首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Results are first presented from an analysis of a global coupled climate model regarding changes in future mean and variability of south Asian monsoon precipitation due to increased atmospheric CO2 for doubled (2 × CO2) and quadrupled (4 × CO2) present-day amounts. Results from the coupled model show that, in agreement with previous studies, mean area-averaged south Asian monsoon precipitation increases with greater CO2 concentrations, as does the interannual variability. Mechanisms producing these changes are then examined in a series of AMIP2-style sensitivity experiments using the atmospheric model (taken from the coupled model) run with specified SSTs. Three sets of ensemble experiments are run with SST anomalies superimposed on the AMIP2 SSTs from 1979–97: (1) anomalously warm Indian Ocean SSTs, (2) anomalously warm Pacific Ocean SSTs, and (3) anomalously warm Indian and Pacific Ocean SSTs. Results from these experiments show that the greater mean monsoon precipitation is due to increased moisture source from the warmer Indian Ocean. Increased south Asian monsoon interannual variability is primarily due to warmer Pacific Ocean SSTs with enhanced evaporation variability, with the warmer Indian Ocean SSTs a contributing but secondary factor. That is, for a given interannual tropical Pacific SST fluctuation with warmer mean SSTs in the future climate, there is enhanced evaporation and precipitation variability that is communicated via the Walker Circulation in the atmosphere to the south Asian monsoon to increase interannual precipitation variability there. This enhanced monsoon variability occurs even with no change in interannual SST variability in the tropical Pacific.  相似文献   

2.
An atmospheric general circulation model, the NCAR CCM, has been used to investigate the possible effects that reduced Gulf of Mexico sea surface temperatures (SST) could have on regional and hemispheric climates. 18O records and terrestrial evidence indicate at least two major glacial meltwater discharges into the Gulf of Mexico subsequent to the last glacial maximum. It is probable that these discharges reduced Gulf of Mexico SST. We have conducted three numerical experiments, with imposed gulf-wide SST coolings of 3°C, 6°C, and 12°C, and find in all three experiments significant reductions in the North Atlantic storm-track intensity, along with a strong decrease in transient eddy water vapor transport out of the Gulf of Mexico. Surface pressures are higher over the North Atlantic, indicating a reduction of the climatological Icelandic low. The region is generally cooler and drier, with a reduction in precipitation that agrees well with evidence from Greenland ice cores. Other statistically significant changes occur across the Northern Hemisphere, but vary between the three experiments. In particular, warmer, wetter conditions are found over Europe for both the 6°C and 12°C SST reductions, but cooler conditions are found for the 3°C reduction. This indicates a dependence, in both the sign and magnitude of the model response, on the magnitude of the imposed SST anomaly. The results suggest that the present-day North Atlantic storm track is dependent on warm Gulf of Mexico SST for much of its intensity. They also suggest that meltwater-induced coolings may help account, in part, for some of the climatic oscillations that occurred during the last glacial/interglacial transition.  相似文献   

3.
This paper evaluates the performance of a coupled general circulation model FGOALS_s1.1 developed by LASG/IAP in simulating the annual modes of tropical precipitation.To understand the impacts of air-sea coupling on the annual modes,the result of an off-line simulation of the atmospheric component of FGOALS_s1.1,i.e.,LASG/IAP atmospheric general circulation model SAMIL,is also analyzed.FGOALS_s1.1 can reasonably reproduce major characteristics of the annual mean precipitation.Nonetheless,the coupled model shows overestimation of precipitation over the equatorial Pacific and tropical South Pacific,and underestimation of precipitation over the northern equatorial Pacific.The monsoon mode simulated by FGOALS_s1.1 shows an equatorial anti-symmetric structure,which is consistent with the observation.The bias of the coupled model in simulating monsoon mode resembles that of SAMIL,especially over the subtropics.The main deficiency of FGOALS_s1.1 is its failure in simulating the spring-fall asymmetric mode.This is attributed to the false phase of sea surface temperature anomaly (SSTA) annual cycleover the equatorial central-castern Pacific and Indian Ocean,which leads to the bias of the Walker circulation over the equatorial Pacific and the anti-Walker circulation over the Indian Ocean in boreal spring and fall.In addition,the domains of the western North Pacific monsoon and Indian monsoon simulated by the coupled model are smaller than the observation.The study suggests that the bias of the fully coupled oceanatmosphere model can only be partly attributed to the bias of the atmospheric component.The performance of FGOALS-s1.1 in simulating the annual cycle of equatorial SST deserves further improvement.  相似文献   

4.
Zhang  Honghai  Seager  Richard  He  Jie  Diao  Hansheng  Pascale  Salvatore 《Climate Dynamics》2021,56(11):4051-4074

How atmospheric and oceanic processes control North American precipitation variability has been extensively investigated, and yet debates remain. Here we address this question in a 50 km-resolution flux-adjusted global climate model. The high spatial resolution and flux adjustment greatly improve the model’s ability to realistically simulate North American precipitation, the relevant tropical and midlatitude variability and their teleconnections. Comparing two millennium-long simulations with and without an interactive ocean, we find that the leading modes of North American precipitation variability on seasonal and longer timescales exhibit nearly identical spatial and spectral characteristics, explained fraction of total variance and associated atmospheric circulation. This finding suggests that these leading modes arise from internal atmospheric dynamics and atmosphere-land coupling. However, in the fully coupled simulation, North American precipitation variability still correlates significantly with tropical ocean variability, consistent with observations and prior literature. We find that tropical ocean variability does not create its own type of atmospheric variability but excites internal atmospheric modes of variability in midlatitudes. This oceanic impact on North American precipitation is secondary to atmospheric impacts based on correlation. However, relative to the simulation without an interactive ocean, the fully coupled simulation amplifies precipitation variance over southwest North America (SWNA) during late spring to summer by up to 90%. The amplification is caused by a stronger variability in atmospheric moisture content that is attributed to tropical Pacific sea surface temperature variability. Enhanced atmospheric moisture variations over the tropical Pacific are transported by seasonal mean southwesterly winds into SWNA, resulting in larger precipitation variance.

  相似文献   

5.
Ruping Mo  Hai Lin 《大气与海洋》2013,51(3):208-232
ABSTRACT

A detailed analysis is performed on an inland-penetrating atmospheric river (AR) driven by and coupled to a Colorado cyclone in the first week of February 2016. This winter weather system was initiated by a trough of low pressure moving across the Rocky Mountains from the California coast. The low-level jet ahead of the trough was capable of extracting water vapour from the Gulf of Mexico to feed a cyclone on the lee side of the Rocky Mountaains, and the jet stream eventually transformed into a powerful AR. The warm, moist flow from the south produced a narrow band of heavy precipitation along the major axis of the AR across the central and eastern United States and generated significant freezing rain in parts of the northeastern United States and eastern Canada as the AR flowed over the warm front. It is suggested that, in an operational weather forecasting and warning environment, ARs can be easily identified by using the vertically integrated horizontal water vapour transport, and the major AR contribution to heavy precipitation can be estimated from the horizontal moisture convergence. It is demonstrated that the AR analysis in this case can assist operational meteorologists in understanding and conceptualizing winter storm development and the associated high-impact weather pattern. The operational predictability of this winter storm and its possible teleconnection with the Madden–Julian Oscillation (MJO) are also investigated. Our lagged composite analysis reveals that a statistically significant increase in water vapour transport from the Gulf of Mexico over the North American continent could occur about 10–20 days after the MJO-related convection anomaly reaches the tropical Indian Ocean.  相似文献   

6.
This study examines the oceanic and atmospheric variability over the Intra-American Seas (IAS) from a 32-year integration of a 15-km coupled regional climate model consisting of the Regional Spectral Model (RSM) for the atmosphere and the Regional Ocean Modeling System (ROMS) for the ocean. It is forced at the lateral boundaries by National Centers for Environmental Prediction-Department of Energy (NCEP-DOE R-2) atmospheric global reanalysis and Simplified Ocean Data Assimilation global oceanic reanalysis. This coupled downscaling integration is a free run without any heat flux correction and is referred as the Regional Ocean–Atmosphere coupled downscaling of global Reanalysis over the Intra-American Seas (ROARS). The paper examines the fidelity of ROARS with respect to independent observations that are both satellite based and in situ. In order to provide a perspective on the fidelity of the ROARS simulation, we also compare it with the Climate Forecast System Reanalysis (CFSR), a modern global ocean–atmosphere reanalysis product. Our analysis reveals that ROARS exhibits reasonable climatology and interannual variability over the IAS region, with climatological SST errors less than 1 °C except along the coastlines. The anomaly correlation of the monthly SST and precipitation anomalies in ROARS are well over 0.5 over the Gulf of Mexico, Caribbean Sea, Western Atlantic and Eastern Pacific Oceans. A highlight of the ROARS simulation is its resolution of the loop current and the episodic eddy events off of it. This is rather poorly simulated in the CFSR. This is also reflected in the simulated, albeit, higher variance of the sea surface height in ROARS and the lack of any variability in the sea surface height of the CFSR over the IAS. However the anomaly correlations of the monthly heat content anomalies of ROARS are comparatively lower, especially over the Gulf of Mexico and the Caribbean Sea. This is a result of ROARS exhibiting a bias of underestimation (overestimation) of high (low) clouds. ROARS like CFSR is also able to capture the Caribbean Low Level Jet and its seasonal variability reasonably well.  相似文献   

7.
Over the North East Asia, extreme anomalous precipitation were observed in 2013 and 2014. During 2013 summer the precipitation was found to be higher (two standard deviation) than the climatological mean of the region; whereas during 2014, which was a borderline El Niño year, precipitation was found to be lower (one standard deviation). To understand the differences of these two anomalous years the Global/Regional Integrated Model system (GRIMs) has been used. The study found that low land-surface temperature and high sea-surface temperature over ocean caused a smaller land-sea contrast of surface temperature between East Asia and North West Pacific Ocean in 2014, which could have caused an eastward shift of mean monsoon circulation in that year compared to the circulation in 2013. Due to a change in the lower level circulation and wind field over East Asia the evaporation and moisture transport patterns became very different in those two years. In 2013, this study found high latent heat flux over Eastern China, which implies an increased surface evaporation over that region, and the moisture transported to the north by the mean monsoon circulation; whereas, there was no correlated transport of moisture to the North East Asia during 2014. The precipitable water over North East Asia has a stronger correlation with the latent heat flux over southern land region than that from Ocean region in the eastern side in both the years. A new approach is proposed to estimate the sub-grid scale hydrometeors from GRIMs, overestimated in the existing model.  相似文献   

8.
郝立生  丁一汇  闵锦忠 《高原气象》2012,31(4):1007-1018
利用美国国家环境预报中心和国家大气研究中心(NCEP/NCAR)再分析环流资料、美国国家海洋和大气管理局(NOAA)重构的海温资料和中国国家气象信息中心(NMIC)整理的752个测站降水资料,对东亚地区季风环流季节演变主要模态及其与中国东部降水异常的关系进行了分析。结果表明,东亚地区850hPa季风环流季节演变存在两个主要模态,第一模态主要受热带印度洋海温和赤道东太平洋海温偏低背景下印度洋偶极(IOD)演变过程控制;第二模态主要受赤道东太平洋ENSO循环和IOD演变控制。对应第一模态,夏季华北多雨,长江流域少雨;对应第二模态,夏季华北、长江流域多雨,淮河、华南少雨。近50年两模态发生了明显改变,与降水变化有很好的对应关系。  相似文献   

9.
Grid transformation for incorporating the Arctic in a global ocean model   总被引:2,自引:0,他引:2  
A grid transformation is described which isolates the Arctic and North Atlantic, rotates the spherical grid to pass an equator up the Atlantic through the north pole and remaps the Coriolis parameter. Boundary condition information is exchanged along the equatorial Atlantic so that the Arctic-Atlantic model is dynamically coupled to a model of the rest of the global ocean (which remains on the geographic spherical grid). The transform produces a more regular grid over the Arctic and eliminates the need for filtering or special treatment at the pole. The transform has been implemented in the GFDL Modular Ocean Model. After testing with idealized geometry, a 300 y global integration is compared to an integration using the geographic spherical grid and Fourier filtering. Results are similar, with differences in the Arctic and western North Atlantic regions leading to smaller air-sea heat flux near the Gulf Stream separation latitude for the transform case. Use of the transform also leads to a reduction in computation time.  相似文献   

10.
气候系统模式FGOALS-s1.1对热带降水年循环模态的模拟   总被引:5,自引:0,他引:5  
张丽霞  周天军  吴波  包庆 《气象学报》2008,66(6):968-981
文中评估了中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室(LASG/IAP)新一代耦合气候模式Fgoals_s1.1对热带降水年循环模态的模拟能力。通过与观测表层海温(SST)强迫的大气模式SAMIL试验结果比较,分析了海气耦合过程对年循环模态模拟效果的影响。结果表明Fgoals_s1.1能合理再现热带地区降水年循环模态的基本特征。Fgoals_s1.1模拟出了年平均降水场中的主要降水中心,但模拟的赤道和南太平洋降水偏多,而北太平洋降水则偏少。Fgoals_s1.1的季风模态降水呈现与观测一致的关于赤道反对称的特征,其模拟偏差大部分来自大气分量,尤其是在赤道外。Fgoals_s1.1的主要缺陷在于它对春秋非对称模态模拟能力低于单独大气模式,这主要是由于耦合模式模拟的SST距平的年循环位相与观测相反。SST纬向梯度的位相偏差使得太平洋沃克环流和印度洋的反沃克环流在春季强于秋季,最终导致模拟的春秋非对称模态的偏差。Fgoals_s1.1模拟的季风区范围接近观测,存在的问题在于模拟的西北太平洋季风区、东亚季风区都偏小。本文结果表明,大气模式偏差仅是Fgoals_s1.1在降水年循环模态模拟上的偏差的部分来源,改进模式模拟的SST,特别是赤道地区SST季节循环,是今后Fgoals_s1.1发展过程中急需解决的问题。  相似文献   

11.
Gilles Bellon 《Climate Dynamics》2011,37(5-6):1081-1096
A simple coupled model is used in a zonally-symmetric configuration to investigate the effect of land?Catmosphere coupling on the Asian monsoon intraseasonal oscillation. The atmospheric model is a version of the Quasi-equilibrium Tropical Circulation Model with a prognostic atmospheric boundary layer, as well as two free-tropospheric modes in momentum, and one each in moisture and temperature. The land model is the simple one-layer model SLand. The complete nonlinear version and a linear version of the model are used to understand how land?Catmosphere interaction influences the northward-propagating intraseasonal oscillation that has been documented in the atmospheric model (Bellon and Sobel in J Geophys Res 113, 2008a, J Atmos Sci 65:470?C489, 2008b). Our results show that this interaction damps the intraseasonal variability in most cases. The small heat capacity of land surfaces is the main factor that intervenes directly in the dynamics of the intraseasonal oscillation and explains the damping of intraseasonal variability. But in a few peculiar cases, the small heat capacity of land can also cause a strong interaction between the intraseasonal oscillation and the mean state via the nonlinearity of precipitation, that enhances the monsoon intraseasonal variability. High land albedo indirectly influences the intraseasonal variability by setting the seasonal mean circulation to conditions unfavorable for the monsoon intraseasonal oscillation.  相似文献   

12.
Using the regional climate model RegCM4.4.5, coupled with the land model CLM4.5, we investigated the effects of springtime soil moisture in the Indochina Peninsula on summer precipitation over the South China Sea and its surrounding areas in 1999. Results have indicated that there exists positive correlation between soil moisture and summer precipitation over the western Pacific Ocean and negative correlation between soil moisture and summer precipitation over the eastern Indian Ocean. Summer precipitation in the South China Sea and its surrounding areas responds to springtime soil moisture in the Indochina Peninsula (the northwest region is critical) because general atmospheric circulation is sensitive to the near-surface thermodynamic state. Increased (decreased) soil moisture would result in decreased (increased) local surface temperatures. Latitudinal, small-scale land–sea thermal differences would then result in northeasterly wind (southwesterly wind) anomalies in the upper layer and southwesterly wind (northeasterly wind) anomalies in the lower layer, which strengthen (weaken) monsoon development. As a result, precipitation would enter the Western Pacific region earlier (later), and water vapor over the eastern Indian Ocean would enter the South China Sea earlier (later), causing a precipitation reduction (increase) in the eastern Indian Ocean and increase (reduction) in the Western Pacific.  相似文献   

13.
The impact of increased greenhouse gases (GHG) and aerosols concentrations upon the West African monsoon (WAM) is investigated for the late twenty-first century period using the Météo-France ARPEGE-IFS high-resolution atmospheric model. Perturbed (2070–2100) and current (1961–2000) climates are compared using the model in time-slice mode. The model is forced by global sea surface temperatures provided by two transient scenarios performed with low-resolution coupled models and by two GHG evolution scenarios, SRES-A2 and SRES-B2. Comparing to reanalysis and observed data sets, the model is able to reproduce a realistic seasonal cycle of WAM despite a clear underestimation of the African Easterly Jet (AEJ) during the boreal summer. Mean temperature change indicates a global warming over the continent (stronger over North and South Africa). Simulated precipitation change at the end of the twenty-first century shows an increase in precipitation over Sudan-Sahel linked to a strong positive feedback with surface evaporation. Along Guinea Gulf coast, rainfall regimes are driven by large-scale moisture advection. Moreover, results show a mean precipitation decrease (increase) in the most (less) enhanced GHG atmosphere over this region. Modification of the seasonal hydrological cycle consists in a rain increase during the monsoon onset. There is a significant increase in rainfall variance over the Sahel, which extends over the Guinea coast region in the moderate emission scenario. Enhanced precipitation over Sahel is linked to large-scale circulation changes, namely a weakening of the AEJ and an intensification of the Tropical Easterly Jet.  相似文献   

14.
New estimates of the moistening of the atmosphere through evaporation at the surface and of the drying through precipitation are computed. Overall, the e-folding residence time of atmospheric moisture is just over 8 days. New estimates are also made of how much moisture that precipitates out comes from horizontal transport versus local evaporation, referred to as recycling. The results depend greatly on the scale of the domain under consideration and global maps of the recycling for annual means are produced for 500 km scales for which global recycling is 9.6%, consisting of 8.9% over land and 9.9% over the oceans. Even for 1000 km scales, less than 20% of the annual precipitation typically comes from evaporation within the domain. While average overall atmospheric moisture depletion and restoration must balance, precipitation falls only a small fraction of the time. Thus precipitation rates are also examined. Over the United States, one hour intervals with 0.1 mm or more are used to show that the frequency of precipitation ranges from over 30% in the Northwest, to about 20% in the Southeast and less than 4% just east of the continental divide in winter, and from less than 2% in California to over 20% in the Southeast in summer. In midlatitudes precipitation typically falls about 10% of the time, and so rainfall rates, conditional on when rain is falling, are much larger than evaporation rates. The mismatches in the rates of rainfall versus evaporation imply that precipitating systems of all kinds feed mostly on the moisture already in the atmosphere. Over North America, much of the precipitation originates from moisture advected from the Gulf of Mexico and subtropical Atlantic or Pacific a day or so earlier. Increases in greenhouse gases in the atmosphere produce global warming through an increase in downwelling infrared radiation, and thus not only increase surface temperatures but also enhance the hydrological cycle, as much of the heating at the surface goes into evaporating surface moisture. Global temperature increases signify that the water-holding capacity of the atmosphere increases and, together with enhanced evaporation, this means that the actual atmospheric moisture should increase. It follows that naturally-occurring droughts are likely to be exacerbated by enhanced potential evapotranspiration. Further, globally there must be an increase in precipitation to balance the enhanced evaporation but the processes by which precipitation is altered locally are not well understood. Observations confirm that atmospheric moisture is increasing in many places, for example at a rate of about 5% per decade over the United States. Based on the above results, we argue that increased moisture content of the atmosphere therefore favors stronger rainfall or snowfall events, thus increasing risk of flooding, which is a pattern observed to be happening in many parts of the world. Moreover, because there is a disparity between the rates of increase of atmospheric moisture and precipitation, there are implied changes in the frequency of precipitation and/or efficiency of precipitation (related to how much moisture is left behind in a storm). However, an analysis of linear trends in the frequency of precipitation events for the United States corresponding to thresholds of 0.1 and 1 mm/h shows that the most notable statistically significant trends are for increases in the southern United States in winter and decreases in the Pacific Northwest from November through January, which may be related to changes in atmospheric circulation and storm tracks associated with El Niño–Southern Oscillation trends. It is suggested that as the physical constraints on precipitation apply only globally, more attention should be paid to rates in both observations and models as well as the frequency of occurrence.  相似文献   

15.
This study examines the ability of Community Atmosphere Model (CAM) and Community Climate System Model (CCSM) to simulate the Asian summer monsoon, focusing particularly on inter-model comparison and the role of air–sea interaction. Two different versions of CAM, namely CAM4 and CAM5, are used for uncoupled simulations whereas coupled simulations are performed with CCSM4 model. Ensemble uncoupled simulations are performed for a 30 year time period whereas the coupled model is integrated for 100 years. Emphasis is placed on the simulation of monsoon precipitation by analyzing the interannual variability of the atmosphere-only simulations and sea surface temperature bias in the coupled simulation. It is found that both CAM4 and CAM5 adequately simulated monsoon precipitation, and considerably reduced systematic errors that occurred in predecessors of CAM4, although both tend to overestimate monsoon precipitation when compared with observations. The onset and cessation of the precipitation annual cycle, along with the mean climatology, are reasonably well captured in their simulations. In terms of monsoon interannual variability and its teleconnection with SST over the Pacific and Indian Ocean, both CAM4 and CAM5 showed modest skill. CAM5, with revised model physics, has significantly improved the simulation of the monsoon mean climatology and showed better skill than CAM4. Using idealized experiments with CAM5, it is seen that the adoption of new boundary layer schemes in CAM5 contributes the most to reduce the monsoon overestimation bias in its simulation. In the CCSM4 coupled simulations, several aspects of the monsoon simulation are improved by the inclusion of air–sea interaction, including the cross-variability of simulated precipitation and SST. A significant improvement is seen in the spatial distribution of monsoon mean climatology where a too-heavy monsoon precipitation, which occurred in CAM4, is rectified. A detailed investigation of this significant precipitation reduction showed that the large systematic cold SST errors in the Northern Indian Ocean reduces monsoon precipitation and delays onset by weakening local evaporation. Sensitivity experiments with CAM4 further confirmed these results by simulating a weak monsoon in the presence of cold biases in the Northern Indian Ocean. It is found that although the air–sea coupling rectifies the major weaknesses of the monsoon simulation, the SST bias in coupled simulations induces significant differences in monsoon precipitation. The overall simulation characteristics demonstrate that although the new model versions CAM4, CAM5 and CCSM4, are significantly improved, they still have major weaknesses in simulating Asian monsoon precipitation.  相似文献   

16.
Various paleoclimate records have shown that the Asian monsoon was punctuated by numerous suborbital time-scale events, and these events were coeval with those that happened in the North Atlantic. This study investigates the Asian summer monsoon responses to the Atlantic Ocean forcing by applying an additional freshwater flux into the North Atlantic. The simulated results indicate that the cold North Atlantic and warm South Atlantic induced by the weakened Atlantic thermohaline circulation (THC) due to the freshwater flux lead to significantly suppressed Asian summer monsoon. The authors analyzed the detailed processes of the Atlantic Ocean forcing on the Asian summer monsoon, and found that the atmospheric teleconnection in the eastern and central North Pacific and the atmosphere-ocean interaction in the tropical North Pacific play the most crucial role. Enhanced precipitation in the subtropical North Pacific extends the effects of Atlantic Ocean forcing from the eastern Pacific into the western Pacific, and the atmosphere-ocean interaction in the tropical Pacific and Indian Ocean intensifies the circulation and precipitation anomalies in the Pacific and East Asia.  相似文献   

17.
Future projections of the Indian summer monsoon rainfall (ISMR) and its large-scale thermodynamic driver are studied by using CMIP5 model outputs. While all models project an increasing precipitation in the future warming scenario, most of them project a weakening large-scale thermodynamic driver arising from a weakening of the upper tropospheric temperature (UTT) gradient over south Asian summer monsoon region. The weakening of the UTT gradient under global warming scenarios is related to the increase in sea surface temperature (SST) over the equatorial Indian Ocean (EIO) leading to a stronger increase of UTT over the EIO region relative to the northern Indian region, a hypothesis supported by a series of Atmospheric General Circulation Model (AGCM) experiments forced by projected SSTs. To diagnose the inconsistency between the model projections of precipitation and the large-scale thermodynamic driver, we have examined the rate of total precipitation explained by convective and stratiform precipitations in observations and in CMIP5 models. It is found that most models produce too much (little) convective (stratiform) precipitation compared to observations. In addition, we also find stronger precipitable water—precipitation relationship in most CMIP5 models as compared to observations. Hence, the atmospheric moisture content produced by the model immediately gets converted to precipitation even though the large-scale thermodynamics in models weaken. Therefore, under global warming scenarios, due to increased temperature and resultant increased atmospheric moisture supply, these models tend to produce unrealistic local convective precipitation often not in tune with other large-scale variables. Our results questions the reliability of the ISMR projections in CMIP5 models and highlight the need to improve the convective parameterization schemes in coupled models for the reliable projections of the ISMR.  相似文献   

18.
We explore climate-vegetation interactions in mid-Holocene North Africa with a suite of community climate system model (CCSM2) simulations. The CCSM includes synchronously coupled atmosphere, ocean, sea ice, land, and vegetation models. The CCSMs present-day precipitation for North Africa compares well with simulations of other models and observations. Mid-Holocene data reveal a wetter and greener Sahara compared to the present. The CCSM exhibits a greater, closer to the expected, precipitation increase than other models, and in response, grasses advance from 18.75° to 22.5°N in much of North Africa. Precipitation is enhanced locally by the northward advance of grasses, but suppressed regionally mainly due to an insufficient albedo decrease with the expansion of vegetation. Prior studies have always lowered the surface albedo with the expansion of vegetation in North Africa. In the CCSMs mid-Holocene simulations, the albedo decreases more because wetter soils are simulated darker than drier soils than due to expanding vegetation. These results isolate albedo as the key ingredient in obtaining a positive precipitation-vegetation feedback in North Africa. Two additional simulations support this conclusion. In the first simulation, the deserts sandy soil textures are changed to loam to represent increased organic matter. Soil water retention and grass cover increase; albedo decreases somewhat. Precipitation responds with a small, yet widespread, increase. In the second simulation, a darker soil color is prescribed for this region. Now the monsoon advances north about 4°. These results illustrate a North African monsoon highly sensitive to changes in surface albedo and less sensitive to changes in evapotranspiration.  相似文献   

19.
区域海气耦合模式对中国夏季降水的模拟   总被引:8,自引:0,他引:8  
姚素香  张耀存 《气象学报》2008,66(2):131-142
以区域气候模式RegCM3和普林斯顿海洋模式POM为基础,建立了一个区域海气耦合模式,对1963-2002年中国夏季气候进行模拟,重点分析该耦合模式对中国夏季降水的模拟性能以及降水模拟改进的可能原因.结果表明:耦合模式对中国夏季雨带分布的模拟明显优于控制试验(单独的大气模式),对长江流域以及华南降水的模拟性能改进尤为明显,同时耦合模式能够更为真实地刻画中国东部地区汛期雨带的移动.对降水的年际变化分析发现,耦合模式模拟的1963-2002年中国夏季降水年际变率与观测吻合,模拟的夏季长江流域降水与观测降水相关系数达到0.48,模拟的华南夏季降水与观测的相关系数达到0.61,而控制试验结果与观测降水的相关系数均较小.对中国东部长江流域夏季降水与近海海温的相关分析表明,用给定海温驱动的大气模式,并不能正确模拟出中国东部夏季降水与海温的关系,而耦合模式能够较好地模拟出长江流域与孟加拉湾、南海以及黑潮区海温的关系,与GISST(全球海冰和海表温度)和观测降水相关关系一致.对水汽输送通量的分析发现,控制试验模拟的水汽输送路径与NCEP/NCAR再分析资料相比差别较大,耦合模式模拟的来自海洋上的水汽输送强度和路径与NCEP/NCAR再分析资料一致,提高了耦合模式对水汽输送的模拟能力,从而改善了模式对华南以及长江流域降水的模拟.  相似文献   

20.
Global monsoons in the mid-Holocene and oceanic feedback   总被引:10,自引:3,他引:10  
The response of the six major summer monsoon systems (the North American monsoon, the northern Africa monsoon, the Asia monsoon, the northern Australasian monsoon, the South America monsoon and the southern Africa monsoon) to mid-Holocene orbital forcing has been investigated using a coupled ocean–atmosphere general circulation model (FOAM), with the focus on the distinct roles of the direct insolation forcing and oceanic feedback. The simulation result is also found to compare well with the NCAR CSM. The direct effects of the change in insolation produce an enhancement of the Northern Hemisphere monsoons and a reduction of the Southern Hemisphere monsoons. Ocean feedbacks produce a further enhancement of the northern Africa monsoon and the North American monsoon. However, ocean feedbacks appear to weaken the Asia monsoon, although the overall effect (direct insolation forcing plus ocean feedback) remains a strengthened monsoon. The impact of ocean feedbacks on the South American and southern African monsoons is relatively small, and therefore these regions, especially the South America, experienced a reduced monsoon regime compared to present. However, there is a strong ocean feedback on the northern Australian monsoon that negates the direct effects of orbital changes and results in a strengthening of austral summer monsoon precipitation in this region. A new synthesis is made for mid-Holocene paleoenvironmental records and is compared with the model simulations. Overall, model simulations produce changes in regional climates that are generally consistent with paleoenvironmental observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号