Kendall and George Helffrich respond to Alan Douglas's paper in the previous issue of Astronomy & Geophysics with a prototype three-component broadband seismic network for the UK.
There are two boundaries in the Earth's deep interior that are as significant in terms of contrast in material properties and dynamics as the lithosphere–atmosphere boundary, where we live. The natures of the core-mantle boundary and the inner-core/outer-core boundary have significant implications for the stability of the Earth's magnetic field, style of convection, moment of inertia and length of day. An array of broadband three-component seismometers (SPICeD) spanning Scotland, England and France has been deployed with the aim of studying these dramatic interfaces within the Earth. A secondary aim of the deployment was to install a working prototype for a permanent three-component broadband seismic network in the UK, as advocated by Alan Douglas in the previous issue of this journal (Douglas 2001).  相似文献   

2.
“长江深断裂带”的构造性质:深地震反射证据   总被引:8,自引:1,他引:7       下载免费PDF全文
长江深断裂带自20世纪50年代提出以来,因其在区域控岩、控矿、工程地质和灾害地质研究中的重要意义,一直受到广泛关注和研究,但由于缺乏深部资料,对长江深断裂带的构造性质、空间展布众说纷纭.本文通过分析穿过长江河床及两岸的六条深地震反射剖面,讨论了长江中下游成矿带及长江深断裂带的构造性质及演化,获得如下认识:(1)长江中下游成矿带是燕山期的陆内俯冲带,上地壳发生强烈挤压变形,以大型逆冲、叠瓦、褶皱和推覆构造为特征;下地壳及岩石圈地幔俯冲或叠置到相邻块体之下,在宁芜火山岩盆地和沿江凹陷下形成了"鳄鱼嘴"构造.(2)白垩纪以来,长江深断裂带(CJF)由一系列拆离断层组成,大致沿长江河床分布.该断裂带在燕山期陆内造山阶段为一组逆冲断裂,伸展垮塌阶段反转为正断层或拆离断层,同时控制了沿江凹陷的形成和演化.(3)陆内俯冲或叠置导致地壳加厚、拆沉,引发大规模岩浆活动."鳄鱼嘴"构造或是沟通深部岩浆向上迁移的主要通道,控制了沿江成矿岩浆岩的分布.正是这种特殊的深部过程和构造特征,导致了燕山期长江中下游地区的大规模成岩、成矿作用.  相似文献   

3.
4.
The Yinchuan basin, located on the western margin of the Ordos block, has the characteristics of an active continental rift. A NW-striking deep seismic reflection profile across the center of Yinchuan basin precisely revealed the fine structure of the crust. The images showed that the crust in the Yinchuan basin was characterized by vertical stratifications along a detachment located at a two-way travel time(TWT) of 8.0 s.The most outstanding feature of this seismic profile was the almost flat Mohorovicˇic′ discontinuity(Moho) and a high-reflection zone in the lower crust. This sub-horizontal Moho conflicts with the general assumption of an uplifted Moho under sedimentary basins and continental rifts, and may indicate the action of different processes at depth during the evolution of sedimentary basins or rifts.We present a possible interpretation of these deep processes and the sub-horizontal Moho. The high-reflection zone, which consists of sheets of high-density, mantlederived materials, may have compensated for crustal thinning in the Yinchuan basin, leading to the formation of a sub-horizontal Moho. These high-density materials may have been emplaced by underplating with mantlesourced magma.  相似文献   

5.
云南省西南部,发育一组由不同断裂组成的北东向断裂构造带,沿这些断裂数十年来相继发生过多次强震.本文以其中的南汀河西支断裂为研究对象,采用深地震反射剖面方法,获得了断裂及两侧地壳精细结构和构造图像.探测结果表明:研究区纵向上,分为上、下两层地壳结构,总厚度约为31.25~35.6 km;横向上,以南汀河西支断裂为界,两侧反射特征差异较大,分别以弧状或倾斜反射波组为主·测线经过地区,莫霍面反射特征较为清晰,为2-3个反射同相轴组成的反射条带.南汀河西支断裂为一个由5条分支断层组成的断裂带,呈花状结构,反映了一种走滑挤压的应力状态.断裂带下方,存在一条切穿下地壳及莫霍面并延伸至上地幔的深大断裂·这种深、浅断裂共存的构造格局是控制南汀河地区地震孕育和发生的重要因素之一.  相似文献   

6.
我国深部探测技术与实验研究进展综述   总被引:17,自引:10,他引:7       下载免费PDF全文
深部探测技术与实验研究专项(SinoProbe,2008-2012)是我国历史上实施的规模最大的地球深部探测计划.专项开展了全国4°×4°、华北和青藏高原1°×1°的大地电磁阵列观测,建立了全国地球化学基准网(含78种元素),完成了青藏高原、华南-中央造山带、华北和东北等四条超长深地震反射剖面,部署了罗布莎、金川、腾冲、南岭、庐枞和铜陵等大陆科学钻探实验,开展了青藏高原东南缘和华北地区地应力监测;在我国东部长江中下游和南岭成矿带开展的矿集区立体探测卓有成效.同时,专项还开展了岩石圈三维结构与地球动力学数值模拟、大陆地壳结构与演化的综合研究.专项全面实施以来,已经完成约6000 km的深地震反射剖面,成功研究、实验了地壳与地幔深部探测的一系列技术方法,积累了丰富经验,极大地加快了我国深部探测的进度,在国内外产生了强烈的反响.专项实现了技术组合创新、技术进步与重大科学发现的并举,适应我国地质地貌条件和地壳/岩石圈结构特征,初步形成了具有不同层次、不同尺度、不同精度探测空间组合的深部探测技术方法体系,建立了若干各具地质特色的探测试验基地.专项实验已经取得了一系列重大突破与重要成果,深部探测关键仪器装备自主研发获得重大突破,为全面开展地壳探测工程的组织实施奠定了必要的技术基础.  相似文献   

7.
Rapid developments of deep-sea researches in China over the past 20 years have promoted the South China Sea(SCS) into the international deep-sea frontiers. The "three deep technologies", namely scientific drilling, long-term seafloor observation and deep submersible vehicles implemented successively in SCS studies helped to achieve a number of scientific breakthroughs. Over the 20 years, five international ocean drilling expeditions to the SCS recovered nearly 10 km of sediment cores from sites at 3–4 km water depths, and drilling into the magmatic basement at 6 sites shed light on the genesis of the SCS basin. Coupled with other deep-sea short core sediments from the SCS, these records demonstrate evidence that water and carbon cycling in the low latitude regions can directly respond to the orbital forcing, and subsequently nurture a new concept of lowlatitude forcing of climate changes, which challenges the classical wisdom of the overwhelming role played by the Arctic icesheet in climate changes. The exploration in the continent-ocean transition zone also reveals a number of specific features that characterize the SCS as a marginal basin formed at the subduction zone in the Western Pacific. The features include active magmatism and rapid rupture of lithosphere through the basin formation process, and imply that "the SCS is not a mini-Atlantic"as they can be distinguished as "plate-edge rifting" and "inner-plate rifting" respectively, thus challenging the universality of the Atlantic model for passive margins. Many more discoveries can be assembled from long-term mooring observations and deep diving cruises in the deep SCS, such as the cyclonic nature of the deep-water circulation, deep-water sediment transport by contour currents and turbidites, manganese nodules, extinct hydrothermal vents, and cold-water coral forests. In addition,prominent progress achieved in microbiology and biogeochemistry includes the microbial carbon pump and the coupling of carbon and nitrogen cycles. Clearly, most achievements of the deep-sea explorations in the SCS over the last 20 years have always been of international scale and impact. However, the contributions from Chinese scientists are most prominent, particularly with the research activities undertaken from the major program "Deep Sea Processes and Evolution of the South China Sea(2011–2018)" supported by the National Natural Science Foundation of China.  相似文献   

8.
A sequence of 98 teleseismically recorded earthquakes occurred off the east coast of Kamchatka at depths between 10-90 km around latitude 52.5°N and longitude 160°E on May 16–23, 2013. The swarm occurred along the northern limit of the rupture area of the 1952 Mw 9.0 great Kamchatka earthquake, the fifth largest earthquake in the history of seismic observations. On May 24, 2013 the strongest deep earthquake ever recorded of Mw 8.3 occurred beneath the Sea of Okhotsk at a depth of 610 km in the Pacific slab of the Kamchatka subduction zone, becoming the northernmost deep earthquake in the region. The deep Mw 8.3 earthquake occurred down-dip of the shallow swarm in a transition zone between the southern deep and northern shallow segments of the Pacific slab. Several deep aftershocks followed, covering a large, laterally elongated part of the slab. We suppose that the two described earthquake sequences, the May 16–23 shallow earthquake swarm and the May 24–28 deep mainshock-aftershock series, represent a single tectonic event in the Pacific slab having distinct properties at different depth levels. A low-angle underthrusting of the shallow part of the slab recorded by the shallow earthquake swarm activated the deep part; this process induced the deep mainshock-aftershock series only three days after the swarm. The domain of the subducting slab activated by the May 2013 earthquake occurrence was extraordinarily large both down-dip and along-strike.  相似文献   

9.
10.
Recent years, we have witnessed the increasing research interest in developing machine learning, especially deep learning which provides approaches for enhancing the performance of microearthquake detection. While considerable research efforts have been made in this direction, most of the state-of-the-art solutions are based on Convolutional Neural Network(CNN) structure, due to its remarkable capability of modeling local and static features. Indeed, the globally dynamic characteristics contained within time series data(i.e., seismic waves),which cannot be fully captured by CNN-based models, have been largely ignored in previous studies. In this paper,we propose a novel deep learning approach, TransQuake, for seismic P-wave detection. The approach is based on the most advanced sequential model, namely Transformer. To be specific, TransQuake can exploit the STA/LTA algorithm for adapting the three-component structure of seismic waves as input, and take advantage of the multihead attention mechanism for conducting explainable model learning. Extensive evaluations of the aftershocks following the 2008 Wenchuan M_W7.9 earthquake clearly demonstrates that TransQuake is able to achieve the best detection performance which excels the results obtained using other baselines. Meanwhile, experimental results also validate the interpretability of the results obtained by TransQuake, such as the attention distribution of seismic waves in different positions, and the analysis of the optimal relationship between coda wave and Pwave for noise identification.  相似文献   

11.
Fjord exchange circulation and its response to abrupt changes in forcing is examined by means of an idealized modeling experiment. Puget Sound, a fjord-type estuary in western North America (State of Washington), is the main context for this study. Parameters of the idealized model are representative of the entrance sill at Admiralty Inlet and the Main Basin of Puget Sound. Sensitivity to some of the model parameters relevant to a 3D realistic model is discussed. An idealized tidal forcing with fortnightly modulation drives a qualitatively realistic cycle of exchange circulation while the other boundary conditions are kept fixed in time. The cycle is characterized by fortnightly pulses of deep water intrusions with a sharp front at the leading edge and reversed circulation cells below the sill depth developing between the intrusions. This basic state is then perturbed and response of the circulation to abrupt changes in oceanic salinity and river discharge is examined.  相似文献   

12.
The effect of regional and local ground water circulation systems on the Heat Flow Density (HFD) field is demonstrated by two examples from Switzerland, one near St. Gall in an area at the northern border of the Alps, and the other northwest of Zurich along the eastern end of the Jura mountains. Detailed HFD maps of both areas slow pronounced high heat flow zones which are attributed to discharge of subsurface water which has migrated laterally over several 10 km. Seepage velocities on the order of several mm/yr have been calculated. Geothermal information is not available about the infiltration zones where low HFD values are expected. Geochemical and isotopic analysis of water samples from springs and drillholes indicates the recharge zones and demonstrates the effect of extensive regional systems. These results indicate that in regions with significant topographic relief HFD mapping can be seriously biased if drillholes are positioned in valleys which correspond to discharge areas with relatively high HFD, whereas the low heat flow zones remain undetected.  相似文献   

13.
Science China Earth Sciences - Accretionary complex was usually formed by offscraping of the subducting crustal material over the trench and thus often referred to as subduction zone mélange....  相似文献   

14.
15.
Ocean Dynamics - In the presence of strong winds, ocean surface waves dissipate significant amounts of energy by breaking. Here, breaking rates and wave-following turbulent dissipation rate...  相似文献   

16.
We extend to the case of intermediate and deep earthquakes the mantle magnitude developed for shallow shocks byokal andTalandier (1989). Specifically, from the measurement of the spectral amplitude of Rayleigh waves at a single station, we obtain a mantle magnitude,M m, theoretically related to the seismic moment of the event through $$M_m = \log _{10} M_0 - 20.$$ The computation ofM minvolves two corrections. The distance correction is the same as for shallow shocks. For the purpose of computing the frequency-dependent source correction, we define three depth windows: Intermediate (A) (75 to 200 km); Intermediate (B) (200–400 km) and Deep (over 400 km). In each window, the source correctionC S is modeled by a cubic spline of log10 T. Analysis of a dataset of 200 measurements (mostly from GEOSCOPE stations) shows that the seismic moment of the earthquakes is recovered with a standard deviation of 0.23 units of magnitude, and a mean bias of only 0.14 unit. These figures are basically similar to those for shallow events. Our method successfully recognizes truly large deep events, such as the 1970 Colombia shock, and errors due to the potential misclassification of events into the wrong depth window are minimal.  相似文献   

17.
DatabasesystemfordeepseismicsoundingChun-YongWANG;(王椿镛)HaiLOU(楼海)andYi-QingSONG(宋亦青)(InstituteofGeophysics,StateSeismological...  相似文献   

18.
Matching signals have previously been identified from about eighty repeating deep moonquake sources. These moonquakes clearly display tidal periodicities in their histories of origin times and signal amplitudes; they are presumably triggered by the solid-body tide in the moon, raised primarily by the earth. The A1 hypocentre has been the most active and has also produced seismograms with signals of reversed polarity. In an attempt to deduce focal mechanisms for these events, we calculated various tidal stress functions at the Al hypocentre using a homogeneous moon model, and correlated them with the origin times of events. No good correlation was found, either for tidal stress peaks of consistent polarity, or for tidal stress peaks of opposite polarity at the times of “inverted” events. This could be due to an inaccurate moon model, but it has also been noted that the relative amplitudes of signals recorded at different seismic stations vary between events from the same hypocentre. Earthquake swarms often contain events with fault-plane solutions in very different orientations. A similar variation between events from each deep moonquake hypocentre would explain the different amplitude ratios and also the “inverted” events.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号