首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
This study investigates the hydraulic conductivity field and the groundwater flow pattern as predicted by a calibrated steady state groundwater flow model for the Keta Strip, southeastern Ghana. The hydraulic conductivity field is an important parameter in evaluating aquifer properties in space, and in general basin-wide groundwater resources evaluation and management. This study finds that the general hydraulic conductivity of the unconsolidated unconfined aquifer system of the Keta Strip ranges between 2 m/d and 20 m/d, with an average of 15 m/d. The spatial variation in horizontal hydraulic conductivity appears to take the trend in the variations in the nature of the material in space. Calibrated groundwater recharge suggests that 6.9–34% of annual precipitation recharges the shallow aquifer system. This amount of recharge is significant and suggests high fortunes in terms of groundwater resources development for agriculture and industrial activities in the area. A spatial distribution of groundwater recharge from precipitation is presented in this study. The spatial pattern appears to take the form of the distribution in horizontal hydraulic conductivity, and suggests that the vertical hydraulic conductivity takes the same pattern of spatial variation as the horizontal hydraulic conductivity. This is consistent with observations in other areas. The resulting groundwater flow is dominated by local flow systems as the unconfined system is quite shallow. A general northeast – southwest flow pattern has been observed in the study area.  相似文献   

2.
《Applied Geochemistry》2004,19(3):359-377
The Dakota aquifer of the central and eastern Great Plains of the United States is an important source of water for municipal supplies, irrigation and industrial use. Although the regional flow system can be characterized generally as east to northeasterly from the Rocky Mountains towards the Missouri River, locally the flow systems are hydrologically complex. This study uses Sr isotopic data from groundwater and leached aquifer samples to document the complex subsystems within the Dakota aquifer in Nebraska and Kansas. The interaction of groundwater with the geologic material through which it flows has created spatial patterns in the isotopic measurements that are related to: long-term water–rock interaction, during which varying degrees of isotopic equilibrium between water and rock has been achieved; and the alteration of NaCl fluids by water-rock interaction. Specifically, Sr isotopic data distinguish brines from Kansas and western Nebraska from those in eastern Nebraska: the former are interpreted to reflect interaction with Permian rocks, whereas the latter record interaction with Pennsylvanian rocks. The Sr isotopic composition of groundwater from other parts of Nebraska and Kansas are a function of the dynamic interaction between groundwater and unlithified sediments (e.g., glacial till and loess), followed by interaction with oxidized and unoxidized sediments within the Dakota Formation. This study illustrates the power of combining Sr chemistry with more conventional geochemical data to obtain a more complete understanding of groundwater flow systems within regional aquifer systems where extensive monitoring networks do not exist.  相似文献   

3.
Many groundwater systems consist of multi-scale aquifer units. The exchange processes and rates between these aquifer units are complex. In order to manage such complex systems, a subdivision into different catchments, sub-catchments or groundwater bodies as manageable units is required. The sustainable management of water resources requires a comprehensive view of water-quality and water-quantity aspects not only for water supply issues, but generally also for flood protection and riverine ecosystem functions. Such transformations require an improved understanding of recharge and exchange processes between different aquifer units as well as aquifer-surface water interaction-processes at different spatiotemporal scales. The main objective of this study is to illustrate concepts by defining the geometry and scales of different aquifer units within a sedimentary basin. The Laufen Basin in the Jura Mountains represents a sub-catchment of the River Birs (Switzerland). Its structure is characterized by a pronounced local relief and a series of aquifer units which are typical for many complex groundwater systems in front of mountain chains such as the alpine foreland and the Jura Mountains of Central Europe. A combination of different concepts is required to understand multi-scale flow systems and to describe the various hydrogeological processes. Three concepts are proposed for the Laufen Basin, including: (1) a regional flow-system analysis, based on the concept of hierarchical groundwater flow systems; (2) the river-corridor concept for understanding aquifer-surface water interaction processes; and (3) the calculation of the dynamic vulnerability index and the aquifer base gradient approach for karst flow and fractured flow systems.  相似文献   

4.
Process-based groundwater models are useful to understand complex aquifer systems and make predictions about their response to hydrological changes. A conceptual model for evaluating responses to environmental changes is presented, considering the hydrogeologic framework, flow processes, aquifer hydraulic properties, boundary conditions, and sources and sinks of the groundwater system. Based on this conceptual model, a quasi-three-dimensional transient groundwater flow model was designed using MODFLOW to simulate the groundwater system of Mahanadi River delta, eastern India. The model was constructed in the context of an upper unconfined aquifer and lower confined aquifer, separated by an aquitard. Hydraulic heads of 13 shallow wells and 11 deep wells were used to calibrate transient groundwater conditions during 1997–2006, followed by validation (2007–2011). The aquifer and aquitard hydraulic properties were obtained by pumping tests and were calibrated along with the rainfall recharge. The statistical and graphical performance indicators suggested a reasonably good simulation of groundwater flow over the study area. Sensitivity analysis revealed that groundwater level is most sensitive to the hydraulic conductivities of both the aquifers, followed by vertical hydraulic conductivity of the confining layer. The calibrated model was then employed to explore groundwater-flow dynamics in response to changes in pumping and recharge conditions. The simulation results indicate that pumping has a substantial effect on the confined aquifer flow regime as compared to the unconfined aquifer. The results and insights from this study have important implications for other regional groundwater modeling studies, especially in multi-layered aquifer systems.  相似文献   

5.
随着我国地下水监测工作的高速发展,高频率高密度水位监测数据的出现催生了对其进行深入信息挖掘的需求。在传统地下水模型研究中,地下水水位监测值常位于模型构建过程的下游,当水位监测的时空密度逐渐增大时,新增信息无法有效传导至模型的规划阶段并指导概念模型的修订。文章提出了一种地下水系统补排边界的识别方法,在不建立地下水数值模型的前提下,以监测井空间位置为节点,按照德劳内原则建立三角网格。在此网格系统中,首先定义一个水力梯度变换函数gradF,以求取网格中任意位置的水力梯度;借鉴机器学习领域的优化算法,使用水力梯度场驱动含水层中随机分布质点的运行轨迹,并以此推断和识别区域内地下水补给和排泄边界。在环境地学计算平台EnviFusion-CGS中实现,并构建了详细工作流程。以山东省青岛市大沽河中下游含水层为示范区,对含水系统的补给区和排泄区的空间分布及其动态变化进行了分析,取得了良好效果。本研究为构建和修订已有含水层概念模型提供了新思路。  相似文献   

6.
Hydrologic conceptual models of groundwater/surface-water interaction in a saprolite-fractured bedrock geological setting often assume that the saprolite zone is hydraulically more active than the deeper bedrock system and ignore the contribution of deeper groundwater from the fractured bedrock aquifer. A hydraulic, hydrochemical, and tracer-based study was conducted at Scott Creek, Mount Lofty Ranges, South Australia, to explore the importance of both the deeper fractured bedrock aquifer system and the shallow saprolite layer on groundwater/surface-water interaction. The results of this study suggest that groundwater flow in the deeper fractured bedrock zone is highly dynamic and is an important groundwater flow pathway along the hillslope. Deep groundwater is therefore a contributing component in streamflow generation at Scott Creek. The findings of this study suggest that hydrologic conceptual models, which treat the saprolite-fractured bedrock interface as a no-flow boundary and do not consider the deeper fractured bedrock in hydrologic analyses, may be overly simplistic and inherently misleading in some groundwater/surface-water interaction analyses. The results emphasise the need to understand the relative importance of subsurface flow activity in both of these shallow saprolite and deeper bedrock compartments as a basis for developing reliable conceptual hydrologic models of these systems.  相似文献   

7.
利用Visual C++作为虚拟苏锡常地区第四系含水层结构和地下水面形态的开发工具,采用OpenGL对它们进行三维可视化表达,研究者可采用不同的显示方式对含水层和地下水面进行观察,了解各地层间的空间分布特征、含水层间的补给关系、地下水面的形态和水平方向上地下水补给区和排泄区的分布情况,以及地下水面的动态演示过程。  相似文献   

8.
The New Mexico Bureau of Geology and Mineral Resources (USA) has conducted a regional investigation of groundwater residence time within the southern Sacramento Mountains aquifer system using multiple environmental tracers. Results of the tracer surveys indicate that groundwater in the southern Sacramento Mountains ranges in age from less than 1 year to greater than 50 years, although the calculated ages contain uncertainties and vary significantly depending on which tracer is used. A distinctive feature of the results is discordance among the methods used to date groundwater in the study area. This apparent ambiguity results from the effects of a thick unsaturated zone, which produces non-conservative behavior among the dissolved gas tracers, and the heterogeneous character and semi-karstic nature of the aquifer system, which may yield water from matrix porosity, fractures, solution-enlarged conduits, or a combination of the three. The data also indicate mixing of groundwater from two or more sources, including recent recharge originating from precipitation at high elevations, old groundwater stored in the matrix, and pre-modern groundwater upwelling along fault zones. The tracer data have also been influenced by surface-water/groundwater exchange via losing streams and lower elevation springs (groundwater recycling). This study highlights the importance of using multiple tracers when conducting large-scale investigations of a heterogeneous aquifer system, and sheds light on characteristics of groundwater flow systems that can produce discrepancies in calculations of groundwater age.  相似文献   

9.
Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.  相似文献   

10.
Wu  Peipeng  Shu  Longcang  Comte  Jean-Christophe  Zuo  Qiting  Wang  Mei  Li  Fulin  Chen  Huawei 《Hydrogeology Journal》2021,29(6):2107-2125

Understanding the role of geological heterogeneity on the performance of managed aquifer recharge (MAR) in terms of effective groundwater storage is crucial to design MAR systems. Natural aquifers are affected by a variety of geologic strata and structures at different scales, which are responsible for wide ranging hydraulic properties. This study combines physical experiments and numerical modeling to investigate the effect of geologic structures commonly encountered in sedimentary environments, on MAR-induced groundwater flow patterns using injection wells. Models were conceptualized and parametrized based on the hydrogeological conditions of Tailan River basin in arid NW China, which hosts a typical, structurally complex, alluvial-fan aquifer system affected by sediment layering, clay lenses and anticline barriers, and is extensively studied for the strategic potential of MAR in addressing water shortages in the region. Results showed that, compared to a homogeneous scenario, high-permeability aquifer layers shortened groundwater ages, decreased the thickness of the artificially recharged water lenses (ARWLs), and shifted the stagnation points downstream. Clay lenses increased groundwater residence times but had little effect on spatial flow patterns due to their elongation parallel-to-flow direction. Overall groundwater ages, as well as the thickness of ARWLs created through injection on the upstream side of an anticline, increased, and this to a larger extent than through injection on the downstream side, which did not increase significantly compared to the homogeneous scenario. Results provide insights for MAR optimization in naturally heterogeneous aquifer systems, along with a benchmark tool for application to a wide range of typical geological conditions.

  相似文献   

11.
大气降水的氢氧同位素含量具有高程效应,降水入渗后参与地下水循环,其高程效应如何受地下水流系统的影响转化为地下水氢氧同位素的深度效应?现有研究对于这个问题缺少定量认识。文章构建单向倾斜盆地和双峰波状盆地的稳态地下水循环理论模型,采用MODFLOW模拟剖面二维地下水流场、采用MT3DMS模拟重同位素分子的对流-弥散过程,得到地下水D和18O含量的空间分布,探讨了氢氧同位素高程效应在地下水流系统转化为深度效应的机理。结果表明:在单斜盆地,补给区大气降水D和18O含量的高程效应转化为排泄区地下水δD和δ18O值随埋深增大而指数型衰减的深度效应;在双峰波状盆地,当含水层渗透性相对入渗强度较大时(K0/w=1 000),仅发育一个区域地下水流系统,在区域地下水的排泄区δD和δ18O随埋深增大呈现S形曲线分布;当含水层渗透性相对入渗强度较小时(K0/w=250),双峰波状盆地发育多个局部地下水流系统,区域地下水的排泄区δD和δ18O随埋深增大呈现S形曲线,而局部地下水排...  相似文献   

12.
In a confined alluvial aquifer located between two rivers, discrete zones of anomalously high concentrations of redox species such as iron, are thought to be a result of groundwater flow dynamics rather than a chemical evolution along continuous flow paths. This new hypothesis was confirmed at a study site located between Nan and Yom rivers in Phitsanulok, Thailand, by analyzing concentrations of redox species in comparison with dynamic groundwater flow patterns. River incision into the confined alluvial aquifer and seasonally varying river stages result in truncated flow paths. The groundwater flow dynamics between two rivers has four phases that are cyclic, including: aquifer discharge into both rivers, direct flow from one river toward another, aquifer recharge from both rivers, and reverse of river-to-river flow. The resulting groundwater flow direction has a zigzag pattern and its general trend is almost parallel to the river flow. High iron anomaly appears as discrete zones in the transition areas of the confined alluvial aquifer because the lateral recharge from rivers penetrates into the aquifer only by tens of meters. The high iron anomaly, which is nearly constant in space and time, is a result of groundwater/surface-water interactions and related groundwater flow dynamics.  相似文献   

13.
地下水流系统理论和数值模拟技术分别是水文地质学的基本理论和技术方法,含水岩组的概化是地下水流系统分析和地下水数值模拟的重要基础,直接影响着数值模拟和水流系统分析的精度和可信度.为提高含水岩组概化的精度和可信度,提出一种含水岩组概化的新方法,即累积导水系数法.依据岩层厚度与渗透系数乘积累积值随深度的变化,以及水文地质剖面岩性分布的整体特征,概化含水介质结构.以玛纳斯河流域为例,应用该方法概化流域内的岩性剖面,结合GMS软件中TINS模块构建水文地质结构模型.结果表明,应用该方法概化后的含水层结构具有较好的合理性和仿真性,建立的三维模型很好地显示了研究区含水介质的空间展布特征,为建立地下水流模型奠定了良好的基础.   相似文献   

14.
The subsurface data are a basic requirement for the set up of hydrogeological framework. Geographic information systems (GIS) tools have proved their usefulness in hydrogeology over the years which allow for management, synthesis, and analysis of a great variety of subsurface data. However, standard multi-layered systems are quite limited for modeling, visualizing, and editing subsurface data and geologic objects and their attributes. This paper presents a methodology to support the implementation of hydrogeological framework of the multi-layered aquifer system in Nabeul–Hammamet (NH) coastal region (NE, Tunisia). The methodology consists of (1) the development of a complete and generally accepted hydrogeological classification system for NH aquifer system (2) the development of relational databases and subsequent GIS-based on geological, geophysical and hydrogeological data, and (3) the development of meaningful three-dimensional geological and aquifer models, using GIS subsurface software, RockWorks 2002. The generated 3-D geological models define the lithostratigraphy and the geometry of each depositional formation of the region and delineate major aquifers and aquitards. Where results of the lithologic model revealed that there is a wide range of hydraulic conductivities in the modeled area, which vary spatially and control the groundwater flow regime. As well, 17 texturally distinct stratigraphic units were identified and visualized in the stratigraphic model, while the developed aquifer model indicates that the NH aquifer system is composed of multi-reservoir aquifers subdivided in aquifers units and separated by sandy clay aquitards. Finally, this study provides information on the storing, management and modeling of subsurface spatial database. GIS has become a useful tool for hydrogeological conceptualization and groundwater management purposes and will provide necessary input databases within different groundwater numerical models.  相似文献   

15.
This paper focuses on a small back-barrier sand-island on the southeast coast of Queensland. The freshwater lens in the study area exhibits anomalously high short-range salinity gradients at shallow depths, which cannot be explained using a standard seawater intrusion model. The island groundwater system consists of two aquifers: a semiconfined aquifer hosting saline to hypersaline groundwater and an overlying unconfined freshwater aquifer. The deeper aquifer is semiconfined within an incised paleovalley, and groundwater flow is restricted to an east – west direction. Tidal response observations show that the tidal signal propagates far more rapidly and is of much higher magnitude in the semiconfined aquifer than the unconfined aquifer. The tidal wave-pulse amplitude is also subject to greater attenuation in the unconfined aquifer. A conceptual hydrogeological model illustrates how upwelling of hypersaline groundwater, induced by density-dependent flow and tidal pumping, has contaminated the shallow groundwater resource. Salinisation at shallow depths is restricted to an area proximal to the paleovalley aquifer. The spatial distribution of lithological heterogeneity is an initial limiting control on the movement of the upwelling saline plume. The extent of shallow groundwater contamination is also limited by the presence of a baroclinic field, resulting from lateral variations in fluid density. Hydrochemical signatures have been used to support the model hypothesis and link the salinisation of fresh groundwater with the semiconfined aquifer as opposed to the surrounding estuarine surface water. The geometry and thickness of the freshwater lens are further controlled by the presence of the largely impermeable bedrock paleosurface between 9 and 12 m depth. The combination of hypersaline groundwater and hydraulically restrictive lithology at shallow depths has produced excessive thinning of the freshwater lens, demonstrating that the application of a model such as the Dupuit – Ghyben – Herzberg relationship would grossly overestimate the available groundwater resource.  相似文献   

16.
分析了目前孔隙地下水流三维有限差分数值模拟中对含水层系统三维空间离散存在的问题,针对自然界孔隙含水层与隔水层空间分布的不连续性与厚度的不均匀性,研究了基于GIS的孔隙含水层系统三维空间离散实现的技术路线,提出了基于GIS与不规则六面体元的孔隙含水层系统的三维空间离散方法,最大限度地保证了离散体元中含水层类型的单一性,提高了孔隙地下水流模拟模型三维空间离散的精度。  相似文献   

17.
高砷地下水研究的热点及发展趋势   总被引:4,自引:0,他引:4  
全球范围内广泛分布的高砷地下水给人们的健康造成了极大的威胁.高砷地下水的形成机理是一项世界性的科学问题.介绍了高砷地下水的分布特点、富集机理,阐明了溶解性有机物、地下水流动特征对高砷地下水形成的影响机制.现今的研究揭示了有机物和微生物协同作用下高砷地下水的形成过程,并且在高砷地下水的空间分布、时间变化特征以及人类活动对高砷地下水形成的影响等方面取得了一些创新性成果.这3方面的研究也逐渐成为近些年高砷地下水研究的热点.这些研究不仅丰富了砷迁移转化的理论成果,而且有助于开辟低砷水源,保障水资源的可持续利用,具有重要的理论和现实意义.  相似文献   

18.
This study used optical brighteners (OB) released from septic systems to show that groundwater flow direction is largely controlled by the structural framework in a faulted karst groundwater system. Effective protection of groundwater resources requires that groundwater systems are adequately characterized and source water protection areas (SWPA) are developed for drinking water wells. Karst aquifers are among the most sensitive to contamination due to high recharge rates, and among the most difficult aquifers to characterize due to heterogeneity, and anisotropy. Because septic systems may be used to treat wastewater within SWPAs for karst aquifers there is a need to characterize these groundwater systems using tracers. The objective of this study was to characterize groundwater flow in a faulted portion of the Edwards aquifer in Bexar County, Texas using OB that are released as incidental tracers from septic systems. This study included measurement of water levels, sampling of groundwater and surface water, analysis for OB, and spatial analysis in a GIS. Results show that OB intensities were highest to the southwest of the septic area, a direction that is sub-parallel to the fault and fracture orientation and nearly perpendicular to the hydraulic gradient. This indicates that movement of OB, solutes, or non-aqueous liquids/solids in a faulted karst system can be largely controlled by fault/fracture orientation and structural relay ramps.  相似文献   

19.
Identifying flow processes in multi-aquifer flow systems is a considerable challenge, especially if substantial abstraction occurs. The Rajshahi Barind groundwater flow system in Bangladesh provides an example of the manner in which flow processes can change with time. At some locations there has been a decrease with time in groundwater heads and also in the magnitude of the seasonal fluctuations. This report describes the important stages in a detailed field and modelling study at a specific location in this groundwater flow system. To understand more about the changing conditions, piezometers were constructed in 2015 at different depths but the same location; water levels in these piezometers indicate the formation of an additional water table. Conceptual models are described which show how conditions have changed between the years 2000 and 2015. Following the formation of the additional water table, the aquifer system is conceptualised as two units. A pumping test is described with data collected during both the pumping and recovery phases. Pumping test data for the Lower Unit are analysed using a computational model with estimates of the aquifer parameters; the model also provided estimates of the quantity of water moving from the ground surface, through the Upper Unit, to provide an input to the Lower Unit. The reasons for the substantial changes in the groundwater heads are identified; monitoring of the recently formed additional water table provides a means of testing whether over-abstraction is occurring.  相似文献   

20.
含水层层状非均质对地下水流系统的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
区域尺度上含水层非均质具有复杂的结构性和随机性,难以准确刻画,造成非均质对区域地下水流系统的影响机制研究不够深入。本文以鄂尔多斯盆地白垩系地下水流系统为研究实例,选择典型剖面,采用剖面二维随机数值模拟方法,通过对比不同非均质刻画方法下地下水流场的变化,探讨含水层层状非均质对地下水流系统的影响机制。结果显示,均质条件下模型各向异性(含水层水平和垂向渗透系数比值Kh/Kv)取值为1000时,地下水流场与实际条件较为接近;非均质条件下,渗透系数方差取值0.91,水平相关长度取值5000 m,Kh/Kv取值150时,接近实际条件。研究表明,在大尺度地下水流模拟研究中,采用水平相关长度、渗透系数方差和各向异性值三个变量生成的随机场能很好地刻画含水层的层状非均质特征及其对水流系统的影响控制作用。由于含水层不同尺度层状非均质的叠加效应,采用均质各向异性介质等效概化含水层层状非均质性会造成等效各向异性值偏大失真的效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号