首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The biogeochemistry of particulate organic matter was studied in the Great Ouse estuary draining to the North Sea embayement known as the Wash from March 1990 to January 1991. Eleven locations were sampled monthly on a 50 km transect across the shallow estuary from the tidal weir to the middle of the Wash. Particulate organic carbon (POC) and total carbohydrate, protein and lipid analyses were combined with the determination of stable carbon isotopes. δ13C often increased from −30‰ in the river to −22‰ in the tidal freshwater reach. The mixing zone between fresh and marine tidal waters displayed only a slight increase in δ13C to −19‰. The change in δ13C values in the freshwater tidal reach demonstrated that mixing of riverborne and marine suspended POC was not the only process affecting the carbon stable isotope composition. Complementary sources, interfering considerably with the two end-member sources, may be identified as autocthonous primary production and resuspension of sediment that may be transported upstream. The respective importance of these sources is subject to seasonal variation. From March to August, high concentrations in carbohydrate and protein through the whole estuary indicate that despite turbidity significant primary production occurred. The proportional importance of the uncharacterized fraction of POC, which is considered as complex organic matter, was high from September to January and low from March to August. During most of the year, the biochemical compositions of particulate organic matter in the turbidity maximum and the rest of the estuary were similar. This contradicted the principle that owing to the long residence times of particles degradation processes largely dominate the production processes within the turbidity maximum. The occurence of significant in situ production in such shallow water estuaries may partially compensate for the degradation of suspended particulate organics, resulting in a complex relationship between the biogeochemical cycling and the fate of nutrients.  相似文献   

2.
In order to investigate the sediment dynamic behavior of the Yuehu, a small inlet system characterized by abundant sediment supply and rapid sediment infilling, measurements and sampling were undertaken to obtain data sets of tidal water levels, current velocities, suspended sediment concentrations, grain size parameters, deposition rates and organic carbon contents. Sediment budget and the time–velocity asymmetry patterns of the inlet system were analyzed. The results show that the deposition rates are relatively high within the tidal basin. The total sediment flux cannot be balanced by the input from the open sea, the aerosol and biological production; rather, the material from land (which has been intensified by agricultural activities over the past several decades) represents a major component for the balance. Thus, the denudation rate must be reduced to protect the Yuehu as a natural reserve. Furthermore, it is found from the present study that the Yuehu inlet system exhibits all of the four time–velocity asymmetry patterns with varied frequencies of occurrence, compared with the two asymmetry patterns identified for larger inlet systems; such phenomena are partly due to the adjustment of entrance channel geometry. This behavior may be representative of the small tidal inlets at their late stage of morphological evolution and, therefore, may be utilized to prolong the lifespan of small inlet systems.  相似文献   

3.
Observations of the residual fluxes of water, salt and suspended sediment are presented for seven stations along the Tamar Estuary. The data include measurements over single spring and neap tidal cycles, and are generally applicable to medium or high run-off conditions.Surface to bed differences in salinity are typically of the order of several parts per thousand. Gravitational circulation is an important component of residual flow in the deep, lower reaches of the estuary. Here, Stokes drift is insignificant. In the shallow upper reaches, the major residual currents are generated by Stokes drift and freshwater inputs. Data are compared with predictions from Hansen and Rattray's (1966) model of estuarine circulation.Salt fluxes due to tidal pumping and vertical shear are directed up-estuary at spring tides, tidal pumping being dominant. Tidal pumping of salt is also directed up-estuary at neap tides, although it is insignificant in the lower reaches, where vertical shear dominates.Tidal pumping of suspended sediment is directed up-estuary near the head at spring tides, and probably contributes to the formation of the turbidity maximum. The existence of the turbidity maximum is predicted using a simplified model of the transport of water and sediment. The model shows that an additional mechanism for the existence of the turbidity maximum is an up-estuary maximum in the tidal current speeds (and thus resuspension). In the lower reaches, transport of suspended sediment is directed down-estuary at both spring and neap tides, and sediment is essentially flushed to sea with the fresh water.  相似文献   

4.
Field measurements were conducted in Mont-Saint-Michel Bay, a megatidal embayment (spring tidal range of 15 m), in order to monitor, over the course of a tidal cycle, sediment transport variability due to waves and tides on the upper part of a tidal flat characterised by shallow water depths. Sensors used to measure currents, water depth and turbidity were installed just above the bed (0.04 m). Two experiments were conducted under contrasting hydrodynamic conditions. The results highlight wave activity over the tidal flat even though observed wind waves were largely dissipated due to the very shallow water depths. Very high suspended sediment concentrations (up to 6 kg/m3) were recorded in the presence of wave activity at the beginning of the local flood, when significant sediment transport occurred, up to 7 times as much as under conditions of no wave activity. This influence may be attributed to the direct action of waves on bed sediments, to wave-induced liquefaction, and to the erosive action of waves on tidal channel banks. The sediment composition, comprising a clay fraction of 2-5%, may also enhance sediment transport by reducing critical shear stress through the sand lubrication effect. The results also show that antecedent meteorological conditions play an important role in suspended sediment transport on the tidal flat. Total sediment flux directions show a net transport towards the inner part of the bay that contributes to deposition over the adjacent salt marshes, and this tendency also prevails during strong wave conditions. Such sediment transport is characterised by significant variability over the course of the tidal cycle. During fair and moderate weather conditions, 83% and 71% of the total flux was observed, respectively, over only 11% and 28% of the duration of the local tidal cycle and with water depths between 0.04 and 0.3 m. These results suggest that in order to improve our understanding of sediment budgets in this type of coastal environment, it is essential to record data just at the beginning and at the end of tidal submergence close to the bed.  相似文献   

5.
The design and operation of mathematical models of solute mixing and sediment transport in estuaries rely heavily on the provision of good-quality field data. We present some observations of salinity, suspended sediment concentration and velocity at one of the tidal limits of a semi-enclosed tidal lagoon in Southern England (Pagham Harbour, West Sussex, UK) where the natural processes of tidal incursion and solute mixing have been heavily modified as a result of the construction of sea walls dating back to the 18th Century. These observations, made immediately downstream of two parallel tidal flap gates by conductivity-temperature-depth (CTD) profiler, and also using bed-mounted sensor frames to measure velocity at 2 fixed depths, have yielded a set of results covering 11 tidal cycles over the period 2002–04. It is clear from the results obtained that over a typical tidal cycle, the greatest vertical salinity gradients occur in the 1–2 h immediately after the onset of the flood tide, and that subsequently, energetic mixing acts to rapidly break down this stratification. Under moderate-to-high fresh water flows (>0.5 m3/s), the break-down in vertical salinity gradient is more gradual, while under low fresh water flows (<0.2 m3/s), the vertical salinity gradient is generally less pronounced. Estimates of Richardson number during the early flood-tide period reveal values that vary rapidly between <1 and about 20, with lower values occurring after around 1.5–2 h after low water. Observations of suspended sediment concentration vary widely even for similar tidal and fresh water flow conditions, revealing the possible influence of wind speed, the storage effects of the water in the lagoon downstream of the observation site, and the complexity of the hydrodynamics downstream of tidal flap gates. The data also show that most of the sediment transport is landward, and occurs during flood tides, with estimated total tidal landward flood tide flux of fine sediment of the order of 50–120 kg under low fresh water flow conditions. These observations, which reinforce the results presented in Warner et al. (2004) and elsewhere, can help to provide information about the appropriate techniques for managing sediments and pollutants, including nutrients from sewage effluent waters, in estuaries where hydraulic flap gates are used to control the entry of fresh water over the tidal cycle.  相似文献   

6.
The characteristics and effects of large-scale flow structures developed in the benthic boundary layer downstream from large topographic features were analysed throughout a tidal cycle. The observed signature of the macro-turbulent features consisted of streamwise modules of low horizontal velocity and high suspended sediment concentration (SSC), alternating with modules of high horizontal velocity and low SSC. These modules extended 10 to 20 m streamwise and exceeded 1 m vertically, and are believed to be related to flow separation effects over large bedforms upstream of the deployment site. The macroscale flow modules intensified the ‘ burst-like ’ turbulent events and favoured sediment transport. ‘ Ejection-like ’ events were magnified during modules of decreasing horizontal velocity and increasing turbidity, whereas ‘ sweep-like ’ events were magnified during modules of increasing horizontal velocity and decreasing SSC. The enhanced turbidity of the macroscale modules may be the result of enhanced upward diffusion of sediment by ejection events, whereas the low-turbidity modules may be induced by increased downward transport of suspended sediment by sweep events. These hypotheses were supported by cross-spectral analysis performed on velocity and suspended sediment concentration time-series recorded at the site. An enhanced (negative) contribution of outward and inward interaction events to the Reynolds stress, compared to those reported in uniform BBLs, resulted in ‘ abnormally ’ low stress values.  相似文献   

7.
江苏大丰海岸碱蓬滩潮沟及滩面的沉积动力特征   总被引:9,自引:3,他引:6  
根据2002年7月在江苏大丰碱蓬滩潮沟观测的水文、悬沙、底质等资料,分析了潮沟的输水、输沙特征及悬沙和底质在粒径组成上的关系,结果表明,潮沟在流速、悬沙浓度、输水、悬沙输运、底质活动性等方面具有明显的涨落潮不对称.滩面归槽水占潮沟落潮输水量的33%,由此造成的悬沙输运量占潮沟落潮悬沙输运量的20%,这是导致潮沟涨落潮输水输沙不对称的主要因素.在一个潮周期中潮沟的净输水、净悬沙输运方向与滩面相反,指向落潮方向.悬沙和底质组成以粉砂和黏土为主,潮沟和滩面的悬沙粒径组成差别很小.悬沙是滩面底质的主要物质来源,两者在粒径组成上存在着必然联系,沉积物粒径与该粒级在底质中的含量与在悬沙中的含量之比具有明显的幂函数关系.  相似文献   

8.
The 25-h measurements of current speed, flow direction, water depth, suspended sediment concentration and salinity were carried out at six anchored stations in the study area during spring and neap tides in winter of 1987 and summer of 1989. Caculations and analyses of the data obtained show that large amounts of suspended sediments are moved back and forth under the action of tidal current, and the net transport of sediment is small, with its predominance upstream in winter and downstream in summer. These calculations and analyses also suggest that the advective transport of sediment is dominant, while the vertical gravitational circulation of the suspended sediment comes next. Meantime, it is indicated that tidal currents play a major role in the suspended sediment transport, and residual flows have effect on the net transport of the suspended sediment, which is more remarkable during neap tide than during spring tide.  相似文献   

9.
In May of 2005, an observational program was carried out to investigate the along channel hydrodynamics and suspended sediment transport patterns at North Inlet, South Carolina. Along channel variability, which is important in establishing sediment transport pathways, has not been characterized for this system. Measurements of water column currents, salinity, bed sediment, suspended sediment concentration, and particle size distribution were obtained over a complete tidal cycle along the thalweg of the inlet entrance. Along channel currents, shear stress and bed sediment distributions vary significantly in space and time along a 3 km section bracketing the inlet throat. Most of the variability is consistent with geomorphic controls such as bed elevation variability and channel width. The highest velocities, shear stresses, suspended sediment concentration and bed sediment grain size are observed in the narrowest section of the inlet throat. Magnitudes systematically decrease along the channel toward the marsh as changes in channel geometry and branching reduces flow energy. Due to tidal asymmetry, the ebb phase contains significantly higher currents and associated sediment transport. Over the complete tidal cycle, depth integrated transport is directed towards the marsh landward of the intersection of Town and Debidue Creek. In contrast, net transport is out of the inlet seaward of this intersection. Sediment grain size distributions show 35% more material less than 63 μm on flood, suggesting net landward transport of fines.  相似文献   

10.
Currents, particle fluxes and ecology were studied in the Palamós submarine canyon (also known as the Fonera canyon), located in the northwestern Mediterranean. Seven mooring arrays equipped with current meters and sediment traps were deployed along the main canyon axis, on the canyon walls and on the adjacent slope. Additionally, local and regional hydrographic cruises were carried out. Current data showed that mean near surface and mid-depth currents were oriented along the mean flow direction (NE–SW), although at 400 and 1200 m depth within the canyon current reversals were significant, indicating a more closed circulation inside the canyon. Mean near-bottom currents were constrained by the local bathymetry, especially at the canyon head. The most significant frequency at all levels was the inertial frequency. A second frequency of about three days, attributed to a topographic wave, was observed at all depths, suggesting that this wave was probably not trapped near the bottom. The current field observed during the most complete survey revealed a meandering pattern with cyclonic vorticity just upstream from and within the canyon. The associated vertical velocity ranged between 10 and 20 m/day and was constrained to the upper 300 m. This latter feature, together with other computations, suggests that during this survey the meander was not induced by the canyon but by some kind of instability of the mean flow.In the canyon, suspended sediment concentration, downward particle fluxes, chlorophyll and particulate C and N were significantly higher up-canyon from about 1200 m depth than offshore, defining, along with the different hydrodynamics, two canyon domains: one from the canyon head to about 1200 m depth more affected by the canyon confinement and the other deeper than 1200 m depth more controlled by the mean flow and the shelf-slope front. The higher near-bottom downward total mass fluxes were recorded in the canyon axis at 1200 m depth along with sharp turbidity increases and are related to sediment gravity flows. During the deployment period, the increase in downward particle fluxes occurred by mid-November, when a severe storm took place. On the canyon walls at 1200 m depth, suspended sediment concentrations, downward particle fluxes, chlorophyll and particulate C and N were higher on the southern wall than on the northern wall inversely to the current’s energy. This could be caused by an upward water supply on the southern canyon wall and/or the mean flow interacting with the canyon bathymetry. In the swimmers collected by the sediment traps, the dominant species was an elasipod holothurian, which has not been recorded in other canyons or elsewhere in the Mediterranean, indicating particular speciation.  相似文献   

11.
爆破挤淤是处理淤泥质软基的常用方法,而研究由此产生的悬浮泥沙的输移扩散对于评价施工对工程区水环境的影响有重要意义。在对爆破挤淤产生的悬浮泥沙对水环境影响初步分析的基础上,就防波堤地基爆破挤淤处理产生的悬浮泥沙在波浪、潮流共同作用下的输移扩散过程进行了数值模拟,并对爆破挤淤后悬浮泥沙输移扩散规律进行了探讨,指出爆破挤淤对水域附近的生态环境有一定影响,但影响范围并不大,且持续的时间亦不长。  相似文献   

12.
In order to examine sedimentary processes acting on tidal flats, eighteen foot valves were “plumbed” into a small tidal cove in southern New Hampshire. Transport of suspended sediment was determined by comparing concentrations (determined by filtering) at 15 and 30 cm above the tidal flats throughout a tidal cycle. In general, sediment resuspension occurs more readily on the flood tide than the ebb. The concentration of suspended sediment follows the water mass distribution and is affected to a lesser degree by tidal currents and small amplitude waves. Deposition occurs during slack water shortly after high tide primarily in the bottom regime (15 cm); it is probably related to coarser particle sedimentation. The water mass distribution was not a simple rise and fall perpendicular to the bottom contours, but rather followed a slow clockwise gyre. The net effect on the suspended sediments was to impart a “longshore” component of drift to the suspended load during the tidal cycle.  相似文献   

13.
A study of suspended sediment concentration in the buoyant plume of the Fraser River, Canada, showed that unstratified flow conditions at the river mouth caused resuspension of sandy bed material and high concentrations of coarse sediment. When flow at the mouth was stratified, sediment was fine-grained and concentrations were low. Application of a multivariate model revealed that suspended sediment concentration along the plume axis was controlled primarily by distance seaward of the river mouth, secondly by tidal height, and least by sediment concentration in the river.  相似文献   

14.
Current velocity and suspended sediment concentration measurements at anchor stations in the downstream extremity of the Gironde estuary indicate that during periods of high river discharge, a significant amount of suspended sediment is transported out of the estuary onto the adjacent continental shelf. The vertical profile of the residual (non-tidal) suspended sediment flux is similar to that of the residual current velocity, with a net upstream flux near the bottom and an overlying seaward-directed transport. The overall, depth-integrated result is a net seaward transport of suspended sediment out of the estuary. It appears that this net seaward transport varies directly with tidal amplitude.Aerial photography and water sampling indicate that during high river inflow, the downstream extremity of the turbidity maximum extends onto the continental shelf at ebb tide. The tidal and coastal current patterns of the inlet and inner shelf induce a northward transport of the turbid estuarine water, and at each tidal cycle, a certain amount of suspended sediment leaves the estuary; part of this sediment is deposited in a silt and clay zone on the continental shelf.  相似文献   

15.
This study briefly investigated sediment transport by tidal currents in Gomso Bay, on the mid-west coast of Korea during the summer season. Hydrodynamic measurements with benthic tripods (TISDOSs) show that near-bed suspended sediments are transported toward the bay mouth along the low-water line of tidal flats in the southern part of the bay, while they are directed offshore in front of the major tidal channel at the bay mouth according to tidal asymmetry. However, suspended sediments in the main body of sea water, observed from transect and anchor-site measurements, indicate a consistent incoming toward the uppermost tidal flats. A brief episode of relatively strong winds from the west and southeast displays that wind waves can yield the near-bed suspended sediment concentrations (SSC) overwhelming the SSC by tidal currents alone in the remaining duration.  相似文献   

16.
长江口悬沙动力特征与输运模式   总被引:5,自引:0,他引:5  
本项研究用ADCP在长江河口进行高频、高分辨率三维流速和声学浊度的定点观测,通过对定点站位潮周期内的悬沙浓度、流速和盐度的分析,计算悬沙输运率;悬沙输运机制分析表明平流作用、斯托克斯漂移效应在悬沙输运中占据主导地位.此外,从河口内向河口外,潮周期内的水动力特征与悬沙净输运具有明显的地域性差异,主要表现在悬沙输送的贡献因子、盐度的垂向混合和分布特征、垂向流速等方面.在拦门沙下游和口外地区,悬沙均向西、北方向输送,而拦门沙上游则向东、南方向输送.这种悬沙输运格局,对于长江口拦门沙及附近最大浑浊带的形成有着重要的作用.  相似文献   

17.
Water samples were collected at 15 min intervals over 11 tidal cycles from a tidal creek draining the mangrove-covered basin of Tuff Crater, Auckland, New Zealand. The samples were filtered and total suspended sediment (TSS), inorganic suspended sediment (ISS) and organic suspended sediment (OSS) were determined. Variation in TSS was high, the concentration varied over a tidal cycle and during over-bank flows concentrations were lowest at or near slack high water. Covariance between TSS concentrations and velocity and discharge meant that the calculation of particulate matter flux over tidal hemicycles was particularly dependent on the method of estimating tidal flux. The hypsometrically-based volumetric method was found to be inappropriate, predicting a positive budget (import) more often than observed. Instead particulate matter budgets were calculated by means of the velocity-area method and indicate a net export of TSS, ISS and OSS. Floating macrodetritus was observed on both the flood and ebb tides, but a net export was found on the two tides monitored. It is considered that on an annual basis floating macrodetritus export accounts for less than 2% of the detrital production in the basin, and organic suspended sediment export from the basin is less than 3 kg C ha?1 day?1 and is below the rate of detrital production. It is implied that a proportion of the organic detritus produced in this basin is degraded and recycled in situ.  相似文献   

18.
This study describes the transport of salt and suspended sediment in a curving reach of a shallow mesotidal coastal plain estuary. Circulation data revealed a subtidal upstream bottom flow during neap tide, indicating the presence of a gravitational circulation mode throughout the channel. During spring tide, landward bottom flow weakened considerably at the upstream end of the channel and changed to seaward in the middle and downstream areas of the reach, suggesting the importance of tidal pumping. Salt flux near-bottom was landward at both ends of the channel during neap tide. At spring, however, the salt flux diverged along the bottom of the thalweg suggesting that tidal pumping caused a transfer of salt vertically and laterally into the intertidal zone. Thus, landward flux of salt is maintained even in the presence of subtidal seaward flow along the bottom at the downstream end of the channel.Landward bottom stress is greater than seaward stress, preferentially transporting suspended sediments upstream. Compared with salt, however, the weight of the suspended sediments causes less upward transfer of sediments into the intertidal zone. Flood flow carried more suspended sediments landward at the upstream end compared with the downstream end. We speculate that secondary flow in the curving channel picks up increasing amounts of suspended sediments along the sides during flood and adds them to the axial flow in the thalweg. Since the landward flow along the bottom of the thalweg weakens and even reverses during spring tide, there appears to be a complex re-circulation system for sediments re-suspended in curving channels that complicates the picture of a net transport of sediments landward.  相似文献   

19.
Numerical Modeling on Suspended Sediment Transportation in the Hangzhou Bay   总被引:4,自引:0,他引:4  
In this paper the characteristics of tidal flow and seasonal variation of seidment content in theHangzhou Bay and their affecting factors are studied.Field investigations and data analysis indicate thatthe sediment movement is mainly influenced by the Yangtze estuary and the sediment of the Yangtze estua-ry is induced by wind wave and tidal flow.Owing to the variation of dynamic conditions,the instanta-neous sediment content is controlled by tidal flow,wind wave,depth of water and tidal range synthetically.A sediment content relationship formula is established with related factors.A non-equilibrium2-dimensional numerical model of suspended sediment transportation is set up,and the finite element meth-od is applied.The computation results of the model is in accordance with field data.  相似文献   

20.
The Konkouré Estuary in the Republic of Guinea is a poorly understood atypical mangrove system. Sediment dynamics in tropical estuaries are controlled by a combination of processes including river discharge, morphology, salinity, erosion and deposition processes, the settling of mud, physico-chemical processes and mangrove swamps. Here we present a consistent set of data aimed at characterising the estuary and thus, increasing our understanding of tropical systems, as well as studying the impact of human intervention in the region. Water elevations, current measurements, salinity, suspended sediment concentrations, bathymetry and sediment cover are presented following a 3 year survey of the Konkouré Estuary. Here we provide conclusive evidence that the Lower Konkouré is a shallow, funnel shaped, mesotidal, mangrove-fringed, tide dominated estuary, well mixed during low river discharge. The estuary becomes stratified during high river flows and spring tides whereas a salt wedge appears during neap tides. The Konkouré Estuary has been described as hypersynchronous, and has three terminal outlets, two of which are landward-directed, attesting to a tidal pumping effect, while the third one is seaward-directed, and is controlled by the mangrove. The suspended matter is transported by the tidal effect within the middle estuary and is therefore trapped in the Turbidity Maximum zone (TMZ). The location of the TMZ is river-controlled and is correlated with residual currents but not with salinity front. A dam, constructed 130 km upstream, impacts on the hydrodynamics, and reduces the salinity intrusion by about 25%. It causes an increased low river discharge whereas its efficiency over high river flows is unclear.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号