首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   0篇
  国内免费   4篇
大气科学   3篇
地质学   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2016年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Using the regional climate model RegCM4.4.5, coupled with the land model CLM4.5, we investigated the effects of springtime soil moisture in the Indochina Peninsula on summer precipitation over the South China Sea and its surrounding areas in 1999. Results have indicated that there exists positive correlation between soil moisture and summer precipitation over the western Pacific Ocean and negative correlation between soil moisture and summer precipitation over the eastern Indian Ocean. Summer precipitation in the South China Sea and its surrounding areas responds to springtime soil moisture in the Indochina Peninsula (the northwest region is critical) because general atmospheric circulation is sensitive to the near-surface thermodynamic state. Increased (decreased) soil moisture would result in decreased (increased) local surface temperatures. Latitudinal, small-scale land–sea thermal differences would then result in northeasterly wind (southwesterly wind) anomalies in the upper layer and southwesterly wind (northeasterly wind) anomalies in the lower layer, which strengthen (weaken) monsoon development. As a result, precipitation would enter the Western Pacific region earlier (later), and water vapor over the eastern Indian Ocean would enter the South China Sea earlier (later), causing a precipitation reduction (increase) in the eastern Indian Ocean and increase (reduction) in the Western Pacific.  相似文献   
2.
含Ti硅酸盐玻璃在基础科学研究和应用技术开发上均有重要价值,亟需对其进行准确的成分分析,为进一步的科研工作提供重要的数据支撑.对玻璃进行电子探针分析时,由于样品的易损性和其中(Na和K)阳离子在电子束轰击下极易发生迁移和扩散,因此往往需要经过条件实验来确定合适的分析条件,确保样品在该条件下能够保持尽量稳定的状态,才能获...  相似文献   
3.
We set four sets of simulation experiments to explore the impacts of horizontal resolution (HR) and vertical resolution (VR) on the microphysical structure and boundary layer fluxes of tropical cyclone (TC) Hato (2017). The study shows that higher HR tends to strengthen TC. Increasing VR in the upper layers tends to weaken TC, while increasing VR in the lower layers tends to strengthen TC. Simulated amounts of all hydrometeors were larger with higher HR. Increasing VR at the upper level enhanced the mixing ratios of cloud ice and cloud snow, while increasing VR at the lower level elevated the mixing ratios of graupel and rainwater. HR has greater impact on the distributions of hydrometeors. Higher HR has a more complete ring structure of the eyewall and more concentrated hydrometeors along the cloud wall. Increasing VR at the lower level has little impact on the distribution of TC hydrometeors, while increasing VR at the upper level enhances the cloud thickness of the eyewall area. Surface latent heat flux (SLHF) is influenced greatly by resolution. Higher HR leads to larger water vapor fluxes and larger latent heat, which would result in a stronger TC. A large amount of false latent heat was generated when HR was too high, leading to an extremely strong TC, VR has a smaller impact on SLHF than HR. But increasing VR at the upper-level reduces the SLHF and weakens TC, and elevating VR at the lower-level increases the SLHF and strengthens TC. The changes in surface water vapor flux and SLHF were practically identical and the simulation results were improved when HR and VR were more coordinated. The friction velocity was greater with higher VR. Enhancing VR at the lower level increased the friction velocity, while increasing VR at the upper level reduced it.  相似文献   
4.
We analyzed cloud microphysical processes’ latent heat characteristics and their influence on an autumn heavy rain event over Hainan Island, China, using the mesoscale numerical model WRF and WRF-3DVAR system. We found that positive latent heat occurred far above the zero layer, while negative latent heat occurred mainly under the zero layer. There was substantially more positive latent heat than negative latent heat, and the condensation heating had the most important contribution to the latent heat increase. The processes of deposition, congelation, melting and evaporation were all characterized by weakening after their intensification; however, the variations in condensation and sublimation processes were relatively small. The main cloud microphysical processes for positive latent heat were condensation of water vapor into cloud water, the condensation of rain, and the deposition increase of cloud ice, snow and graupel. The main cloud microphysical processes for negative latent heat were the evaporation of rain, the melting and enhanced melting of graupel. The latent heat releases due to different cloud microphysical processes have a significant impact on the intensity of precipitation. Without the condensation and evaporation of rain, the total latent heating would decrease and the moisture variables and precipitation would reduce significantly. Without deposition and sublimation, the heating in high levels would decrease and the precipitation would reduce. Without congelation and melting, the latent heating would enhance in the low levels, and the precipitation would reduce.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号