首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《China Geology》2022,5(4):555-578
The eastern Central Asian Orogenic Belt (CAOB) in NE China is a key area for investigating continental growth. However, the complexity of its Paleozoic geological history has meant that the tectonic development of this belt is not fully understood. NE China is composed of the Erguna and Jiamusi blocks in the northern and eastern parts and the Xing’an and Songliao-Xilinhot accretionary terranes in the central and southern parts. The Erguna and Jiamusi blocks have Precambrian basements with Siberia and Gondwana affinities, respectively. In contrast, the Xing ’an and Songliao-Xilinhot accretionary terranes were formed via subduction and collision processes. These blocks and terranes were separated by the Xinlin-Xiguitu, Heilongjiang, Nenjiang, and Solonker oceans from north to south, and these oceans closed during the Cambrian (ca. 500 Ma), Late Silurian (ca. 420 Ma), early Late Carboniferous (ca. 320 Ma), and Late Permian to Middle Triassic (260 –240 Ma), respectively, forming the Xinlin-Xiguitu, Mudanjiang-Yilan, Hegenshan-Heihe, Solonker-Linxi, and Changchun-Yanji suture zones. Two oceanic tectonic cycles took place in the eastern Paleo-Asian Ocean (PAO), namely, the Early Paleozoic cycle involving the Xinlin-Xiguitu and Heilongjiang oceans and the late Paleozoic cycle involving the Nenjiang-Solonker oceans. The Paleozoic tectonic pattern of the eastern CAOB generally shows structural features that trend east-west. The timing of accretion and collision events of the eastern CAOB during the Paleozoic youngs progressively from north to south. The branch ocean basins of the eastern PAO closed from west to east in a scissor-like manner. A bi-directional subduction regime dominated during the narrowing and closure process of the eastern PAO, which led to “soft collision” of tectonic units on each side, forming huge accretionary orogenic belts in central Asia.©2022 China Geology Editorial Office.  相似文献   

2.
为了研究东昆仑南缘布青山复合增生型构造混杂岩带的物质组成、构造属性及形成演化历史,在前人资料基础上从构造混杂岩带物质组成、形成时代、构造属性等方面对其进行综合研究.研究结果表明,布青山复合增生型构造混杂岩带是一条分隔东昆仑造山带与巴颜喀拉造山带的增生型构造边界,主要由元古代-古生代不同构造属性的大型构造混杂岩块与混杂基质组成.构造混杂岩块包括中元古代中深变质基底岩块(苦海岩群)、寒武纪蛇绿岩岩块、奥陶纪蛇绿岩岩块、石炭纪蛇绿岩岩块、石炭纪洋岛/海山玄武岩岩块、奥陶纪中酸性弧岩浆岩岩块、格曲组磨拉石沉积等.基质岩系主要为一套强烈构造变形的早中二叠世马尔争组浊积岩系.该混杂岩带记录了东昆仑南缘布青山地区东特提斯洋(布青山洋)自新元古代晚期开启以来,从晚寒武世-中三叠世长期持续向北的洋壳消减及俯冲增生过程,并于中三叠世晚期布青山洋消减完毕而使巴颜喀拉地块与东昆仑地块碰撞拼合.该次造山事件导致了不同类型、不同时代构造岩块与马尔争组浊积岩强烈混杂,最终形成了布青山复合增生型构造混杂岩的基本构造格架.   相似文献   

3.
This paper summaries tectonic settings and mineral parageneses of several recognized ultrahigh-pressure (UHP) terranes other than the well-studied Kokchetav Massif of northern Kazakhstan, the Western Gneiss Region of Norway, the Dora-Maira massif of the Western Alps, and the Dabie-Sulu terrane of east-central China. Diamond-bearing terranes include the Beni Bousera/Ronda peridotite massif, the Erzgebirge Crystalline Complex, mantle peridotite from a Tibetan ophiolite, and possibly the Maksyutov Complex. Coesite-bearing UHP terranes are the Zermatt-Saas area, Western Alps; the Mali eclogites from West Africa; the Makabal complex of western Tien Shan; the Bohemian massif; and the newly reported Central Indonesia terrane and Himalayan eclogites from the upper Kaghan Valley of Pakistan. Except for the diamond-bearing Tibetan ophiolite, most UHP terranes share similar petrotectonic assemblages and lie within major continental collision belts in Eurasia and Africa. Using new approaches (including new geobarometers) and technologies, additional UHP terranes are expected to be recognized in other Phanenorozic orogenic sutures.  相似文献   

4.
Tectonics of Northeast Asia: An overview   总被引:1,自引:0,他引:1  
The tectonic units of the Verkhoyansk-Chukotka Mesozoides and the Koryak-Kamchatka Fold Region substantially differ from each other in the structure and composition of terranes. The geodynamic settings of terrane formation are defined and the main stages of their tectonic history are reconstructed. The formation of Mesozoides was mainly controlled by collision, largely between the continent and the Kolyma-Omolon and Chukchi microcontinents. The accretionary structure of the Koryak Highland comprises various terranes transported by Pacific plates and docked to the Asian continent, periodically accreting its margin. The following evolutionary stages are established: destruction of the North Asian continent (Ordovician, Late Devonian-Early Carboniferous, Permian-Triassic); amalgamation (Middle Jurassic for Kolyma and Mid-Cretaceous for Koryak terranes); collision (terminal Early Cretaceous); and continental growth (terminal Early Cretaceous, terminal Late Cretaceous, middle Eocene).  相似文献   

5.
The geology of Cretaceous accretionary–collision complexes in central Indonesia is reviewed in this paper. The author and his colleagues have investigated the Cretaceous accretionary–collision complexes by means of radiolarian biostratigraphy and metamorphic petrology, as well as by geological mapping. The results of their work has revealed aspects of the tectonic development of the Sundaland margin in Cretaceous time. The Cretaceous accretionary–collision complexes are composed of various tectonic units formed by accretionary or collision processes, forearc sedimentation, arc volcanism and back arc spreading. The tectonic units consist of chert, limestone, basalt, siliceous shale, sandstone, shale, volcanic breccia, conglomerate, high P/T and ultra high P metamorphic rocks and ultramafic rocks (dismembered ophiolite). All these components were accreted along the Cretaceous convergent margin of the Sundaland Craton. In the Cretaceous, the southeastern margin of Sundaland was surrounded by a marginal sea. An immature volcanic arc was developed peripherally to this marginal sea. An oceanic plate was being subducted beneath the volcanic arc from the south. The oceanic plate carried microcontinents which were detached fragments of Gondwanaland. Oceanic plate subduction caused arc volcanism and formed an accretionary wedge. The accretionary wedge included fragments of oceanic crust such as chert, siliceous shale, limestone and pillow basalt. A Jurassic shallow marine allochthonous formation was emplaced by the collision of continental blocks. This collision also exhumed very high and ultra-high pressure metamorphic rocks from the deeper part of the pre-existing accretionary wedge. Cretaceous tectonic units were rearranged by thrusting and lateral faulting in the Cenozoic era when successive collision of continental blocks and rotation of continental blocks occurred in the Indonesian region.  相似文献   

6.
The structure and tectonic position of the Neoproterozoic Central Taimyr accretionary belt of northwestern Siberia is dominated by the Faddey and Mamont-Shrenk granite-gneiss terranes, ophiolites, and back-arc volcanic rocks. Granites in the granite-gneiss terranes are S-type and formed between 900 and 850 Ma from 1.9 to 1.8 Ga continental crust. U–Pb and Sm–Nd isotopic studies show that the plagiogranites of the Chelyuskin ophiolite belt formed between 850 and 740 Ma. The ophiolite complex was metamorphosed to garnet amphibolite grade around 600 Ma, which is considered to be when the accretionary belt was obducted onto the Siberian continent. Comparison of principal structures of the Central Taimyr accretionary belt with similar structures in Arctic countries permits definition of the principal stages of the Neoproterozoic destruction of the supercontinent Rodinia, in the Arctic region.  相似文献   

7.
Plate tectonic theory predicts that most deformation is associated with subduction and terrane accretion, with some deformation associated with transform/transcurrent movements. Deformation associated with subduction varies between two end members: (1) where the tectonic regime is dominated by subduction of oceanic lithosphere containing small terranes, a narrow surface zone of accretionary deformation along the subduction zone starts diachronously on the subducting plate at the trench as material is transferred from the subducting plate to the over-riding plate; and (2) where continent-continent collision is occurring, a wide surface zone of accretionary deformation starts synchronously or with limited diachronism. Palaeozoic deformational events in the Canadian Appalachians correspond to narrow diachronous events in the Ordovician and Silurian, whereas Devonian, Carboniferous and Permian deformational events are widespread and broadly synchronous. Along the western side of the Canadian Appalachians, the Taconian deformational event starts diachronously throughout the Ordovician and corresponds to the north-north-west accretion of the Notre Dame, Ascot-Weedon, St Victor and various ophiolitic massifs (volcanic arc and peri-arc terranes) over cratonic North America. Within the eastern half of the Central Mobile Belt, the Late Cambrian-Early Ordovician Penobscotian deformational event corresponds to the ?south-easterly accretion of the Exploits subzone (various volcanic are and peri-arc terranes) over the Gander Zone (?continental rise). In the centre of the orogen, the Late Ordovician-Silurian Beothukan deformational event corresponds to the south-easterly accretion of the Notre Dame over the Exploits-Gander subzones. Along the south-eastern side of the Central Mobile Belt, the Silurian Ganderian deformational event corresponds to the north-north-east, sinistral transcurrent accretion of the Avalon Composite Terrane (microcontinent) over the Gander-Exploits zones. Along the south-eastern half of the orogen, the Late Silurian-Middle Devonian Acadian deformation event corresponds to the westerly accretion of the Meguma terrane (intradeep or continental rise) over the Avalon Composite Terrane. Affecting the entire orogen, the Late Devonian, Carboniferous and Permian, Acadian-Alleghanian deformational events correspond to the east-west convergence between Laurentia and Gondwana (continent-continent collision).  相似文献   

8.
秦岭的大地构造演化   总被引:53,自引:9,他引:53       下载免费PDF全文
一项中瑞合作研究成果表明,中国秦岭属碰撞型造山带。秦岭是在中生代造山运动早期由华北大陆板块与扬子大陆板块碰撞而成。原存于两大板块之间的古特提斯洋在泥盆纪时即已开始消减,仅部分洋壳残余于碰撞混杂岩中。  相似文献   

9.
East and Southeast Asia comprises a complex assembly of allochthonous continental lithospheric crustal fragments (terranes) together with volcanic arcs, and other terranes of oceanic and accretionary complex origins located at the zone of convergence between the Eurasian, Indo-Australian and Pacific Plates. The former wide separation of Asian terranes is indicated by contrasting faunas and floras developed on adjacent terranes due to their prior geographic separation, different palaeoclimates, and biogeographic isolation. The boundaries between Asian terranes are marked by major geological discontinuities (suture zones) that represent former ocean basins that once separated them. In some cases, the ocean basins have been completely destroyed, and terrane boundaries are marked by major fault zones. In other cases, remnants of the ocean basins and of subduction/accretion complexes remain and provide valuable information on the tectonic history of the terranes, the oceans that once separated them, and timings of amalgamation and accretion. The various allochthonous crustal fragments of East Asia have been brought into close juxtaposition by geological convergent plate tectonic processes. The Gondwana-derived East Asia crustal fragments successively rifted and separated from the margin of eastern Gondwana as three elongate continental slivers in the Devonian, Early Permian and Late Triassic–Late Jurassic. As these three continental slivers separated from Gondwana, three successive ocean basins, the Palaeo-Tethys,. Meso-Tethys and Ceno-Tethys, opened between these and Gondwana. Asian terranes progressively sutured to one another during the Palaeozoic to Cenozoic. South China and Indochina probably amalgamated in the Early Carboniferous but alternative scenarios with collision in the Permo–Triassic have been suggested. The Tarim terrane accreted to Eurasia in the Early Permian. The Sibumasu and Qiangtang terranes collided and sutured with Simao/Indochina/East Malaya in the Early–Middle Triassic and the West Sumatra terrane was transported westwards to a position outboard of Sibumasu during this collisional process. The Permo–Triassic also saw the progressive collision between South and North China (with possible extension of this collision being recognised in the Korean Peninsula) culminating in the Late Triassic. North China did not finally weld to Asia until the Late Jurassic. The Lhasa and West Burma terranes accreted to Eurasia in the Late Jurassic–Early Cretaceous and proto East and Southeast Asia had formed. Palaeogeographic reconstructions illustrating the evolution and assembly of Asian crustal fragments during the Phanerozoic are presented.  相似文献   

10.
The continental growth mechanism of the Altaids in Central Asia is still in controversy between models of continuous subduction–accretion versus punctuated accretion by closure of multiple oceanic basins. The Beishan orogenic belt, located in the southern Altaids, is a natural laboratory to address this controversy. Key questions that are heavily debated are: the closure time and subduction polarity of former oceans, the emplacement time of ophiolites, and the styles of accretion and collision. This paper reports new structural data, U- Pb and Ar–Ar ages from the eastern Beishan orogen that provide information on the accretion process and tectonic affiliation of various terranes. Our geochronological and structural results show that the younging direction of accretion was northwards and the subduction zone dipped southwards under the northern margin of the Shuangyingshan micro-continent. This long-lived and continuous accretion process formed the Hanshan accretionary prism. Our field investigations show that the emplacement of the Xiaohuangshan ophiolite was controlled by oceanic crust subduction beneath the forearc accretionary prism of the Shuangyingshan–Mazongshan composite arc to the south. Moreover, we address the age and terrane affiliation of lithologies in the eastern Beishan orogen through detrital zircon geochronology of meta-sedimentary rocks. We provide new information on the ages, subduction polarities, and affiliation of constituent structural units, as well as a new model of tectonic evolution of the eastern Beishan orogen. The accretionary processes and crustal growth of Central Asia were the result of multiple sequences of accretion and collision of manifold terranes.  相似文献   

11.
Present-day Asia comprises a heterogeneous collage of continental blocks, derived from the Indian–west Australian margin of eastern Gondwana, and subduction related volcanic arcs assembled by the closure of multiple Tethyan and back-arc ocean basins now represented by suture zones containing ophiolites, accretionary complexes and remnants of ocean island arcs. The Phanerozoic evolution of the region is the result of more than 400 million years of continental dispersion from Gondwana and plate tectonic convergence, collision and accretion. This involved successive dispersion of continental blocks, the northwards translation of these, and their amalgamation and accretion to form present-day Asia. Separation and northwards migration of the various continental terranes/blocks from Gondwana occurred in three phases linked with the successive opening and closure of three intervening Tethyan oceans, the Palaeo-Tethys (Devonian–Triassic), Meso-Tethys (late Early Permian–Late Cretaceous) and Ceno-Tethys (Late Triassic–Late Cretaceous). The first group of continental blocks dispersed from Gondwana in the Devonian, opening the Palaeo-Tethys behind them, and included the North China, Tarim, South China and Indochina blocks (including West Sumatra and West Burma). Remnants of the main Palaeo-Tethys ocean are now preserved within the Longmu Co-Shuanghu, Changning–Menglian, Chiang Mai/Inthanon and Bentong–Raub Suture Zones. During northwards subduction of the Palaeo-Tethys, the Sukhothai Arc was constructed on the margin of South China–Indochina and separated from those terranes by a short-lived back-arc basin now represented by the Jinghong, Nan–Uttaradit and Sra Kaeo Sutures. Concurrently, a second continental sliver or collage of blocks (Cimmerian continent) rifted and separated from northern Gondwana and the Meso-Tethys opened in the late Early Permian between these separating blocks and Gondwana. The eastern Cimmerian continent, including the South Qiangtang block and Sibumasu Terrane (including the Baoshan and Tengchong blocks of Yunnan) collided with the Sukhothai Arc and South China/Indochina in the Triassic, closing the Palaeo-Tethys. A third collage of continental blocks, including the Lhasa block, South West Borneo and East Java–West Sulawesi (now identified as the missing “Banda” and “Argoland” blocks) separated from NW Australia in the Late Triassic–Late Jurassic by opening of the Ceno-Tethys and accreted to SE Sundaland by subduction of the Meso-Tethys in the Cretaceous.  相似文献   

12.
The available data on the age and formation conditions of the granulite complexes in the western Dzhugdzhur-Stanovoi Fold Region (Dambuki and Larba blocks) and the adjacent territory of the Peristanovoi Belt (Kurul’ta, Zverevsky, and Sutam blocks) are systematized. At least three Early Precambrian episodes of high-grade granulite-facies metamorphism dated at 2.85–2.83, 2.65–2.60, and 1.90–1.88 Ga are established in the geological history of the western Dzhugdzhur-Stanovoi Fold Region. Five granulite-facies metamorphic events are documented in the Peristanovoi Belt. The early granulite-facies metamorphism, migmatization, and emplacement of charnockite are related to the first event (2183 ± 1 Ma) in the Kurul’ta Block. The structural transformation and metamorphism of charnockite under conditions of granulite facies correspond to the second event (2708 ± 7 Ma). The enderbite belonging to the Dzhelui Complex (2627 ± 16) and charnockite of the Altual Complex (2614 ± 7 Ma) were emplaced during the third tectonic event, which was immediately followed by the emplacement of the Kalar anorthosite-charnockite complex (2623 ± 23 Ma). The first episode of Early Proterozoic granulite-facies metamorphism of the Sutam Sequence in the tectonic block of the same name was related to the fourth event, probably caused by collision of the Olekma-Aldan continental microplate and the passive margin of the Uchur continental microplate. Finally, granulite-facies metamorphism superimposed on rocks of the Kalar Complex in the Kurul’ta Block and high-pressure metamorphism in the Zverevsky and Sutam blocks (1935 ± 35 Ma) correspond to the fifth metamorphic event. The Late Archean metamorphic events are most likely related to the amalgamation and subsequent collision of the terranes which currently make up the granulite basement of the Dzhugdzhur-Stanovoi Fold Region with the Olekma-Aldan continental microplate. In the Early Proterozoic, the Aldan Shield and the Dzhugdzhur-Stanovoi Fold Region were separated by an oceanic basin. Its closure, and the collision of the Aldan and Stanovoi continental microplates, were accompanied by granulite-facies metamorphism and led to the formation of the Peristanovoi Belt, or Peristanovoi Suture Zone. This collision suture continued functioning in the Phanerozoic (from the Early Jurassic to the Early Cretaceous) with the formation of thick shear zones and greenschist retrograde metamorphism.  相似文献   

13.
付长垒  闫臻 《地球学报》2017,38(S1):29-32
祁连造山带是原特提斯洋闭合过程中, 阿拉善和柴达木地块在青藏高原东北缘拼合的产物。它是由蛇绿岩残片、海山、岛弧、弧前/弧后盆地等多个构造单元构成的典型增生型造山带, 表现出在多个元古代微陆块周围分布有蛇绿岩和岛弧火山岩的特征。蛇绿混杂带广泛分布于北祁连和南祁连中, 在南祁连主要出露寒武纪玄武岩、安山岩、辉长岩、超基性堆晶岩、硅质岩、灰岩、砂岩和少量地幔橄榄岩, 呈现出蛇绿混杂带的典型特征, 其中拉脊山蛇绿混杂带是该蛇绿混杂带的最大组成部分。因此, 拉脊山蛇绿混杂带的来源和形成构造背景对研究祁连造山带构造演化具有重要的意义。由于构造的复杂性以及系统的野外和岩石学方面研究的缺乏, 拉脊山蛇绿混杂带的岩石组合、同位素年龄和构造背景仍然不清楚, 从而严重制约了区域构造演化的认识。例如, 前人根据灰岩中三叶虫化石将拉脊山地区火山-沉积岩系划归于寒武纪, 然而其它岩石单元的同位素年龄和来源信息相对缺乏, 而且灰岩究竟是本地岩块还是老的异地岩块仍有待进一步研究。岩石地球化学分析结果显示表明寒武纪玄武岩具有MORB、WPB或者OIB的特征, 且部分玄武岩具有岛弧亲缘性。因此, 大陆裂谷、弧后盆地、多阶段抬升构造窗或俯冲-增生杂岩等模式相继被提出。这些分歧严重影响了我们对祁连造山带和原特提斯洋构造演化的认识。究其根本原因, 是由于缺乏将蛇绿岩和岛弧形成视为沟-弧-盆体系演化过程中一个具有成因联系的有机体对其进行综合分析。  相似文献   

14.
A section across a major Tethyan suture in northwestern Turkey is described in detail. The suture of Early Tertiary age juxtaposes two continental blocks with distinct stratigraphic, structural, and metamorphic features. The Sakarya Zone in the north is represented by Permo-Triassic accretion-subduction complexes, which are unconformably overlain by Jurassic to Paleocene sedimentary rocks. The Anatolide-Tauride Block to the south of the suture consists of two tectonic zones. The Tavsanli Zone consists of a coherent blueschist sequence with Late Cretaceous isotopic ages. This blueschist sequence is tectonically overlain by Cretaceous oceanic accretionary complexes and peridotite slabs. The Bornova Flysch Zone consists of Triassic to Cretaceous limestone blocks in an uppermost Cretaceous to Paleocene flysch. The suture is represented by a N-vergent thrust fault separating lithologies from these two continental blocks.

The orogenic history of the region can be considered in two stages. In the Late Cretaceous, the northern margin of the Anatolide-Tauride Block was subducted under the Tethyan oceanic lithosphere and was metamorphosed in blueschist-facies conditions. Blueschists were largely exhumed by the latest Cretaceous or early Paleocene, prior to the continental collision. In the second stage, during the Paleocene, the continent-continent collision produced a doubly vergent orogen involving both S- and N-vergent thrusting, but did not lead to major crustal thickening.  相似文献   

15.
The eastern pari of the Xing-Meng Orogenic Belt( XMOB )consists of the Lesser Xing'an-Zhangguangcai Range Orogenic belt, the Bureya-Jiamusi-khanka Block and the Sikhote-Alin accretionary belt. This area is located between the Paleo-Asian oceanic and Paleo-Pacific tectonic regimes. Recent researches imply that the Paleo-Pacific subduction might have begun since early Permian and influenced the both sides of the Mudanjiang Fault during Triassic, which generated a N-S trending magmatic belt and accretionary complexes, such as the Heilongjiang Complex. In Late Jurassic to Early Cretaceous, some tectono st rati graph ic terranes were produced in Sikhote-Alin, which were then dismembered and migrated northwards in late Early Cretaceous by sinistral strike-slip faults. The continental margin parallel transportion weakened subduction-related magmatism in NE China which was under an extensional setting. However, in Lite Cretaceous, the Paleo-Pacific subduction was re-Activated in the eastern XMOB, which contributed to the magmatism in Sikhote-Alin.  相似文献   

16.
兴蒙造山带的基底属性与构造演化过程   总被引:5,自引:0,他引:5       下载免费PDF全文
许文良  孙晨阳  唐杰  栾金鹏  王枫 《地球科学》2019,44(5):1620-1646
为了解兴蒙造山带基底属性和多个构造体系演化与叠加历史,系统总结了近年来在基础地质研究中取得的新成果,并利用这些成果讨论了兴蒙造山带的基底属性与演化历史.兴蒙造山带是指我国东北地区古生代构造作用影响的地区,这些地区也遭受了中生代构造作用的叠加与改造.兴蒙造山带主要由微陆块和其间的造山带组成.虽然传统上认为属于前寒武纪结晶基底的地质体主要已解体为古生代和早中生代,但随着新太古代和古元古代地质体的相继发现,以及新生代玄武岩中幔源古元古代橄榄岩包体的发现,可以判定兴蒙造山带内微陆块应具有古老的前寒武纪基底,并且壳幔是耦合的.微陆块内部地壳增生以垂向增生为主,且主要发生在新元古代和中元古代,以及次要的新太古代和古生代.相反,陆块间造山带或岛弧地体的陆壳则以侧向增生为主,且主要发生在新元古代和古生代.额尔古纳地块与兴安地块的拼合发生在早古生代早期;兴安地块与松嫩地块的拼合发生在早石炭世晚期;松嫩地块与佳木斯地块的拼合发生在早古生代晚期,中生代早期又经历了裂解与再闭合的构造演化过程;华北克拉通北缘增生杂岩带与北方微陆块群的最终拼合发生在晚二叠世-中三叠世,古亚洲洋的最终闭合发生在中三叠世,且为剪刀式闭合.晚古生代晚期蒙古-鄂霍茨克大洋板块南向俯冲作用的发生以及早中生代(三叠纪-早侏罗世)的持续南向俯冲,控制了大兴安岭-冀北-辽西地区的岩浆活动,蒙古-鄂霍茨克大洋的闭合发生在中侏罗世,晚侏罗世-早白垩世主要表现为闭合后的伸展环境.古太平洋板块中生代的俯冲起始时间为早侏罗世,晚侏罗世-早白垩世早期东北亚陆缘主要表现为走滑的构造属性和陆缘地体从低纬度到高纬度的构造就位过程,早白垩世晚期-古近纪岩浆作用的向东收缩揭示了古太平洋板块的持续俯冲和俯冲板片的后撤过程,古近纪晚期日本海的打开标志着东北亚陆缘从活动陆缘已经转变为沟-弧-盆体系,并且标志着东亚大地幔楔的形成.  相似文献   

17.
新疆西准噶尔地区是古生代经过俯冲-增生形成的复合造山带,该地区分布有多条蛇绿岩带,其中之一的西准噶尔达拉布特蛇绿岩被认为是最大的一条蛇绿岩带,可能代表了古亚洲洋壳的残余。本文的资料显示蛇绿岩带内的镁铁质岩呈现出N-MORB、E-MORB和似OIB的地球化学特征,通过对阿克巴斯套岩体中的浅色辉长岩LA-ICP-MS锆石年龄测定,获得达拉布特蛇绿岩E-MORB型镁铁质岩的年龄为302±1.7Ma。鉴于达拉布特蛇绿岩中E-MORB和似OIB型镁铁质岩成因的复杂性,结合前人研究成果,对辉长岩锆石U-Pb年龄所代表的意义存在两种可能性:(1)E-MORB型和似OIB型镁铁质岩可能是弧后盆地扩张后期的产物,代表蛇绿岩的年龄,其表明西准噶尔地区可能晚石炭纪还有洋盆存在;(2)E-MORB型镁铁质岩是蛇绿岩消亡阶段由于扩张脊和俯冲带碰撞作用而形成的弧前海山,形成时代晚于达拉布特主体蛇绿岩,但其成因与蛇绿岩的演化密切相关。本文侵向于第二种可能性,认为新疆北部晚石炭-早二叠可能仍存在活动陆缘,俯冲作用仍然存在,扩张脊俯冲形成的板片窗效应导致地幔楔、俯冲板片和沉积物等熔融促使基性岩浆向长英质酸性岩浆转变,从而引发了二叠纪大规模玄武质岩浆底侵,导致了该时期的构造-岩浆-成矿-造山作用的发生。  相似文献   

18.
The Huaiyu and Jiuling terranes in the central Jiangnan belt, south China, are separated by the Dongxiang-Shexian shear zone. An Upper Proterozoic ophiolite-bearing mélange is dispersed along the contact. Isotopic ages of mafic and ultramafic rocks within the mélange cluster around 1000 Ma (Sm-Nd method). Glaucophanes from blueschist yield an isotopic age of 866 Ma (K-Ar method), interpreted to date the timing of collision. The mélange and terranes underwent regional metamorphism during the Late Proterozoic. The resulting foliation was later crosscut by a Late Proterzoic sinistral oblique normal shear along the suture zone. Clastic sediments were unconformably deposited over both terranes during the Sinian (latest Proterozoic).  相似文献   

19.
The Cretaceous units exposed in the northwestern segment of the Colombian Andes preserve the record of extensional and compressional tectonics prior to the collision with Caribbean oceanic terranes. We integrated field, stratigraphic, sedimentary provenance, whole rock geochemistry, Nd isotopes and U-Pb zircon data to understand the Cretaceous tectonostratigraphic and magmatic record of the Colombian Andes. The results suggest that several sedimentary successions including the Abejorral Fm. were deposited on top of the continental basement in an Early Cretaceous backarc basin (150–100 Ma). Between 120 and 100 Ma, the appearance of basaltic and andesitic magmatism (~115–100 Ma), basin deepening, and seafloor spreading were the result of advanced stages of backarc extension. A change to compressional tectonics took place during the Late Cretaceous (100–80 Ma). During this compressional phase, the extended blocks were reincorporated into the margin, closing the former Early Cretaceous backarc basin. Subsequently, a Late Cretaceous volcanic arc was built on the continental margin; as a result, the volcanic rocks of the Quebradagrande Complex were unconformably deposited on top of the faulted and folded rocks of the Abejorral Fm. Between the Late Cretaceous and the Paleocene (80–60 Ma), an arc-continent collision between the Caribbean oceanic plateau and the South-American continental margin deformed the rocks of the Quebradagrande Complex and shut-down the active volcanic arc. Our results suggest an Early Cretaceous extensional event followed by compressional tectonics prior to the collision with the Caribbean oceanic plateau.  相似文献   

20.
华北克拉通以北的中国东北地区古生代构造单元是地块还是造山带,是地质界近年争论的重要地质构造问题.通过对已有资料的综合研究,简要总结和讨论了各个"地块区"的地质特征,认为这些所谓的地块中,额尔古纳是新元古代晚期至古生代初期存在的地块,从寒武纪开始转变为造山带;其余所谓的古地块都是由古生代蛇绿岩、具有活动陆缘亲缘性的岩浆岩、增生杂岩和少量前南华纪岩石组成的古生代陆缘增生造山带或岛弧造山带.在此基础上,对该区地质历史上古老变质岩与地块关系、佳蒙地块是否存在、构造单元构造属性随时间变化等问题进行了初步讨论.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号