首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Measurements of the three-dimensional (3-D) structure of a sound-speed field in the ocean with the spatial and temporal resolution required for prediction of acoustic fields are extremely demanding in terms of experimental assets, and they are rarely available in practice. In this study, a simple analytic technique is developed within the ray approximation to quantify the uncertainty in acoustic travel time and propagation direction that results from an incomplete knowledge or purely statistical characterization of sound-speed variability in the horizontal plane. Variation of frequency of an acoustic wave emitted by a narrowband source due to a temporal variation of environmental parameters is considered for deterministic and random media. In a random medium with locally statistically homogeneous, time-dependent 3-D fluctuations of the sound speed, calculation of the signal frequency and bearing angle variances as well as the travel-time bias due to horizontal refraction is approximately reduced to integration of respective statistical parameters of the environmental fluctuations along a ray in a background, range-dependent, deterministic medium. The technique is applied to acoustic transmissions in a coastal ocean, where tidally generated nonlinear internal waves are the prevailing source of sound-speed fluctuations, and in a deep ocean, where the fluctuations are primarily due to spatially diffuse internal waves with the Garrett–Munk spectrum. The significance of 3-D and four-dimensional (4-D) acoustic effects in deep and shallow water is discussed.  相似文献   

2.
The covariance matrix of sound-speed variations is determined from yo-yo CTD data collected during the SWARM 95 experiment at a fixed station. The data covered approximately 2 h and were collected during a period when nonlinear solitary internal waves were absent or negligible. The method of empirical orthogonal functions (EOF) is applied to the sound-speed covariance matrix assuming that the internal wave modes are uncorrelated. The first five eigenvectors are found to agree well with the theoretically modeled eigenfunctions based on the measured buoyancy frequency and the internal wave eigenmode equation. The mode amplitudes for the first five modes are estimated from the corresponding eigenvalues. They agree with the Garrett-Munk model if j*=1 is used instead of j*=3. A second method is used to deduce the mode amplitudes and mode frequency spectra by projecting the sound-speed variation (as a function of time) onto the theoretical mode depth functions. The mode amplitudes estimated with this method are in agreement with the EOF results. A modified Garrett-Munk model is proposed to fit the frequency spectrum of linear internal waves in shallow water  相似文献   

3.
A basin-scale acoustic tomography simulation is carried out for the northeast Pacific Ocean to determine the accuracy with which time must be kept at the sources when clocks at the receivers are accurate. A sequential Kalman filter is used to estimate sound-speed fluctuations and clock errors. Sound-speed fluctuations in the simulated ocean are estimated from an eddy-resolving hydrodynamic model of the Pacific forced by realistic wind fields at daily resolution from 1981-1993. The model output resembles features associated with El Nino and the Southern Oscillation, as well as many other features of the ocean's circulation. Using a Rossby-wave resolving acoustic array of four fixed sources and twenty drifting receivers, the authors find that the percentage of the modeled ocean's sound-speed variance accounted for with tomography is 92% at 400-km resolution, regardless of the accuracy of the clocks. Clocks which drift up to hundreds of seconds of error or more for a year do not degrade tomographic images of the model ocean. Tomographic reconstructions of the sound-speed field are insensitive to clock error primarily because of the wide variety of distances between the receivers from each source. Every receiver “sees” the same clock error from each source, regardless of section length, but the sound-speed fluctuations in the modeled ocean cannot yield travel times which lead to systematic changes in travel time that are independent of section length. The Kalman filter is thus able to map the sound-speed field accurately in the presence of large errors at the source's clocks  相似文献   

4.
Numerical calculation of acoustic field perturbation expressions can be used to predict fluctuations after propagation through ocean sound-speed structures, but before the onset of multipath. The general form of the expressions for signal spectra or correlation functions allow numerical evaluation for an unlimited quantity of vector wave-number spectral models of refractive index. In order to help define the bounds of applicability of the theory, log-intensity fluctuation variances have been calculated for three major situations: ocean internal waves, ocean turbulence, and continuous strong large-scale turbulence. Propagation through ocean thermocline internal waves, realistically weak thermocline turbulence, and unrealistically strong turbulence show that scintillations of intensity can be predicted and understood to first order up to ranges of tens of kilometers, given the proper transmission geometry. Internal wave effects dominate over any effects from expected microstructure. Nonhorizontal transmission yields small fluctuations, but eventually refractive effects of the sound channel will contribute some additional spatial variability and multipath, complicating the use of the theory. Multipath due to the sound channel can exist at ranges where the random small-scale structures would contribute only small perturbations (no multipath from small structures)  相似文献   

5.
A computational case study of coupled-mode 400-Hz acoustic propagation over the distance 27 km on the continental shelf is presented. The mode coupling reported here is caused by lateral gradients of sound-speed within packets of nonlinear internal waves, often referred to as solitary wave packets. In a waveguide having unequal attenuation of modes, directional exchange of energy between low- and high-loss modes, via mode coupling, can become time dependent by the movement of waves and can cause temporally variable loss of acoustic energy into the bottom. Here, that bottom interaction effect is shown to be sensitive to stratification conditions, which determine waveguide properties and, in turn, determine modal attenuation coefficients. In particular, time-dependent energy loss due to the presence of moving internal wave packets is compared for waveguides with and without a frontal feature similar to that found at the shelfbreak south of New England. The mean and variability of acoustic energy level 27 km distant from a source are shown to be altered in a first order way by the presence of the frontal feature. The effects of the front are also shown to be functions of source depth.  相似文献   

6.
Effects of mesoscale eddies on the internal solitary wave propagation   总被引:3,自引:1,他引:2  
The mesoscale eddy and internal wave both are phenomena commonly observed in oceans. It is aimed to investigate how the presence of a mesoscale eddy in the ocean affects wave form deformation of the internal solitary wave propagation. An ocean eddy is produced by a quasi-geostrophic model in f-plane, and the one-dimensional nonlinear variable-coefficient extended Korteweg-de Vries (eKdV) equation is used to simulate an internal solitary wave passing through the mesoscale eddy field. The results suggest that the mode structures of the linear internal wave are modified due to the presence of the mesoscale eddy field. A cyclonic eddy and an anticyclonic eddy have different influences on the background environment of the internal solitary wave propagation. The existence of a mesoscale eddy field has almost no prominent impact on the propagation of a smallamplitude internal solitary wave only based on the first mode vertical structure, but the mesoscale eddy background field exerts a considerable influence on the solitary wave propagation if considering high-mode vertical structures. Furthermore, whether an internal solitary wave first passes through anticyclonic eddy or cyclonic eddy, the deformation of wave profiles is different. Many observations of solitary internal waves in the real oceans suggest the formation of the waves. Apart from topography effect, it is shown that the mesoscale eddy background field is also a considerable factor which influences the internal solitary wave propagation and deformation.  相似文献   

7.
A Munk profile and a set of propagating internal-wave modes are used to construct a three-dimensional time-varying ocean sound-speed model. Three-dimensional ray tracing is employed to simulate long-range sound propagation of a broadband acoustic signal. Methods are developed to convert three-dimensional ray-tracing results to acoustic time-domain amplitude and phase measurements. The ocean sound-speed model is defined deterministically, and the model acoustic receptions are analyzed deterministically. A single internal-wave mode that is “spatially synchronizes” to an arrival can coherently focus and defocus the acoustic energy. These internal waves can cause an arrival's amplitude fluctuation to mimic Rayleigh fading; however, the time-domain phase is stable, in contradiction to the classical Rayleigh fading environment where the received phase is uniformly distributed. For example, the received power attributed to an early arrival propagated over a 750-km range can fluctuate over 40 dB, while the time-domain phase remains within a quarter of a 75 Hz cycle. The characteristics of the time-domain phase are important for establishing coherent integration times at the receiver  相似文献   

8.
Acoustic wave fields in an ocean waveguide with a sediment layer having continuously varying density and sound speed overlying an elastic subbottom are considered in this analysis. The objective of this study is to investigate the effects of seabed acoustic properties, including the density and sound speed of the sediment layer and subbottom, on the characteristics of the wave fields. Examination of the reflection coefficient, wavenumber spectrum, and noise intensity of the sound field through numerical analysis has shown that the variation in the acoustic properties in the sediment layer is an important factor in determining the reflected or noise sound fields. In particular, the sediment thickness-to-wavelength ratio and the types of variation of acoustic properties inside the layer give rise to many characteristics that potentially allow for acoustic inversion of the seabed properties. With regard to the wave-field components in a shallow-water environment, the various types of waves existing in a seismo-acoustic waveguide have been illustrated. The results indicate that the effects of the sediment properties on the wavenumber spectrum are primarily on the continuous and evanescent regimes of the wave field. The noise intensity generated by distributive random monopoles at various depths, together with the effect of refractive sound-speed distribution in the water column, has been obtained and analyzed.  相似文献   

9.
The short time scale (minutes) and azimuthal dependence of sound wave propagation in shallow water regions due to internal waves is examined. Results from the shallow water acoustics in random media (SWARM-95) experiment are presented that reflect these dependencies. Time-dependent internal waves are modeled using the dnoidal solution to the nonlinear internal wave equations, so that the effects of both temporal and spatial variability can be assessed. A full wave parabolic equation model is used to simulate broadband acoustic propagation. It is shown that the short term temporal variability and the azimuthal dependence of the sound field are strongly correlated to the internal wave field  相似文献   

10.
This is a Part I of a paper of nonlinearities of wind waves in the deep open ocean. First, considerations are given in order to verify the theoretical expression for bound waves from observed data. We compare the contribution of bound waves and double Bragg scattering to the second-order scattering, and we show that the contribution of bound waves is larger, and that bound waves can be detected by measuring the Doppler spectra of HF (high-frequency) radio wave scattering from the sea surface. Moreover, if the theory of the HF radio wave scattering from the sea surface is verified, so is the second-order perturbation theory for bound waves. Then, the contributions of bound waves to ocean wave spectra are investigated on the basis of the nonlinear theory. The bound waves are shown to modify frequency spectra and wave directional distributions at higher frequencies, and it is shown that although the modifications of frequency spectra are smaller for a two-dimensional field case than for a one-dimensional field case, they are not negligible at higher frequencies. On the other hand, the modifications of wave directional distributions are shown to be significant at higher frequencies. These discussions become significant only when bound wave predictions are verified in the open ocean. Consequently, it is shown that nonlinearities of water waves are important in considering both radio wave scattering from the sea surface and the detailed structures of ocean wave spectra at high frequencies.  相似文献   

11.
12.
The problem of coherent reflection of an acoustic plane wave from a rough seabed with a randomly inhomogeneous sediment layer overlying a uniform elastic basement is considered in this analysis. The randomness of the sound field is attributable to the roughness of the seabed and the sound-speed perturbation in the sediment layer, resulting in a joint rough surface and volume scattering problem. An approach based upon perturbation theory, combined with a derived Green's function for a slab bounded above and below by a fluid and an elastic half-space, respectively, is employed to obtain an analytic solution for the coherent field in the sediment layer. Furthermore, a boundary perturbation theory developed by Kuperman and Schmidt (1989) is applied to treat the problem of rough surface scattering. A linear system is then established to facilitate the computation of the coherent reflection field. The coherent reflection coefficients for various surface roughness, sediment randomness, frequency, sediment thickness, and basement elasticity have been generated numerically and analyzed. It was found that the higher/larger size of surface and/or medium randomness, frequency, thickness, and shear-wave speed, the lower the coherent reflection. Physical interpretations of the various results are provided.  相似文献   

13.
The spatial statistics of the acoustic field in shallow water are strongly affected by interfacial roughness and volume fluctuations in the water column or the seabed. These features scatter energy, reducing the coherence of the acoustic field. This paper introduces a consistent, mode-based modeling framework for ocean scattering. First, the rough surface scattering theory of Kuperman and Schmidt is reformulated in terms of normal modes, resulting in computation times which are reduced by several orders of magnitude. Next, a perturbation theory describing scattering from sound speed and density fluctuations in acoustic media is developed. The scattering theories are combined with KRAKEN, creating a unified normal mode code for wave theory modeling of shallow-water spatial statistics. The scattered field statistics are found to be a complicated function of scattering mechanism, scatterer statistics, and acoustic environment. Bottom properties, including elasticity, strongly influence the scattered field  相似文献   

14.
We calibrated a sound velocimeter to a precision of plusmn0.034 m/s using Del Grosso's sound-speed equation for seawater at temperatures of 2, 7.2, 11.7, and 18degC in a tank of seawater of salinity 33.95 at one atmosphere. The sound velocimeter measures the time-of-flight of a 4-MHz acoustic pulse over a 20-cm path by adjusting the carrier frequency within a 70-kHz band until the pulse and its echo are inphase. We used the adjustable carrier frequency to determine the internal timing characteristics of the sound velocimeter to nanosecond precision. Similarly, sound-speed measurements at four different temperatures determined the acoustic pathlength to micrometer precision. The velocimeter was deployed in the ocean from the surface to 4500 dbar alongside conductivity, temperature, and pressure sensors (CTD). We demonstrated agreement of plusmn0.05 m/s (three parts in 105) with CTD-derived sound speed using Del Grosso's seawater equation from 500 to 4500 dbar after removing a bias and a trend  相似文献   

15.
This paper presents results of combined consideration of sound coherence and array signal processing in long-range deep-water environments. Theoretical evaluation of the acoustic signal mutual coherence function (MCF) of space for a given sound-speed profile and particular scattering mechanism is provided. The predictions of the MCF are employed as input data to investigate the coherence-induced effects on the horizontal and vertical array gains associated with linear and quadratic beamformers with emphasis on the optimal ones. A method of the radiation transport equation is developed to calculate the MCF of the multimode signal under the assumption that internal waves or surface wind waves are the main source of long-range acoustic fluctuations in a deep-water channel. Basic formulations of the array weight vectors and small signal deflection are then exploited to examine optimal linear and quadratic processors in comparison with plane-wave beamformers. For vertical arrays, particular attention is paid also to evaluation of the ambient modal noise factor. The numerical simulations are carried out for range-independent environments from the Northwest Pacific for a sound frequency of 250 Hz and distances up to 1000 km. It was shown distinctly that both signal coherence degradation and modal noise affect large-array gain, and these effects are substantially dependent on the processing technique used. Rough surface sound scattering was determined to cause the most significant effects  相似文献   

16.
The problem of coherent reflection of an acoustic plane wave from a seabed consisting of a randomly inhomogeneous sediment layer overlying a uniform elastic sea floor is considered in this analysis. The random perturbation in the sediment layer is attributable to the sound-speed variations, resulting in volume scattering due to medium inhomogeneities. An approach based upon perturbation theory, combining with a derived Green's function for a slab bounded above and below, respectively, by a fluid and an elastic half-space, is employed to obtain an analytic solution for the coherent field in the sediment layer. A linear system is then constructed to facilitate the computation of the coherent reflection field. The results of the coherent reflection coefficient for various sediment randomness, frequency, sediment thickness, and sea floor elasticity have been numerically generated and analyzed. It is found that the higher/larger the randomness, frequency, thickness, and shear-wave speed, the lower is the coherent reflection. Physical interpretations for the characteristics of the various results are provided.  相似文献   

17.
何英  汪嘉宁  王凡 《海洋与湖沼》2023,3(3):679-688
验证基于GM(Garret-Munk)大洋内波普适谱的细尺度参数化方案在不同海域的适用性,对于湍流混合研究来说非常重要。包含背景GM内波场的高分辨率数值模式被用于评估细尺度参数化方案在背风波生成源地处的适用性。细尺度参数化方案主要包括基于剪切的G89 (Gregg 1989)方案、基于应变的W93 (Wijesekera 1993)方案、基于剪切和应变的GHP (Gregg-Henyey-Polzin)方案以及对GHP方案中的频率矫正项作出变换的IH (Ijichi-Hibiya)方案。计算结果显示,背风波的生成伴随着海底上方近惯性内波的增强,使得内波场的动能与势能的比值相较于GM内波场偏大。在这种情况下,基于剪切的G89方案会因为高估内波场的总能量而高估耗散率。反之,基于应变的W93方案会因为低估内波场的总能量而低估耗散率。计算结果还显示,已经考虑了内波谱变形的GHP方案仍然会高估耗散率,但IH方案能比较准确地估算耗散率。  相似文献   

18.
An acoustic tomography simulation is carried out in the eastern North Pacific ocean to assess whether climate trends are better detected and mapped with mobile or fixed receivers. In both cases, acoustic signals from two stationary sources are transmitted to ten receivers. Natural variability of the sound-speed field is simulated with the Naval Research Laboratory (NRL) layered-ocean model. A sequential Kalman-Bucy filter is used to estimate the sound speed field, where the a priori error covariance matrix of the parameters is estimated from the NRL model. A spatially homogeneous climate trend is added to the NRL fluctuations of sound speed, but the trend is not parameterized in the Kalman filter. Acoustic travel times are computed between the sources and receivers by combining sound speeds from the NRL model with those from the unparameterized climate trend. The effects of the unparameterized climate trend are projected onto parameters which eventually drift beyond acceptable limits. At that time, the unparameterized trend is detected. Mobile and fixed receivers detect the trend at about the same time. At detection time, however, maps from fixed receivers are less accurate because some of the unparameterized climate trend is projected onto tile spatially varying harmonics of the sound-speed field. With mobile receivers, the synthetic apertures suppress the projection onto these harmonics. Instead, the unparametrized trend is correctly projected onto the spatially homogeneous portion of the parameterized sound-speed field  相似文献   

19.
2005年夏末、秋初在黄海南部进行一次多家联合海洋声学实验研究,主要目的是研究浅海内波(线形、非线性)及其海洋温度峰面对远距离声传播的起伏效应及其声学方法监测海洋新方法研究。文章综述这几年实验数据处理的一些结果。  相似文献   

20.
High-frequency (120 and 420 kHz) sound was used to survey sound scatterers in the water over Georges Bank. In addition to the biological sound scatterers (the plankton and micronekton), scattering associated with internal waves and suspended sediment was observed. Volume backscattering was more homogeneous in the vertical dimension (with occasional patches) in the shallow central portion of the Bank where there is significant mixing. In the deeper outer portion of the Bank where the water is stratified, volume backscattering was layered and internal waves modulated the vertical position of the layers in the pycnocline. The internal waves typically had amplitudes of 5-20 m, but sometimes much higher. Species composition and size data from samples of the animals and suspended sediment used in conjunction with acoustic scattering models revealed that throughout the region the animals generally dominate the scattering, but there are times and places where sand particles (suspended as high as up to the sea surface) can dominate. The source of the scattering in the internal waves is probably due to a combination of both animals and sound-speed microstructure. Determination of their relative contributions requires further study  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号