首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Soils from historical Pb mining and smelting areas in Derbyshire, England have been analysed by a 5-step sequential extraction procedure, with multielement determination on extraction solutions at each step by ICP-AES. Each of the chemical fractions is operationally defined as: (i) exchangeable; (ii) bound to carbonates or specifically adsorbed; (iii) bound to Fe–Mn oxides; (iv) bound to organic matter and sulphides; (v) residual. The precision was estimated to be about 5%, and the overall recovery rates were between 85 and 110%. The carbonate/specifically adsorbed and Fe–Mn oxide phases are the largest fractions for Pb in soils contaminated by both mining and smelting. Most of the Zn is associated with Fe–Mn oxide and the residual fractions. Cadmium is concentrated in the first 3 extraction steps, particularly in the exchangeable phase. The most marked difference found between soils from the mining and smelting sites is the much higher concentrations and proportions of metals in the exchangeable fraction at the latter sites. This indicates greater mobility and potential bioavailability of Pb, Zn and Cd in soils at the smelting sites than in those in the mining area. The most important fraction for Fe and Al is the residual phase, followed by the Fe–Mn oxide forms. In contrast, the Fe–Mn oxide fraction is the dominant phase for Mn in these soils. In the mining area, most of the Ca is in the carbonate fraction (CaCO3), while the exchangeable and residual phases are the main fractions for Ca at the smelting sites. Phosphorus is mainly in the residual and organic fractions in both areas. The exchangeable fractions of Pb, Zn and Cd in soils were found to be significantly related to the concentrations of these metals in pasture herbage.  相似文献   

2.
Total concentrations of chemical elements in soils may not be enough to understand the mobility and bioavailability of the elements. It is important to characterise the degree of association of chemical elements in different physical and chemical phases of soil. Another geochemical characterisation methodology is to apply sequential selective chemical extraction techniques. A seven-step sequential extraction procedure was used to investigate the mobility and retention behaviour of Al, Fe, Mn, Cu, Zn, Pb, Cr, Co, Ni, Mo, Cd, Bi, Sn, W, Ag, As and U in specific physical–chemical and mineral phases in mine tailings and soils in the surroundings of the abandoned Ervedosa mine. The soil geochemical data show anomalies associated with mineralised veins or influenced by mining. Beyond the tailings, the highest recorded concentrations for most elements are in soils situated in mineralised areas or under the influence of tailings. The application of principal components analysis allowed recognition of (a) element associations according to their geochemical behaviour and (b) distinction between samples representing local geochemical background and samples representing contamination. Some metal cations (Mn, Cd, Cu, Zn, Co, Cr, Ni) showed important enrichment in the most mobilisable and bioavailable (i.e., water-soluble and exchangeable) fractions due likely to the acidic conditions in the area. In contrast, oxy-anions such as Mo and As showed lower mobility because of adsorption to Fe oxy-hydroxides. The residual fraction comprised largest proportions of Sn and Al and to a lesser extent Zn, Pb, Ni, Cr, Bi, W, and Ag, which are also present at low concentrations in the bioavailable fractions. The elements in secondary mineral phases (mainly Fe, Mn, Cu, Zn, Cd, Pb, W, Bi, Mo, Cr, Ni, Co, As and U) as well as in organic matter and sulphides are temporarily withheld, suggesting that they may be released to the environment by changes in physico-chemical conditions.  相似文献   

3.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

4.
Soils of loamy sand on weathered, sandy dolomite were cored from six holes up to 70 ft beneath a municipal waste landfill in central Pennsylvania. Mn, Fe, Ni, Co, Cu, Zn, Cd, Pb, and Ag were determined in exchangeable and non-exchangeable forms in total and < 15 μm soil samples. Most of these metals were bound in Mn oxides, non-exchangeable with 0.5 M CaCl2. The Mn oxides (often X-ray amorphous) identified when crystalline as todorokite occurred chiefly as coatings on quartz grains.Somewhat higher amounts of acid leachable trace metals were found in the < 15 μm size fraction than in the total soil samples; however, trace metal/Mn ratios were similar in both. In general, the initial mild soil leaching, which dissolved chiefly Mn oxides, gave MnFeX>Co>Ni>Pb>Zn> Cu>Cd>Ag. The final leaching, which dissolved chiefly ferric oxides, gave Fe>Mn>Ni>Zn>Co> Cu>Pb>Cd>Ag. Samples taken from an unpolluted site and from the same soils affected for seven years by leachate from the refuse had similar metal contents.Soil extractable Co, Ni, Cu, and Zn could be predicted from the Mn extracted. Based in part on factor analysis of the data, Mn-rich oxides had at least tenfold higher heavy metal percentages than Fe-rich oxides (crystalline component goethite), reflecting their greater coprecipitation potential. Because of this potential and because of the generally higher solubility of Mn than Fe oxides, more heavy metals may be released from Mn-rich than from Fe-rich soils by disposal of organic-bearing wastes. However, leaching of the moisture-unsaturated soils in situ is rarely severe enough to completely dissolve both Mn and Fe oxides. Based on the Mn content, Cd, Cu, and Pb were depleted in soil moisture beneath the landfill relative to their amounts in the soil. This depletion may reflect factors including heterogeneity in metal content of the soil oxides; preferential resorption of these metals; and removal of the Cd, Cu, and Pb as organic precipitates or as inorganic precipitates such as carbonates.  相似文献   

5.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

6.
Tailings deposited over the Castanheira, a stream which flows through the old Ag–Pb–Zn Terramonte mine area, showed a great potential environmental risk due to sulphide weathering, facilitated by the tailings–water interaction. The high concentrations of Al, Fe, Pb and Zn in the tailings are associated with the exchangeable, reducible and sulphide fractions and suggest sphalerite and pyrite occurrences. Oxidation of pyrite is responsible for the low pH values (3.38–4.89) of the tailings. The water from the Castanheira stream is not suitable for human consumption due to high concentrations of SO4 2?, Mn, Al, Cd, Ni, and Pb. The lowest concentrations of metals and metalloids were detected in downstream stretches of the Castanheira. However, As, Fe and Zn in deeper sediments tend to increase downstream. Significant concentrations of trivalent forms of arsenic were detected in water samples. In downstream stretches of the Castanheira, some free ions (Fe2+, Mn2+ and Zn2+) also predominate and the water is saturated with ferrihydrite, goethite, hematite, lepidocrosite and magnetite.  相似文献   

7.
影响向海湿地草根层土壤吸附铅、镉能力的因素   总被引:9,自引:7,他引:2  
利用向海湿地采集的草根层土壤进行吸附铅、镉的热力学实验,结果表明草根层土壤吸附铅、镉的过程符合Langmuir和Freundlich等温吸附曲线(n=8,p=0.01).吸附铅、镉存在干扰吸附现象,吸附铅的能力约是吸附镉的能力的3倍.而且草根层土壤吸附铅、镉的最大吸附量与土壤中的有机质和铁、锰氧化物含量存在着正相关性.土壤的理化性质是影响土壤吸附铅、镉能力的内在主要因素;pH等是影响草根层土壤吸附铅、镉能力的外部主要因素.  相似文献   

8.
The results of investigations (SEM/EDS and AAS) of a peat deposit, spanning 13,000 years of peat accumulation, are shown. The peat deposit is located in a region of shallow occurrence of Zn–Pb ores, near Tarnowskie Góry town, within the Cracow–Silesia district (southern Poland). Exploitation of lead, silver and iron during the medieval times (Twelfth and thirteenth century) was confirmed by historical documents whereas there are no unambiguous data showing that there was metal mining during the Romanian or earlier times in the region. The peat deposit is located within the influence of atmospheric Pb and Zn emission from a nearby Zn–Pb smelter. Two vertical peat profiles were investigated (120 and 140 cm depth of profile) showing variable concentrations of Zn up to 713 mg kg?1, Pb up to 317 mg kg?1, Cd up to 13 mg kg?1 and Tl up to 31 mg kg?1. The highest concentrations were recorded for the uppermost peat layers. SEM and EDS investigations revealed the occurrence of metalbearing, submicroscopic mineral components: Fe, Mn, Ti and Zn oxides and Zn and Pb carbonates. The top layer of the deposit contained Zn, Pb and Cd sulphides. The occurrence of aggregates of Au–Ag, Cu–Zn and Au–Ag–Cu alloys can be possibly related to pre-historical mining and smelting or be explained by geochemical transformations. The preservation of carbonates and oxides in the peat is discussed, indicating a generally neutral to alkaline peat water chemistry and maintenance of an oxidized environment in the fen.  相似文献   

9.
采用盆栽试验,初步研究了干旱区绿洲土壤—胡萝卜系统中镉、锌、镍3种重金属的形态变化特征及其生物有效性问题。结果表明:供试绿洲土壤原状土中,Cd、Zn、Ni均以稳定的残渣态形式存在,而处理土壤中重金属被钝化的量有限,Cd的存在形式主要以碳酸盐态为主,Zn、Ni则主要以铁锰氧化态为主;3种元素的活性大小依次为Cd>Ni>Zn。根据回归分析,元素Zn对胡萝卜块茎和茎叶吸收Zn量贡献最大的分别是Zn的碳酸盐结合态和铁锰氧化态;元素Ni对胡萝卜各部位吸收贡献最大的均为Ni的铁锰氧化态。  相似文献   

10.
This study focused on the influence of base metal mining on heavy metal levels in soils and plants in the vicinity of Arufu lead-zinc mine, Nigeria. Soil samples (0-15 cm depth) and plant samples were collected from cul-tivated farmlands in and around the mine, the unmineralized site and a nearby forest (the control site). The samples were analyzed for heavy metals (Fe, Zn, Mn, Cu, Pb, Cr and Cd) by Atomic Absorption Spectrophotometry (AAS). The physical properties of soils (pH and LOI) were also measured. Results showed that soils from cultivated farm-lands have neutral pH values (6.5-7.5), and low organic matter contents (10%). Levels of Zn, Pb and Cd in culti-vated soils were higher than the concentrations obtained from the control site. These heavy metals are most probably sourced from mining and agricultural activities in the study area. Heavy metal concentrations measured in plant parts decreased in the order of rice leavescassava tuberspeelings. In the same plant species, metal levels decreased in the order of ZnFeMnCuPbCrCd. Most heavy metals were found in plant parts at average concentrations normally observed in plants grown in uncontaminated soil, however, elevated concentrations of Pb and Cd were found in a few cassava samples close to the mine dump. A stepwise linear regression analysis identified soil metal contents, pH and LOI as some of the factors influencing soil-plant metal uptake.  相似文献   

11.
Water, sediment, and mine spoil samples were collected within the vicinity of the Okpara coal mine in Enugu, Southeastern Nigeria, and analyzed for trace elements using ICP-MS to assess the level of environmental contamination by these elements. The results obtained show that the mine spoils and sediments are relatively enriched in Fe, with mean values of 1,307.8(mg/kg) for mine spoils and 94.15% for sediments. As, Cd, Cr, Mn,Ni, Pb, and Zn in the sediments were found to be enriched relative to the mean values obtained from the study area, showing contamination by these elements. The mean values of Fe, Mn, Cu, and Cr in the mine spoils and mean values of Fe, Cu, Pb, Zn, Ni, Cr, and Mn in sediments, respectively, are above the background values obtained from coal and shale in the study area, indicating enrichment with these elements. The water and sediments are moderately acidic, with mean pH values of 4.22?±?1.06 and 4.66?±?1.35, respectively. With the exception of Fe, Mn, and Ni, all other elements are within the Nigerian water quality standard and WHO limits for drinking water and other domestic purposes. The strong to moderate positive correlation between Fe and Cu (r?=?0.72), Fe and Zn (r?=?0.88), and Fe and As (r?=?0.60) at p?<?0.05 as obtained for the sediments depict the scavenging effect of Fe on these mobile elements. As also shows a strong positive correlation with Mn (r?=?≥ 0.70, p?<?0.05), indicating that Mn plays a major role in scavenging elements that are not co-precipitated with Fe. In water, the strong positive correlation observed between Cr and Cd (r?=?1.00), Cu and Ni (r?=?0.94), Pb and Cu (r?=?0.87) and Zn and Cu (r?=?0.99); Ni and Pb (r?=?0.83) and Zn and Ni (r?=?0.97); and between Pb and Zn (0.84) at p?<?0.05 may indicate similar element–water reaction control on the system due to similarities in chemical properties as well as a common source. Elevated levels of heavy metals in sediments relative to surface water probably imply that sorption and co-precipitation on Al and Fe oxides are more effective in the mobilization and attenuation of heavy metals in the mine area than acid-induced dissolution. The level of concentration of trace elements for the mine spoils will serve as baseline data for future reference in the study area.  相似文献   

12.
A presentation is made of the study of an underground polymetallic sulphide mine and the pollution caused by this in the adjoining aquatic ecosystems. Troya Mine is in the Basque Cantabrian region (northern Spain). The annual production of the ore deposit of over 3.7 million tons of Pb (0.9%), Zn (11.2%) and Cu (0.2%) was 300,000 t. It was open and producing from 1986-1993. The mineralization was made up of pyrite, marcasite, sphalerite, galena, chalcopyrite and arsenopyrite. Only the Zn and the Pb were mined. We studied the distribution and behaviour of the heavy metals Zn, Pb, Fe, Mn, Cu, Cr and Cd in the water column, dissolved and suspended fractions, and in the sediments of Estanda Stream and of Gezala Creek. Zn, Cd and Mn tend to be found in the water; Fe, Pb, Cu and Cr appear as an adsorbed fractionin the solid phases. Those of the second group are significantly linked to the fluvial sediments and present very high levels. The concentrations of the metals are conditioned by the waters from the mine galleries, by the leached waste, by the surface runoff, and by overflow from the spillway of the tailings pond. Our observations provide knowledge on the extent of the polluting power of the metals, the physico-chemical effects in play and the subsequent chances of recovering these highly affected environments.  相似文献   

13.
恬矿库周围土壤中重金属存在形态特征研究   总被引:48,自引:4,他引:44  
通过对大冶铜绿山铜铁矿尾矿库周围土壤中重金属形态分析实验,研究了重金属各种形态在土壤中的分布特征。由对比实验可知,尾矿库周围土壤中Cu、Pb、Zn、Cd等重金属含量都显著地高于对照样品,书经受到重金属的严重污染。土壤中重金属形态分布征为:w(Cr、Zn、Fe);可变换态〈碳酸盐态〈有机态〈铁锰氧化态〈残渣态;w(Cu、Pb):可变换态〈碳酸盐态〈有机态〈残渣态〈铁锰氧化态;w(Cd):残渣态,有机  相似文献   

14.
The formation of iron sulphide minerals exerts significant control on the behaviour of trace elements in sediments. In this study, three short sediment cores, retrieved from the remote Antinioti lagoon (N. Kerkyra Island, NW Greece), are investigated concerning the solid phase composition, distribution, and partitioning of major (Al, Fe) and trace elements (Cd, Cu, Mn, Pb, and Zn). According to 210Pb, the sediments sampled correspond to depositions of the last 120 years. The high amounts of organic carbon (4.1–27.5%) result in the formation of Fe sulphides, predominantly pyrite, already at the surface sediment layers. Pyrite morphologies include monocrystals, polyframboids, and complex FeS–FeS2 aggregates. According to synchrotron-generated micro X-ray fluorescence and X-ray absorption near-edge structure spectra, authigenically formed, Mn-containing, Fe(III) oxyhydroxides (goethite type) co-exist with pyrite in the sediments studied. Microscopic techniques evidence the formation of galena, sphalerite and CuS, whereas sequential extractions show that carbonates are important hosts for Mn, Cd, and Zn. However, significant percentages of non-lattice held elements are bound to Fe/Mn oxyhydroxides that resist reductive dissolution (on average 60% of Pb, 46% of Cd, 43% of Zn and 9% of Cu). The partitioning pattern changes drastically in the deeper part of the core that is influenced by freshwater inputs. In these sediments, the post-depositional pyritization mechanism, illustrated by overgrowths of Fe monosulphides on pre-existing pyrite grains, results in relatively high degree of pyritization that reaches 49% for Cd, 66% for Cu, 32% for Zn and 7% for Pb.  相似文献   

15.
The main purpose of this study is to assess arsenic and antimony availability in soils, as well as Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn availability in soils derived from the schist–metagraywacke complex close to old Sb–Au mines and in soils developed from Ordovician slates and close to an old As–Au mine in Portugal. The availability was determined using a European certified sequential extraction procedure (BCR). The results demonstrated that metalloids are not readily bioavailable, because they are mainly associated with the residual fraction. Arsenic and antimony proportions in exchangeable fractions are up to 3 and 1%, respectively. However, arsenic is up to 24% in oxy-hydroxide fractions, while antimony is up to 4% in them, demonstrating the highest bioavailability of arsenic compared to that of antimony, as metalloids are weakly bound to the soils in that fraction. Therefore, arsenic tends to be more toxic than antimony in all soils studied. However, the pseudo-total contents show that both metalloids are above the Italian and Dutch guidelines. Therefore, if physico-chemical changes occur arsenic and antimony will show higher potential environmental risk than evidenced by Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn.  相似文献   

16.
Theeco environmentalpollutioncausedbyminingdevelopmentisaworldwideproblem ,whichhasarousedever increasingattentionofscientists.Inadditiontovegetationdestructionanderosionofcultivatedlanddirectlycausedbyminingdevelopment,scientistshaveplacedmorefocusontheenvironmentalproblemsinducedbythereleaseofharmfulsubstances ( particularlyheavymetals) .Especiallyundersurfaceconditions,thepiled upminewastes (minetailings)undergoweatheringundertheactionofaseriesofgeochemicalfactorssuchasthemineralogyofmineta…  相似文献   

17.
The Barmer Basin of Rajasthan is significant for its Paleogene lignite sequences. The lignite seam occurs in Akli Formation of Barmer Basin at the depth of 06–241 m. A total of 57 lignite samples were collected from the working faces of lignite mine and were subjected to proximate analysis (moisture, ash yield, volatile matter, and fixed carbon), ultimate analysis (carbon, hydrogen, nitrogen, oxygen and sulfur), elemental analysis (Fe, Ca, Mg, Cd, Mn, K, Na, Cu, Co, Ni, Cr, Zn, and Pb) and rock-eval pyrolysis for mineral carbon (MINC). Some elements like Cu, Cd, Co, Ni, Zn, Pb, Na, and K occur in high concentration, while Mg and Ca have their concentrations lower than World Clarke average. In addition, various minerals and functional groups present in the lignite samples were analyzed through X-ray diffraction and Fourier transform infrared (FTIR) spectroscopy. The mineral (weight and atomic) percentage has also been analyzed through scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS).  相似文献   

18.
Several samples of groundwater and soils and plants have been collected from Sohar (Batina region, NE Oman), which is affected by various activities such as mining, agriculture, and sewage. To characterize quality of groundwater, As and Cu concentrations have been investigated in waters collected from different wells. Comparison of data with local and international standard values revealed that groundwater in Sohar region is characterized by lower concentrations in Cu and As compared with standards. In soils collected from the same area, concentrations of heavy metals have been measured in different fractions in order to investigate the mobility of such elements and risk of vulnerability in this area. A sequential extraction procedure has been applied to surface sediments to determine the partitioning of Zn, Cu, Co, Mn, Fe, Pb, Cr, Cd and Ni among (1) exchangeable and acid-soluble phases, (2) Fe–Mn oxides, (3) organic matter and sulphides and (4) resistant phases. The results showed that the mobile fraction in the sewage area accounts only for 10 % of the total concentration in sediments while in the Cu mining area, the contribution of the mobile fraction may exceed 10 %, especially for Pb, Mn, Cd, Cu and Co. Investigation of concentrations in As and Cu in plants collected from mining and sewage areas revealed an important accumulation of these elements in leaves and may explain enrichment of As in shallow groundwater relative to deep groundwater. This investigation also showed that Cu is more available in sewage area than in mining zone, as opposed to As.  相似文献   

19.
太湖沉积物中重金属的地球化学形态及特征分析   总被引:24,自引:2,他引:22  
用连续提取法分析了太湖沉积物5种重金属的地球化学形态,对地球化学形态的组成和地理特征进行了分析研究.重金属地球化学形态配分的共同特点是可交换态最低,残渣态最高.两种形态中Cd的可交换态最高,Cr的残渣态最高,可交换态最低.Cd的碳酸盐态较高,Cr的最低;Pb、Cd的Fe-Mn氧化态较高,Cu的偏低;Cu的有机态最高,Cd的最低;Zn的地球化学形态比例大都处于中间.地域上变化较大的元素是Cd和Cu,变化不明显的元素有Pb和Zn.化学成分中Fe2O3、MnO与重金属地球化学形态的相关性最好,TOC与Cu的形态相关系数最高.综合对比分析表明,太湖沉积物重金属的生物有效性以Cd为最高,其次为Pb.  相似文献   

20.
Sequential digestions of Fe-Mn oxide coated boulders collected upstream and downstream from the Magruder mine, Lincoln Co., Georgia, indicate probable partitioning relationships for Zn, Cu, Pb, Co, and Ni with respect to Mn and Fe. Initial digestion with 0.1M hydroxylamine hydrochloride (Hxl) in 0.01M HNO3 selectively dissolyes Mn oxides, whereas subsequent digestion with 1:4 HCl dissolves remaining Fe oxides.The results indicate that partitioning is not constant, but varies systematically with respect to the location of metal-rich waters derived from sulfide mineralization. Upstream from the mineralized zone Zn and Ni are distinctly partitioned to the Fe oxide component and Co and Cu are partitioned to the Mn oxide component. Immediately downstream from the mineralized zone, Mn oxides become relatively more enriched in Zn, whereas Fe oxides are relatively more enriched in Cu, Co, and Ni. Analytical precision for Pb is poor, but available data suggests it is more closely associated with Fe oxides.For routine geochemical surveys utilizing coated surfaces, a one-step digestion method is probably adequate. Parameters useful for detecting sulfide mineralization are metal concentrations normalized to surface area or various ratios (e.g. Zn/(Mn + Fe), Cu/Mn, Pb/Fe). Ratios can be obtained much faster, and at lower analytical costs than conventional analysis of stream sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号