首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
Marco Bonini   《Tectonophysics》2009,474(3-4):723-735
The relations between earthquakes and the eruption of mud volcanoes have been investigated at the Pede–Apennine margin of the Northern Apennines and in Sicily. Some of these volcanoes experienced eruptions or increased activity in connection with historical seismic events, showing a good correlation with established thresholds of hydrological response (liquefaction) to earthquakes. However, the majority of eruptions have been documented to be independent of seismic activity, being mud volcanoes often not activated even when the earthquakes were of suitable magnitude and the epicentre at the proper distance for the triggering. This behaviour suggests that paroxysmal activity of mud volcanoes depends upon the reaching of a specific critical state dictated by internal fluid pressure, and implies that the strain caused by the passage of seismic waves can activate only mud volcanoes in near-critical conditions (i.e., close to the eruption). Seismogenic faults, such as the Pede–Apennine thrust, often structurally control the fluid reservoirs of mud volcanoes, which are frequently located at the core of thrust-related folds. Such an intimate link enables mud volcanoes to represent features potentially suitable for recording perturbations associated with the past and ongoing tectonic activity of the controlling fault system.  相似文献   

2.
Volcanic hazards to airports   总被引:3,自引:1,他引:2  
Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies, Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries—USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom—have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators.  相似文献   

3.
大兴安岭哈拉哈河—淖尔河地区第四纪火山活动初步研究   总被引:16,自引:11,他引:5  
大兴安岭中部哈拉哈河-淖尔河地区受基底断裂控制,发育28座第四纪火山,这些火山总体呈北东向带状分布。研究区第四纪火山岩分布面积约1000km^2,岩性主要为碱性玄武岩。根据喷发时代和火山地质特征,这里的火山大体可分为更新世和全新世两期。按照火山作用方式不同,区内火山可分为岩浆成因和射汽岩浆成因两类:前者活动产物主要包括火山碎屑锥、碎屑席、熔岩流,其中发育结壳熔岩、渣状熔岩、块状熔岩,以及喷气锥、熔岩冢等火山地质现象;后者产物主要是射汽岩浆喷发形成的基浪堆积物,其中发育大型平行层理及交错层理。不同的火山作用形成了火山口湖、低平火山口湖、火山堰塞湖和塌陷熔岩湖四种不同规模与形态特征的湖泊,这种水火相容的火山地质现象为阿尔山火山温泉国家地质公园增添了景观。  相似文献   

4.
The paper reports newly obtained stratigraphic, petrographic, and isotope-geochronological data on modern moderately acid lavas from the Keli Highland at the Greater Caucasus and presents a geological map of the territory, in which 35 volcanoes active in Late Quaternary time were documented by the authors. The total duration of volcanic activity at the highland was estimated at 250 ka. The volcanic activity was discrete and occurred in three phases: Middle Neopleistocene (245−170 ka), Late Neopleistocene (135−70 ka), and Late Neopleistocene-Holocene (<30 ka). Newly obtained lines of evidence indicate that certain volcanoes erupted in the latest Neopleistocene-Holocene. The first phase of volcanic activity was connected mainly with lava volcanoes, and eruptions during the later phases of volcanic activity in this part of the Greater Caucasus produced mainly lavas. The most significant eruptions are demonstrated to occur in the territory during the second phase. The major evolutionary trends of volcanic processes during the final phase in the Keli Highland are determined. It was also determined that the overwhelming majority of volcanoes that were active less than 30 ka B.P. are spatially restricted to long-liven local magmatic zones, which were active during either all three or only the final two phases of activity. These parts of the territory are, perhaps, the most hazardous in terms of volcanic activity.  相似文献   

5.
Dr. A. Suwa 《GeoJournal》1980,4(2):153-159
Japan is very rich in active volcanoes, so that the surveillance and prediction of volcanic activities are indespensable in order to protect human life and properties from catastrophic volcanic eruptions. The author intends here to review the volcanic activities in Japan and the history and status quo of the volcanological observation and research by the Japan Meteorological Agency (JMA), universities, etc. for that purpose. Needless to say, in Japan, volcanoes are studied from various view points such as geophysical, geochemical, geological and geographical. However, the observations for the purpose of detecting of reliable premonitory symptoms of volcanic eruptions are mainly based on geophysical and geochemical methods. In this country, there are permanent observatories at 18 active volcanoes, and there are also several mobile teams of volcanologists. It must be noticed that almost all the volcanic activities including very slight volcanic extraordinary phenomena are nowadays detected in Japan, and unexpected eruptions are very scarce, because the information on the actual state of activities of Japanese volcanoes are made public frequently.  相似文献   

6.
I. Kayane Dr. 《GeoJournal》1980,4(2):173-181
Japan is very rich in active volcanoes, so that the surveillance and prediction of volcanic activities are indespensable in order to protect human life and properties from catastrophic volcanic eruptions. The author intends here to review the volcanic activities in Japan and the history and status quo of the volcanological observation and research by the Japan Meteorological Agency (JMA), universities, etc. for that purpose. Needless to say, in Japan, volcanoes are studied from various view points such as geophysical, geochemical, geological and geographical. However, the observations for the purpose of detecting of reliable premonitory symptoms of volcanic eruptions are mainly based on geophysical and geochemical methods. In this country, there are permanent observatories at 18 active volcanoes, and there are also several mobile teams of volcanologists. It must be noticed that almost all the volcanic activities including very slight volcanic extraordinary phenomena are nowadays detected in Japan, and unexpected eruptions are very scarce, because the information on the actual state of activities of Japanese volcanoes are made public frequently.  相似文献   

7.
Basaltic pyroclastic volcanism takes place over a range of scales and styles, from weak discrete Strombolian explosions (~102–103 kg s?1) to Plinian eruptions of moderate intensity (107–108 kg s?1). Recent well-documented historical eruptions from Etna, Kīlauea and Stromboli typify this diversity. Etna is Europe's largest and most voluminously productive volcano with an extraordinary level and diversity of Strombolian to subplinian activity since 1990. Kīlauea, the reference volcano for Hawaiian fountaining, has four recent eruptions with high fountaining (>400 m) activity in 1959, 1960, 1969 (–1974) and 1983–1986 (–2008); other summit (1971, 1974, 1982) and flank eruptions have been characterized by low fountaining activity. Stromboli is the type location for mildly explosive Strombolian eruptions, and from 1999 to 2008 these persisted at a rate of ca. 9 per hour, briefly interrupted in 2003 and 2007 by vigorous paroxysmal eruptions. Several properties of basaltic pyroclastic deposits described here, such as bed geometry, grain size, clast morphology and vesicularity, and crystal content are keys to understand the dynamics of the parent eruptions.The lack of clear correlations between eruption rate and style, as well as observed rapid fluctuations in eruptive behavior, point to the likelihood of eruption style being moderated by differences in the fluid dynamics of magma and gas ascent and the mechanism by which the erupting magma fragments. In all cases, the erupting magma consists of a mixture of melt and gaseous bubbles. The depth and rate of degassing, melt rheology, bubble rise and coalescence rates, and extent of syn-eruptive microlite growth define complex feedbacks that permit reversible shifts between fragmentation mechanisms and in eruption style and intensity. However, many basaltic explosive eruptions end after an irreversible shift to open-system outgassing and microlite crystallization in melt within the conduit.Clearer understanding of the factors promoting this diversity of basaltic pyroclastic eruptions is of fundamental importance in order to improve understanding of the range of behaviors of these volcanoes and assess hazards of future explosive events at basaltic volcanoes. The three volcanoes used for this review are the sites of large and growing volcano-tourism operations and there is a public need both for better knowledge of the volcanoes’ behavior and improved forecasting of the likely course of future eruptions.  相似文献   

8.
During April–June 2009, a swarm of more than 30,000 earthquakes struck the Harrat Lunayyir, situated in the north-western end of the Saudi Arabian Harraat, east of the Red Sea. This sharp increase in the seismic activity in the region of ancient basaltic volcanic centers indicated a likelihood of a future eruption. To check the situation, a short review of the best-documented seismic activity associated with active, new-born, and re-awakening basaltic volcanoes is presented in this article. Basing on the review, some regularity in the development of seismic activity associated with basaltic eruptions was formulated. Three stages in the development of seismic activity were identified: preliminary, preceding, and continuous. The duration of preceding stage varies from a few hours for active and re-awakened volcanoes to some weeks for new-born volcanoes and may serve as a criterion for discriminations of different types of basaltic eruptions. The duration of the seismic activity during the 2009 episode at Harrat Lunayyir was longer than any activity preceding the basaltic eruptions of different types. Therefore, the most probable scenario is the arrest of sub-surface intrusion without any eruption in the region of Harrat Lunayyir. The next probable scenario would be the dike injections along the rift zones. The re-awakening of the old Harrat Lunayyir volcano or the birth of a new volcano at Harrat Lunayyir is less probable.  相似文献   

9.
Estimating the occurrence probability of volcanic eruptions with VEI ??3 is challenging in several aspects, including data scarcity. A?suggested approach has been to use a simple model, where eruptions are assumed to follow a Poisson process, augmenting the data used to estimate the eruption onset rate with that from several analog volcanoes. In this model the eruption onset rate is a random variable that follows a gamma distribution, the parameters of which are estimated by an empirical Bayes analysis. The selection of analog volcanoes is an important step that needs to be explicitly considered in this model, as we show that the analysis is not always feasible due to the required over-dispersion in the resulting negative binomial distribution for the numbers of eruptions. We propose a modification to the method which allows for both over-dispersed and under-dispersed data, and permits analog volcanoes to be chosen on other grounds than mathematical tractability.  相似文献   

10.
More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded.  相似文献   

11.
Kamchatka Peninsula is one of the most active volcanic regions in the world. Many Holocene explosive eruptions have resulted in widespread dispersal of tephra-fall deposits. The largest layers have been mapped and dated by the 14C method. The tephra provide valuable stratigraphic markers that constrain the age of many geological events (e.g. volcanic eruptions, palaeotsunamis, faulting, and so on). This is the first systematic attempt to use electron microprobe (EMP) analyses of glass to characterize individual tephra deposits in Kamchatka. Eighty-nine glass samples erupted from 11 volcanoes, representing 27 well-identified Holocene key-marker tephra layers, were analysed. The glass is rhyolitic in 21 tephra, dacitic in two, and multimodal in three. Two tephra are mixed with glass compositions ranging from andesite/dacite to rhyolite. Tephra from the 11 eruptive centres are distinguished by their glass K2O, CaO, and FeO contents. In some cases, individual tephra from volcanoes with multiple eruptions cannot be differentiated. Trace element compositions of 64 representative bulk tephra samples erupted from 10 volcanoes were analysed by instrumental neutron activation analysis (INAA) as a pilot study to further refine the geochemical characteristics; tephra from these volcanoes can be characterized using Cr and Th contents and La/Yb ratios.

Unidentified tephra collected at the islands of Karaginsky (3), Bering (11), and Attu (5) as well as Uka Bay (1) were correlated to known eruptions. Glass compositions and trace element data from bulk tephra samples show that the Karaginsky Island and Uka Bay tephra were all erupted from the Shiveluch volcano. The 11 Bering Island tephra are correlated to Kamchatka eruptions. Five tephra from Attu Island in the Aleutians are tentatively correlated with eruptions from the Avachinsky and Shiveluch volcanoes.  相似文献   

12.
Thirty-two tephra layers were identified in the time-interval 313–366 ka (Marine Isotope Stages 9–10) of the Quaternary lacustrine succession of the Fucino Basin, central Italy. Twenty-seven of these tephra layers yielded suitable geochemical material to explore their volcanic origins. Investigations also included the acquisition of geochemical data of some relevant, chronologically compatible proximal units from Italian volcanoes. The record contains tephra from some well-known eruptions and eruptive sequences of Roman and Roccamonfina volcanoes, such as the Magliano Romano Plinian Fall, the Orvieto–Bagnoregio Ignimbrite, the Lower White Trachytic Tuff and the Brown Leucitic Tuff. In addition, the record documents eruptions currently undescribed in proximal (i.e. near-vent) sections, suggesting a more complex history of the major eruptions of the Colli Albani, Sabatini, Vulsini and Roccamonfina volcanoes between 313 and 366 ka. Six of the investigated tephra layers were directly dated by single-crystal-fusion 40Ar/39Ar dating, providing the basis for a Bayesian age–depth model and a reassessment of the chronologies for both already known and dated eruptive units and for so far undated eruptions. The results provide a significant contribution for improving knowledge on the peri-Tyrrhenian explosive activity as well as for extending the Mediterranean tephrostratigraphical framework, which was previously based on limited proximal and distal archives for that time interval.  相似文献   

13.
活火山是指1万年来有过喷发历史的全新世火山。火山的高分辨年代学对火山灾害评估和火山分类具有重要意义。对于缺乏历史记载的全新世火山,直接对火山岩进行同位素定年很困难。本文利用具有高时间分辨率的镭-钍-铀非平衡确定中国东部年轻火山的年龄。根据镭-钍-铀同位素,海南岛的马鞍岭和雷虎岭是全新世火山(马鞍岭:4.3ka;雷虎岭:4.7ka);镜泊湖火山(4.9ka)也是全新世火山;龙岗火山存在晚更新世和全新世活动(7.0ka,15.0ka);大兴安岭阿尔山和诺敏河Ra/Th非平衡消失但~(230)Th/~(238)U非平衡显著,属于晚更新世喷发(阿尔山:63ka;诺敏河:71ka)。海南岛的马鞍岭火山、雷虎岭火山和东北地区的龙岗火山、镜泊湖火山,是4座活火山。至于东北地区的阿尔山和诺敏河火山是否是活火山,有待测试更多样品的Ra/Th同位素。五大连池老黑山和火烧山有历史喷发记录,这与它们都存在显著Ra/Th非平衡一致。五大连池老黑山和火烧山的岩浆滞留年龄分别小于4.2ka和3.2ka,岩浆上升速率 18~23m/y。  相似文献   

14.
Mud volcanoes have provided much meaningful information about the deep Earth and the recent crustal and neotectonic movements in an area for over 200 years. However, the triggering mechanisms have puzzled geologists for a long time. This study investigated the factors controlling mud volcano activity and the triggering mechanisms of mud volcano eruptions on the southern margin of the Junggar Basin, NW China. The Baiyanggou, Aiqigou and Dushanzi mud volcanoes are all located along the Dushanzi Anticline, which belongs to the third anticline belt on the southern margin of the basin. The extensive, thick mudstone at depth provides a wealth of material for the formation of mud volcanoes. Simultaneously, the overpressure serves as the driving force for the eruption of the mud volcanoes. The torsional–compressional stress field created by the collision between the Indian and Eurasian plates not only enhanced the abnormal formational pressure in the region but also lead to the development of extensional faults in the core of the Dushanzi Anticline, which served as the conduits for the mud volcanoes. The continuous collision between the Indian and Eurasian plates and the regional torsional–compressional stress field may largely control the cyclical activity of the mud volcanoes and serve as their primary trigger mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Eruption records in the terrestrial stratigraphy are often incomplete due to erosion after tephra deposition, limited exposure and lack of precise dating owing to discontinuity of strata. A lake system and sequence adjacent to active volcanoes can record various volcanic events such as explosive eruptions and subaqueous density flows being extensions of eruption triggered and secondary triggered lahars. A lacustrine environment can constrain precise ages of such events because of constant and continuous background sedimentation. A total of 71 subaqueous density flow deposits in a 28 m long core from Lake Inawashiro‐ko reveals missing terrestrial volcanic activity at Adatara and Bandai volcanoes during the past 50 kyr. Sedimentary facies, colour, grain size, petrography, clay mineralogy, micro X‐ray fluorescence analysis and chemistry of included glass shards characterize the flow event deposits and clarify their origin: (i) clay‐rich grey hyperpycnites, extended from subaerial cohesive lahars at Adatara volcano, with sulphide/sulphate minerals and high sulphur content which point to a source from hydrothermally altered material ejected by phreatic eruptions; and (ii) clay‐rich brown density flow deposits, induced by magmatic hydrothermal eruptions and associated edifice collapse at Bandai volcano, with the common presence of fresh juvenile glass shards and low‐grade hydrothermally altered minerals; whereas (iii) non‐volcanic turbidites are limited to the oldest large slope failure and the 2011 Tohoku‐oki earthquake events. The high‐resolution chronology of volcanic activity during the last 50 kyr expressed by lacustrine event deposits shows that phreatic eruption frequency at Adatara has roughly tripled and explosive eruptions at Bandai have increased by ca 50%. These results challenge hikers, ski‐fields and downstream communities to re‐evaluate the increased volcanic risks from more frequent eruptions and far‐reaching lahars, and demonstrate the utility of lahar and lacustrine volcanic density flow deposits to unravel missing terrestrial eruption records, otherwise the recurrence rate may be underestimated at many volcanoes.  相似文献   

16.
Llaima and Villarrica are two of the most active volcanoes in the Chilean Southern Volcanic Zone and presently show contrasting types of activity. Llaima is a closed vent edifice with fumarolic activity, while Villarrica has an open vent with a lava lake, continuous degassing and tremor activity. This study is focused on characterizing the relationships between volcanic and seismic activity in the months before and after the 2010 M8.8 Maule earthquake, which was located in NNW direction from the volcanoes. Time series for tremors, long-period and volcano-tectonic events were obtained from the catalogue of the Volcanic Observatory of the Southern Andes (OVDAS) and from the SFB 574 temporary volcanic network. An increase in the amount of tremor activity, long-period events and degassing rates was observed at Villarrica weeks before the mainshock and continued at a high level also after it. This increase in activity is interpreted to be caused by enhanced magma influx at depth and may be unrelated to the Maule event. In Llaima, an increase in the volcano-tectonic activity was observed directly after the earthquake. The simultaneous post-earthquake activity at both volcanoes is consistent with a structural adjustment response. Since this enhanced activity lasted for more than a year, we suggest that it is related to a medium-term change in the static stress. Thus, the Maule earthquake may have affected both volcanoes, but did not trigger eruptions, from which we assume that none of the volcanoes were in a critical state.  相似文献   

17.
Intrusion of magma of contrasting composition into a magma chamber often triggers eruptions of arc volcanoes. Application of the diffusion chronometry method allowed us to determine the time when fresh magma was supplied to the shallow chamber of Bezymianny volcano in the case of six eruptions in 2006–2012 and to compare them to the recorded seismic activity of this volcano. Two types of eruptions of Bezymianny volcano were distinguished, with a contrasting orthopyroxene rim being formed in the respective magmas (a) up to 3 years and (b) up to 2 months before the beginning of an eruption. It was shown that these differences are caused by two different paths of magma supply to the shallow chamber of Bezymianny volcano.  相似文献   

18.
内蒙古察哈尔右翼后旗乌兰哈达第四纪火山群   总被引:7,自引:5,他引:2  
白志达  王剑民  许桂玲  刘磊  徐德斌 《岩石学报》2008,24(11):2585-2594
乌兰哈达火山群位于内蒙古中部察哈尔右翼后旗乌兰哈达一带,地处蒙古高原南缘,距北京约300km.火山群坐落在太古宙乌拉山岩群和新近纪汉诺坝玄武岩之上,面积约280km^2。火山活动可分为晚更新世(30.56+2.59kaBP;21.05+1.79kaBP)和全新世两期,火山喷发总体为裂隙式或裂隙-中心式。晚更新世形成一系列呈北东和北西向线形展布的溅落锥,其中黑脑包为熔壳状火山锥。大部分锥体主要由玄武质熔结集块岩及碎成熔岩组成,已遭受一定剥蚀,但多数火口形态仍清晰可辨。全新世与晚更新世火山受同一北东向基底断裂控制。主要包括3座中心式喷发的炼丹炉火山,火山均由碱玄质火山渣锥和熔岩流组成,属斯通博利式火山。火山规模较大,结构完整,基本未遭受剥蚀。锥体由早期降落浮岩渣和晚期溅落熔结集块岩组成。熔岩流分布受地形制约,总体由北西向南东流淌,最长熔岩流约18km。熔岩流覆盖在全新世河谷砂砾石、风成沙和沼泽沉积物之上,表明火山喷发的时代应为全新世。熔岩流类型主要为结壳熔岩,其中胀裂谷和塌陷谷发育。熔岩流前部发育挤压脊、喷气锥和特征的熔岩琢群。熔岩流前缘抵达白音淖一带,堰塞水系形成莫石盖淖和乌兰胡少海等火山堰塞湖。乌兰哈达火山群是蒙古高原南缘目前发现的唯一全新世有过喷发的火山群,是一处天然火山“博物馆”,是研究蒙古高原南缘现代地壳深部结构及其活动性的天然“窗口”。  相似文献   

19.
Western Canada lies in a zone of active tectonics and volcanism, but thedispersed population has witnessed few eruptions due to the remoteness of the volcanoes and their low level ofactivity. This has created a false perception that Canada's volcanoes are extinct.There are more than 200 potentially-active volcanoes in Canada, 49of which have erupted in the past 10,000 years. They occur in five belts, with origins related totectonic environment. The minimum annual probability of a Canadian volcanic eruption is approximately 1/200;for an effusive (lava) eruption the probability is about 1/220, and for a significant explosive eruptionit is about 1/3333. In-progress studies show that there have been earthquakes associated with at least 9 ofthe youngest Canadian volcanoes since 1975. A scenario of an eruption of Mt. Cayley (50.1°N,123.3°W) shows how western Canada is vulnerable to an eruption. The scenario is basedon past activity in the Garibaldi volcanic belt and involves both explosive and effusive activity.The scenario impact is largely a result of the concentration of vulnerable infrastructure in valleys.Canadian volcanoes are monitored only by a regional seismic network,that is capable of detecting a M > 2 event in all potentially-active areas.This level of monitoring is probably sufficient to alert scientistsat or near eruption onset, but probably insufficient to allow a timelyforecast of activity. Similarly the level of geological knowledge about the volcanoes is insufficient to createhazard maps. This will improve slightly in 2002 when additional monitoring is implemented in theGaribaldi volcanic belt. The eruption probabilities, possible impacts, monitoring limitations and knowledgegaps suggest that there is a need to increment the volcanic risk mitigation efforts.  相似文献   

20.
Although a relationship between the occurrence of large earthquakes and the eruptions of close mud volcanoes is well known, several uncertainties remain on understanding the triggering mechanisms. In the present study, we evaluate both the static and dynamic strains induced by earthquakes in the substratum of mud volcanoes. We studied the effects of two earthquakes of M w 6.18 and 6.08 occurred in the Caspian Sea on 25 November 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the 5 years following the earthquakes. The overall eruption rate in the studied area of the 50 years before the 2000 earthquakes was 1.24 that is much smaller than the eruption rate of 6.6 of the 5 years following these earthquakes. The largest number of eruptions occurred within 2 years from the earthquakes with the highest frequency within 6 months. Our calculated earthquake-induced static effects show that crustal dilatation might have triggered only seven eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Based on our data, dynamic rather than static strain is likely to have been the dominating “promoting” factor because it affected all the studied unrest volcanoes and its magnitude was much larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号