首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
陈栋  李跃青  黄荣辉 《大气科学》2007,31(2):185-201
利用2005年7月6~9日川东地区暴雨过程的观测资料,从大尺度环流、水汽输送和温度平流,并利用湿位涡的垂直和水平分量(Pm1和Pm2)以及相当位温,分析诊断了此次暴雨发生的大尺度环流背景特征以及西南涡发展的物理过程, 其结果表明如下:(1)在此次暴雨发生期间,四川盆地北部由于受中高纬长波东移调整的影响, 不断有低压槽分裂出来并影响此地区, 在盆地的西南方向的孟加拉湾季风槽比较活跃, 南海季风向北输送由于受到西风输送的作用在四川盆地东南部也出现弱的横槽, 并且西太平洋副高西伸到四川盆地东部以及存在于高原中部的高压共同作用, 从而形成明显“鞍”型大尺度环流配置; (2)在此“鞍”型场大尺度环流背景下, 强西南气流绕流高原东侧直接进入四川盆地, 而弱西南气流则绕流云贵高原输送进入四川盆地东部, 受地形的阻挡和西伸的西太平洋副高的作用在四川盆地东部形成向北的急流辐合带, 同时, 由于两支气流输送着大量的水汽, 暖湿空气在川东地区形成高温高湿的辐合区; (3)在此“鞍”型场作用下, 盆地上空的低层不断聚集季风气流输送的大量暖湿空气, 而在高层有冷干空气侵入, 从而导致盆地内低涡系统强烈发展; (4) 由湿位涡的垂直分量和水平分量的诊断表明了在暴雨发生期间, 在四川盆地北部上空的高层不断有干空气入侵, 引起了垂直对流不稳定, 即Pm1<0, 并向盆地东北部发展, 从而使此区域气旋性涡度不断加强, 即低涡强烈发展; 并且, 在盆地上空低层暖湿空气相当位温的水平梯度对于西南低涡的发展和暴雨的发生同样起了重要作用, 正的Pm2中心与暴雨发生区域有很好的一致性, 这表明暴雨往往发生在高温高湿的强垂直不稳定区域。  相似文献   

2.
This study aims to trace changes in the dry spells over Peninsular Malaysia based on the daily rainfall data from 36 selected rainfall stations which include four subregions, namely northwest, west, southwest, and east for the periods of 1975 to 2004. Six dry spell indices comprising of the main characteristics of dry spells, the persistency of dry events, and the frequency of the short and long duration of dry spells will be used to identify whether or not these indices have increased or decreased over Peninsular Malaysia during the monsoon seasons. The findings of this study indicate that the northwestern areas of the Peninsular could be considered as the driest area since almost all the indices of dry spells over these areas are higher than in the other regions during the northeast (NE) monsoon. Based on the individual and the field significant trends, the results of the Mann–Kendall test indicate that as the total number of dry days, the maximum duration, the mean, and the persistency of dry days are decreased, the trend of the frequency of long dry spells of at least 4 days is also found to decrease in almost all the stations over the Peninsula; however, an increasing trend is observed in the frequency of short spells in these stations during the NE monsoon season. On the other hand, during the southwest monsoon, a positive trend is observed in the characteristics of dry spells including the persistency of two dry days in many stations over the Peninsula. The frequency of longer dry periods exhibits a decreasing trend in most stations over the western areas during both monsoon seasons for the periods of 1975 to 2004.  相似文献   

3.
为了研究北京快速更新循环同化预报系统(BJ-RUCv2.0)在北京地区降水日变化的预报偏差特征及其成因,利用2012—2015年夏季BJ-RUCv2.0系统第2重区域(3 km分辨率)预报结果和北京地区122个自动气象站逐时观测数据以及观象台探空观测资料,分析模式对北京地区降水日变化预报偏差的区域性特征和传播特征,研究模式局地环流预报偏差特征及其对降水预报偏差的可能反馈机制。研究结果表明,BJ-RUCv2.0系统多个更新循环的预报在北京平原地区均存在夜间降水漏报问题,降水预报偏差表现为模式预报降水在西部山区降水偏多,预报降水雨带难以在平原地区增强发展,造成了模式降水在傍晚山区偏多而夜间平原地区降水明显偏少。通过分析模式局地环流预报偏差及其响应机制发现,由于白天平原地区近地层偏暖偏干,山区底层偏冷中层偏湿,造成了山区-平原地区间的温度梯度强度偏强且强温差出现时间提前,西部山区午后降水偏多;由于平原地区地面气温预报持续偏高,入夜后偏北风难以到达平原地区,造成了山区-平原间的地形辐合线位置偏北,影响山区降水雨带向平原地区移动,同时平原地区近地层内水汽持续偏低,抑制降水雨带在东移过程中的发展,造成模式在平原地区夜间降水预报容易出现漏报。模式冷启动所用的GFS资料土壤湿度在北京平原地区明显小于实际观测,是模式预报偏暖偏干的可能原因之一。  相似文献   

4.
A new approach to ensemble forecasting of rainfall over India based on daily outputs of four operational numerical weather prediction (NWP) models in the medium-range timescale (up to 5 days) is proposed in this study. Four global models, namely ECMWF, JMA, GFS and UKMO available on real-time basis at India Meteorological Department, New Delhi, are used simultaneously with adequate weights to obtain a multi-model ensemble (MME) technique. In this technique, weights for each NWP model at each grid point are assigned on the basis of unbiased mean absolute error between the bias-corrected forecast and observed rainfall time series of 366 daily data of 3 consecutive southwest monsoon periods (JJAS) of 2008, 2009 and 2010. Apart from MME, a simple ensemble mean (ENSM) forecast is also generated and experimented. The prediction skill of MME is examined against observed and corresponding outputs of each constituent model during monsoon 2011. The inter-comparison reveals that MME is able to provide more realistic forecast of rainfall over Indian monsoon region by taking the strength of each constituent model. It has been further found that the weighted MME technique has higher skill in predicting daily rainfall compared to ENSM and individual member models. RMSE is found to be lowest in MME forecasts both in magnitude and area coverage. This indicates that fluctuations of day-to-day errors are relatively less in the MME forecast. The inter-comparison of domain-averaged skill scores for different rainfall thresholds further clearly demonstrates that the MME algorithm improves slightly above the ENSM and member models.  相似文献   

5.
Summary The diurnal variations of water vapor in central Japan were investigated with GPS-derived precipitable water (PWV) and surface meteorological data as classified to three kinds of locations. Twenty-five clear days in central Japan in August 2000 were investigated to clarify the role of water vapor in the nocturnal maximum in the diurnal cycle of convective rainfall. The diurnal variations of PWV and some meteorological factors were composite during the selected days at 6 stations. The PWV shows a clear diurnal cycle with the amplitude of 3.4 mm to 8.8 mm and changes little during the period from the morning to noon. The daily amplitude of PWV is the largest in basin and smallest in plain although mean of PWV keeps high value in plain. A typical feature of the diurnal variation in central Japan is a maximum appearing in the evening. The time of maximum is from 1800 LST to 2000 LST, and minima appears at noon nearly in mountainous area and basin, while in early morning in plain. The diurnal maximum of PWV appears earlier in mountainous region than in plain. A diurnal cycle of specific humidity can be observed in all locations, and the amplitude in mountainous region is especially large compared with that in basin and plain. It is important to notice that there are remarkable differences in specific humidity among the six stations. The results suggest that the diurnal variation of PWV seems to be strongly affected by the local thermal circulations generated by the topography around these stations. The moisture transport causes the differences in phase of the diurnal cycle of PWV between different locations as well as the phase difference in precipitation. A very clear diurnal variation in surface air temperature is similar to that of solar radiation, with a minimum in the morning and a maximum in early afternoon. Maximum of surface wind speed are corresponded to peak of precipitation very well. It can be concluded that the amplitude of solar radiation increases with altitude as opposed to the situation of PWV generally. The precipitation observed frequently in the evening also shows a similar diurnal variation to that of the PWV, indicating the peak of precipitation appearing in late afternoon or in the evening over central Japan. Meanwhile the PWV reaches its nocturnal maximum. There is a good relationship between the diurnal cycle of observed precipitation and that of the PWV. Authors’ addressess: Guoping Li, Department of Atmospheric Sciences, Chengdu University of Information Technology, #3 Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, P.R. China; Dingfa Huang, Department of Surveying Engineering, Southwest Jiaotong University, Chengdu, China; Fujio Kimura, Tomonori Sato, Institute of Geoscience, University of Tsukuba, Tsukuba, Japan.  相似文献   

6.
The study has analyzed the variability and trends in monthly, seasonal and annual rainfall and rainy days of four locations over different agro-ecological zones of Bihar, namely Samastipur (zone-I), Madhepura (zone-II), Sabour (zone-IIIA) and Patna (zone-IIIB). The Mann–Kendall nonparametric test was employed for detection of statistical significance and slopes of the trend lines were determined using the method of least square linear fitting. The variability and trends of onset of effective monsoon and length of monsoon period were also analyzed using the same method. The mean annual rainfall varies from 1137 mm at Patna to 1219 mm at Sabour. July is the rainiest month in all the zones followed by August. Maximum increase in annual rainfall was found at Sabour (40.1% of mean/30 years at 95% confidence level) and minimum for Patna (10.1% of mean/30 years). Significant increasing trend of rainfall during July, August and September at rates of 41.9, 83.2, and 112.7% of the mean/30 years, respectively has been noticed at Madhepura. Analysis of rainy days indicates that rainy days increased during winter and annually for all the sites. The mean effective onset of monsoon varies from 18th June at Sabour to 28th June at Patna. The trends in the date of effective onset of monsoon indicate that the date tends to be early in all the sites except Madhepura. But a significant delayed trend in the onset at a rate of 2.8% of the mean/30 years has been observed for Madhepura. The early trend of the effective onset of monsoon and increasing trends of length of monsoon season have been observed for Samastipur, Sabour and Patna.  相似文献   

7.
The purpose of this study is to assess the connections between the monsoon anticyclone, gulf surges, and rainfall within the Lower Colorado River Basin (LCRB) during North American monsoon seasons from 1988-2006. The methods involved calculating rainfall characteristics and near-surface humidity for 500-hPa circulation patterns, creating circulation and near-surface humidity composites for rainfall days, and creating near-surface humidity composites for rainfall days occurring under each circulation pattern. The circulation was dominated by the monsoon anticyclone being over or to the immediate east of the basin. The anticyclone was shifted to the northwest (east) of its seasonal mean position on rainfall days in the central portion of the basin (far eastern portion of the basin). Rainfall influenced by gulf surges was most likely when the monsoon anticyclone was shifted westward, especially northwestward, of its typical position. The central portion of the basin received substantially more surge-influenced rainfall than did the far eastern portion of the basin.  相似文献   

8.
FGOALS-g2模式模拟和预估的全球季风区极端降水及其变化   总被引:4,自引:2,他引:2  
利用LASG/IAP(中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室)全球耦合模式FGOALS-g2,评估了其对全球季风区极端气候指标的模拟能力,并讨论了RCP8.5排放情景下21世纪季风区极端气候指标的变化特征。总体而言,模式对季风区总降水和极端气候指标1997~2014年气候态和年际变率的空间分布均具有一定的模拟能力。偏差主要表现在模式低估了亚洲季风强降水中心,低估了中雨(10~20 mm d-1)和大雨(20~50 mm d-1)的频率而高估了暴雨(>50 mm d-1)频率。在RCP8.5排放情景下,由于可降水量的增加,模式预估的全球季风区极端降水、降水总量和降水强度将持续增加。到2076~2095年,极端降水和降水强度在北美季风区增加最显著(约22%和17%),降水总量在澳大利亚增加最显著(约37%)。然而,FGOALS-g2对全球季风区平均的日降水量低于1 mm的连续最大天数(CDD)的预估变化不显著,这是由于预估的CDD在陆地季风区将增加,而在海洋季风区将减少。对各子季风区的分析显示,CDD在南美季风区变长最显著,达到30%,在澳洲季风区变短最显著,达到40%,这与两季风区日降水量低于1 mm的降水事件发生频率变化不同有关。  相似文献   

9.
Daily precipitation totals at 55 sites were used to investigate geographic variability in winter (DJF) rainfall over Cumbria, NW England, over an 11-year period. Winter is the wettest season (>800?mm in the mountainous Lake District), with rainfall mechanisms closely linked to North Atlantic forcing. The Lamb weather type catalogue was used to identify rainfall distributions under different wind directions. Precipitation magnitude over Cumbria is much more sensitive to a change in wind direction than the geographic pattern in rainfall, with southwesterly (easterly) winds producing the highest (lowest) spatially averaged daily rainfall totals of 8.2?mm (0.6?mm). S-mode principal components analysis was used to identify the main patterns of precipitation variability. Three principal components (PCs) were retained as being statistically significant (cumulative explained variance for unrotated PCs?=?84.3%), with a correlated PC structure (direct oblimin rotation) best describing the spatial variance in rainfall. PC 1 has a very high index of strength (variance measure?=?40.9), indicating that there is one dominant rainfall pattern. PC 1 shows a gradient between wetter conditions in southwest Cumbria and over the central Lake District and drier conditions in NE Cumbria, and is usually caused by active zonal west to southwest flows. Almost of equal importance to PC 1 is PC 3 (variance measure?=?39.3), which has a more uniform rainfall distribution than PC 1 and is usually caused by fronts stalling over the region. PC 2, which shows an east to west decline in rainfall totals, is much less important than PCs 1 and 3 (variance measure?=?18.6). PC 2??s rainfall pattern can be caused by easterly flows with high pressure over Scandinavia and low pressure over the Continent, or by strong southwesterly flows, with depressions often centred over Scotland. Finally, cluster analysis was carried out to identify precipitation regions for all days and for each wind direction. Clusters were found to be largely stable to changes in wind direction, with stations in the central Lake District often clustered together, thus highlighting the importance of orographic enhancement of rainfall in this region.  相似文献   

10.
东亚季风指数的定义及其与中国气候的关系   总被引:44,自引:6,他引:38  
利用NCEP/NCAR 850 hPa月平均风场再分析资料,在客观地选定定义地区范围的基础上;定义了一组新的东亚季风指数:西南季风面积和强度指数,东南季风面积和强度指数,偏北季风面积和强度指数.研究了各季风指数的相互关系、季节变化和年际变异.这6个东亚季风指数突出反映了东亚西南季风、东南季风及偏北季风3支季风气流强度和范围变化的特征.分析表明,它们相互之间既有一定联系,又有独立性.各季风指数存在明显的季节变化和年际变化.另外,分析了各季风指数与中国夏季降水和冬季气温的联系,以考察其解释我国气候异常分布的能力.结果表明,这些指数与我国夏季降水和冬季气温有很好的关系,并各自对应有一定的降水和气温分布.特别是西南季风与东南季风影响我国夏季降水的地区有很大差异.因此,我们指出,研究东亚夏季风时,区别西南季风与东南季风是很有必要的,用单一指数不足以表征它们不同的变化.  相似文献   

11.
拉萨旱涝说     
徐近之 《气象学报》1937,13(1):24-38
西极遐荒,为世瞩目,拉萨测候,弹指两年,所址虽未如理想,记载之价值已彰;客岁情形,仆尝揭其大要,昭告邦人君子矣。惟是记载时浅,所见不过一斑,加以他无文献可徵,立论流於武断,势所不免,今岁一切,回异乎是;幸羁旅之身犹在,躬自得之,疑窦可去。於二年极短之时间,发如此其大之隐谜,谓非时曾而何。旱欤涝  相似文献   

12.
The present study aims at the assessment of six satellite rainfall estimates (SREs) in Pakistan. For each assessed products, both real-time (RT) and post adjusted (Adj) versions are considered to highlight their potential benefits in the rainfall estimation at annual, monthly, and daily temporal scales. Three geomorphological climatic zones, i.e., plain, mountainous, and glacial are taken under considerations for the determination of relative potentials of these SREs over Pakistan at global and regional scales. All SREs, in general, have well captured the annual north-south rainfall decreasing patterns and rainfall amounts over the typical arid regions of the country. Regarding the zonal approach, the performance of all SREs has remained good over mountainous region comparative to arid regions. This poor performance in accurate rainfall estimation of all the six SREs over arid regions has made their use questionable in these regions. Over glacier region, all SREs have highly overestimated the rainfall. One possible cause of this overestimation may be due to the low surface temperature and radiation absorption over snow and ice cover, resulting in their misidentification with rainy clouds as daily false alarm ratio has increased from mountainous to glacial regions. Among RT products, CMORPH-RT is the most biased product. The Bias was almost removed on CMORPH-Adj thanks to the gauge adjustment. On a general way, all Adj versions outperformed their respective RT versions at all considered temporal scales and have confirmed the positive effects of gauge adjustment. CMORPH-Adj and TMPA-Adj have shown the best agreement with in situ data in terms of Bias, RMSE, and CC over the entire study area.  相似文献   

13.
The onset and advance of southwest monsoon are accompanied by the appearance of the offshore trough along the southwest coast of India. This offshore trough escorts a deluge of rainfall to the southwest coast, and sometimes rainfall band moves eastward further into south India. These broad observations were noticed during the summer monsoon of June 2017. Meteorological agencies and media had reported a huge amount of rainfall over the southwest coast of India during the month. But, in the far interior of south India, rainfall was less. Due to the less rainfall, water resources depleted, which affected local farmers and common man of south India. The confused views of the common man on southwest coast rainfall could be due to lack of understanding related to various factors affecting rainfall over the same region. This article is an endeavor to address the preliminary understanding of the southwest coast rainfall during June 2017, with more stress on offshore troughs. The study begins with area-averaged rainfall statistics over south, southwest, and southeast India by employing satellite and rain gauge merged rainfall datasets. Area averaged analysis revealed offshore trough contributed 80 % of rainfall over the South West India, 68 % over South East India, contributing to an overall 75 % over south India in 2017. To identify offshore trough position and strength in the reanalysis and model simulations, a new method called VSV (Vertical Shear of Vorticity) method was introduced. The computed offshore troughs were categorized into Active, Normal, and Feeble based on the strength of meridional gradient of mean sea level pressure and 850 hPa horizontal winds. The contribution due to each category of the offshore trough over different sub-regions was investigated to find out the effect of the offshore trough to total rainfall. Dynamic and thermodynamic features of these categories of the offshore trough were investigated by using proxies like equivalent potential temperature and moisture flux convergence. We found that during active offshore trough an eastward propagation of rain bands persists, which was explained by using moisture flux convergence and equivalent potential temperature at different levels of the atmosphere.  相似文献   

14.
1 INTRODUCTION In the recent years, more and more researches have shown that the effect of Tropical Ocean is very evident in the process of ocean-air interaction; Sea-Surface Temperature Anomaly (SSTA) takes on global configuration and SSTA in different areas are interrelated and also have their respective characteristics. The SSTA over Indian Ocean and Pacific Ocean are interrelated. WU et al.[1] and MENG et al.[2] indicated that the evident positive correlation of inter-annual…  相似文献   

15.
利用气象观测、高分辨率城市地理信息、卫星遥感反演及ERA-Interim再分析资料,基于水平风速、混合层高度及地表粗糙度长度指标,利用等权重加权综合评价法和几何间隔分级法,开展了石家庄市风环境容量指标和区划研究,得到风环境容量指数分级阈值和空间分布.结果表明,石家庄市水平风速和大气混合层高度均由西部山区向东南部平原逐渐降低,在西南部山区存在一个高值区,在东南部平原存在一个低值区,且具有明显的季节和日变化特征;石家庄市区和西部山区地表粗糙度长度较大,平原地区较小;风环境容量指标分为低值区、次低值区、中等区、次高值区和高值区5个等级,在空间上石家庄市区及平原地区级别较低,西部和北部山区级别较高,其中石家庄市区、正定东南部、栾城东部、藁城大部分地区及无极西部是风环境容量最低区域,赞皇、高邑、赵县西南部、元氏西部、南部及井陉西南部为最高区域.  相似文献   

16.
西北太平洋夏季风对中国长江流域夏季降水的影响   总被引:11,自引:5,他引:6  
刘芸芸  丁一汇 《大气科学》2009,33(6):1225-1237
利用1979~2005年NCEP/NCAR的环流场再分析资料和降水资料, 通过对季风期降水、 大气环流、 水汽输送及低频振荡等方面的分析, 分别从时间和空间上分析了西北太平洋夏季风与中国长江流域夏季降水的联系。结果表明:(1) 西北太平洋夏季风与中国长江流域夏季降水存在显著的负相关关系, 在西北太平洋夏季风强盛时, 副热带高压异常偏北, 其西侧的偏南气流异常偏弱, 使得我国长江流域形成低层异常环流及水汽输送的辐散区, 从而造成长江流域夏季降水偏少; 而在西北太平洋夏季风减弱的年份, 西太平洋副高异常偏南偏西, 在长江流域以南地区形成异常偏强的偏南风水汽输送, 使得长江流域成为南、 北距平风的汇合区, 其上空对流活动异常活跃, 非常有利于长江流域的降水。 (2) 东亚局地Hadley垂直环流在强、 弱季风年也显著不同, 在强季风年里, Hadley局地环流异常偏弱, 长江流域上空出现的下沉运动距平, 使得该地区降水减弱, 而弱季风年则正好相反。 (3) 西北太平洋夏季风存在显著的气候平均的大气季节内振荡 (CISO), 在西北太平洋夏季风减弱时期, 长江流域降水同时受到源自热带西北太平洋西传CISO和源自热带印度洋东传CISO的共同影响, 可能造成了某种锁相关系, 从而造成降水偏多; 而在强季风年里长江流域只受由西太平洋西传的CISO的影响, 不容易激发降水。  相似文献   

17.
1998 SCSMEX期间亚洲30-60天低频振荡特征的分析   总被引:34,自引:0,他引:34  
对1998年 5-8月南海季风试验(SCSMEX)期间东亚地区 850 hPa中低纬环流指数、东亚季风指数和长江中下游降水进行了Morlet 小波分析,结果表明在此期间这些要素均有明显的30-60天周期低频振荡。在此基础上对 5-8月每隔 5天的 850 hPa低频流场进行分析,结果表明:(1)100°-150°E间东亚从中国东中部大陆经南海和西太平洋的南北半球中明显的存在一个以30-60天低频荡为特征的东亚季风低频环流系统,东亚季风活动主要受东亚季风系统中低频活动影响;(2)5月第5候南海热带季风爆发、6月中旬长江中下游人梅及产生大暴雨以及7月中旬以后的该地区大暴雨均与低频气旋带在该地区活动有关,而8月长江上游大暴雨则与低频反气旋伸人到大陆有关;(3)SCSMEX期间东亚低频振荡系统的源地有二个,即南海赤道和北半球中太平洋中高纬。南海低频系统向北传播,而中高纬低频系统自东北向西南传播为主。长江中下游6、7月二次大暴雨均与上述二个低频气旋系统自热带向北和中高纬向西南传播并于长江中下游汇合有关;(4)5-8月间东亚季风系统中有二次低频气旋带和二次低频反气旋带活动,这些低频环流系统的活动与印度季风低频环流系统活动并无明  相似文献   

18.
金妍  李国平 《高原气象》2021,40(2):314-323
利用ERA5再分析资料和融合降水数据,针对2018年5月21-22日发生在中国四川盆地西南部的一次山地突发性暴雨,首先对其降水强度和天气概况进行相关分析,并且通过绕流和爬流方程,将流场分解为绕流和爬流分量,重点探讨地形对于过山气流的影响及其对降水的作用.研究表明:受欧亚中高纬低槽槽后西北气流引导冷空气南下和西南低涡东移...  相似文献   

19.
During FGGE year 1979, low-level air flow over the western Indian Ocean was determined from the analysis of GOES images (5-20 June). The wind pattern shows sudden change in low-level air circulation over western Indian Ocean during the initial burst of summer monsoon. The burst of monsoon is characte-rized by sudden establishment of low-level jet and strong cross-equatorial flow. This abrupt change signals the beginning of southwest monsoon over India and it is associated with the first monsoon rainfall over the southern part of western coast of India. Sudden change in low-level air flow is followed by the burst of monsoon within 3-5 days.  相似文献   

20.
Summary The summer monsoon rainfall over Orissa, a state of eastern India, shows characteristic intraseasonal and interannual variability, due to interaction of basic westerly flow with orography and the synoptic scale monsoon disturbances including low-pressure systems and cyclonic circulations extending upto mid-tropospheric level (LPSC). These systems normally develop over the north Bay of Bengal and move west-northwestwards along the monsoon trough. The essence of this study is to find out the main features of the intraseasonal variability of daily monsoon rainfall over Orissa in relation to synoptic systems like LPSC and its implication on the interannual variation of rainfall. For this purpose, the actual and mean daily rainfall data of 31 uniformly distributed stations, six homogeneous regions and Orissa as a whole during monsoon season (June–September) over a period of 20 years (1980–1999) are subjected to auto-correlation and power spectrum analyses. The actual and average daily scores of significant EOFs and actual daily occurrence along with daily probability of occurrence of the LPSC influencing rainfall over Orissa during the same period are also subjected to auto-correlation and power spectrum analyses. The intraseasonal variation of monsoon rainfall over Orissa and different homogeneous regions is dominated by the synoptic mode (3–9 days) of variation due to the similar mode of variation in the occurrence of LPSC influencing the rainfall. The seasonal rainfall and hence the interannual variation depends on the intraseasonal variation of rainfall modulated with the synoptic mode of variation in the occurrence of the LPSC. The occurrence of LPSC over the northwest (NW) Bay/NW and adjoining northeast (NE) Bay and its subsequent movement and persistence over Orissa and east Madhya Pradesh & Chhattisgarh in synoptic mode (3–6 days) alongwith absence of similar mode in the occurrence of the LPSC over NE Bay, Gangetic West Bengal (GWB) in the north and west central (WC) Bay to the south leads to excess rainfall over different homogeneous regions and Orissa as a whole. The reverse is the case in deficient years over Orissa and all homogeneous regions except southwest Orissa. The occurrence of the LPSC over GWB in synoptic mode (about 5 days) alongwith absence of synoptic mode in the occurrence of the LPSC over NW Bay leads to deficient rainfall year over southwest Orissa. Correspondence: U. C. Mohanty, Centre for Atmospheric Sciences, Indian Institute of Technology, Delhi Hauz Khas, New Delhi 110016, India  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号