首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
2006年极端天气和气候事件及其他相关事件的概要回顾   总被引:3,自引:2,他引:1  
2006年1月中旬欧洲东部地区经历10年来的最低温天气;2月,非洲南部地区遭遇20年以来的最强降水;2006年上半年美国路易斯安那州经历111年来最干旱的时期;7月,欧美地区经历破纪录的高温炎热天气;菲律宾、印尼、印度等东南亚国家遭受暴雨洪灾。2006年春季,我国北方地区遭受18次沙尘天气的侵袭;夏季重庆等地区遭遇百年一遇的大旱;我国东南沿海等地受到多次强台风袭击;波及全国31个省(市、区)的冰雹、雷雨等强对流天气……。2006年是全球有气象记录以来的第6个高温年,极端天气和气候灾害并没有缓和的迹象;我国又经历了许多极端天气和气候灾害。  相似文献   

2.
Extreme weather conditions can strongly affect agricultural production, with negative impacts that can at times be detected at regional scales. In France, crop yields were greatly influenced by drought and heat stress in 2003 and by extremely wet conditions in 2007. Reported regional maize and wheat yields where historically low in 2003; in 2007 wheat yields were lower and maize yields higher than long-term averages. An analysis with a spatial version (10?×?10?km) of the EPIC crop model was tested with regards to regional crop yield anomalies of wheat and maize resulting from extreme weather events in France in 2003 and 2007, by comparing simulated results against reported regional crops statistics, as well as using remotely sensed soil moisture data. Causal relations between soil moisture and crop yields were specifically analyzed. Remotely sensed (AMSR-E) JJA soil moisture correlated significantly with reported regional crop yield for 2002–2007. The spatial correlation between JJA soil moisture and wheat yield anomalies was positive in dry 2003 and negative in wet 2007. Biweekly soil moisture data correlated positively with wheat yield anomalies from the first half of June until the second half of July in 2003. In 2007, the relation was negative the first half of June until the second half of August. EPIC reproduced observed soil dynamics well, and it reproduced the negative wheat and maize yield anomalies of the 2003 heat wave and drought, as well as the positive maize yield anomalies in wet 2007. However, it did not reproduce the negative wheat yield anomalies due to excessive rains and wetness in 2007. Results indicated that EPIC, in line with other crop models widely used at regional level in climate change studies, is capable of capturing the negative impacts of droughts on crop yields, while it fails to reproduce negative impacts of heavy rain and excessively wet conditions on wheat yield, due to poor representations of critical factors affecting plant growth and management. Given that extreme weather events are expected to increase in frequency and perhaps severity in coming decades, improved model representation of crop damage due to extreme events is warranted in order to better quantify future climate change impacts and inform appropriate adaptation responses.  相似文献   

3.
Extreme weather events include unusual, severe or unseasonal weather, and weather at the extremes of the historical distribution. They have become more frequent and intense under global warming, especially in mid-latitude areas. They bring about great agricultural and economic losses. It is important to define the threshold of extreme weather event because it is the starting point of extreme weather event research, though it has been of seldom concern. Taking extreme precipitation events in Anhui, China as an example, the detrended fluctuation analysis (DFA) method is introduced to define the threshold of extreme weather events. Based on it, the spatial and temporal distributions of extreme precipitation events are analyzed. Compared to the traditional percentile method, DFA is based on the long-term correlation of time series. Thresholds calculated by DFA are much higher than the 99th percentile and the values are higher in the south and lower in the north. This spatial pattern is similar to the annual precipitation spatial pattern. There is an obvious increasing trend in the number of days with extreme precipitation, especially after the 1980s. This observation supports the point that more extreme events happen under global warming.  相似文献   

4.
It has been argued that public doubts about climate change have been exacerbated by cold weather events seen as a form of disconfirming evidence for anticipated ‘warming’. Although a link between perceptions of climate and weather is well-established, such assumptions have not been empirically tested. Here we show, using nationally representative data, that directly following a period of severe cold weather in the UK, three times as many people saw these events as pointing towards the reality of climate change, than as disconfirming it. This we argue was a consequence of these cold winters being incorporated into a conceptualisation of extreme or ‘unnatural’ weather resulting from climate change. We also show that the way in which people interpret cold weather is associated with levels of pre-existing scepticism about climate change, which is in turn related to more general worldviews. Drawing attention to ‘extreme’ weather as a consequence of climate change can be a useful communication device, however this is problematic in the case of seasonal cold.  相似文献   

5.
Observed trends in severe weather conditions based on public alert statements issued by Environment Canada are examined for Canada. Changes in extreme heat and extreme cold events represented by various humidex and wind chill indices are analyzed for 1953–2012 at 126 climatological stations. Changes in heavy rainfall events based on rainfall amounts provided by tipping bucket rainfall gauges are analyzed for 1960–2012 at 285 stations. The results show that extreme heat events, defined as days with at least one hourly humidex value above 30, have increased significantly at more than 36% of the stations, most of which are located south of 55°N; days with nighttime hourly humidex values remaining above 20 have increased significantly at more than 52% of the stations, most of which are located south of 50°N. Extreme cold events represented by days with at least one hourly wind chill value below ?30 have decreased significantly at more than 76% of the stations across the country. No consistent changes were found in heavy rainfall events. Because city residents are very vulnerable to severe weather events, detailed results on changes in extreme heat, extreme cold, and heavy rainfall events are also provided for ten urban centres.  相似文献   

6.
2020年,全国平均气温10.25℃,较常年偏高0.7℃;全国平均降水量694.8毫米,比常年偏多10.3%.总体上涝重于旱,夏季南方地区发生1998年以来最严重汛情,暴雨洪涝灾害重;干旱呈区域性阶段性特征,灾害损失偏轻;春夏季节转换早,高温出现早,极端性强,夏季南方高温持续时间长;登陆台风偏少,影响时段和地域集中;冷...  相似文献   

7.
High wind caused catastrophes, storms causing property losses >$1 million, during 1952–2006 averaged 3.1 events per year in the U.S. The average loss per event was $90 million, and the annual average loss was $354 million. High wind catastrophes were most frequent in the Northeast, Central, and West Coast areas. Storm losses on the West Coast were the nation’s highest, averaging $115 million per event. High wind losses are the nation’s only form of severe weather that maximizes on the West Coast. High wind catastrophes were most frequent in winter, and were infrequent in the late spring and early fall seasons. Loss areas were frequently confined to one state. Losses in the western U.S. and nationally have increased during the 1952–2006 period, both with statistically significant upward trends.  相似文献   

8.
This article presents a review of the status and basis of wind-generated electricity production, the state of knowledge regarding possible changes in the spatio-temporal characteristics of the wind resource and wind turbine operating conditions, the principal extreme events that are of relevance to the wind energy industry, and the major potential vulnerabilities of the wind energy industry to climate change, with a specific focus on extreme events. Generally, the magnitude of projected changes over Europe and the contiguous USA are within the ‘conservative’ estimates embedded within the Wind Turbine Design Standards. However, more research is needed to quantify (i) how global climate evolution may influence the operation of wind turbines outside these regions, (ii) events causing coincident extreme wind speeds, gusts, and vertical wind shear, and (iii) combined wind-wave loading on offshore turbines.  相似文献   

9.
极端事件对人类系统的影响   总被引:1,自引:0,他引:1  
在IPCC特别报告《管理极端事件和灾害风险,推进气候变化适应》中,极端天气气候事件对人类系统的影响是最重要的影响评估内容之一,其评估结果为:极端影响可能缘于极端天气气候事件,但也可能并非极端事件的后果。暴露度和脆弱性是灾害风险的重要决定因素;极端和非极端天气气候事件的严重程度和影响在很大程度上取决于对这些事件的脆弱性和暴露度水平;人居模式、城市化和社会经济状况的变化已经影响观测到的脆弱性和暴露度的变化趋势;无论在发达国家还是发展中国家,沿海人居环境均暴露于极端事件,并受其影响,如小岛屿国家和亚洲大三角洲地区;脆弱人口还包括难民、国内流离失所的人和那些生活在边远地区的人;极端事件将极大地影响与气候联系密切的部门,如水、农业、食物安全、健康和旅游业。  相似文献   

10.
气候异常常出现极端天气气候事件和严重的气象灾害,对人类活动和农业生产有严重影响。锡林郭勒盟2009年冬至2010年春气温异常偏低,降水多,一些地区冬季的极端最低气温突破了历史极值。低温多雨的春季气候虽然为牧草生长和农作物播种提供了较好的水分条件,但异常偏低的气温造成严重的热量条件不足,导致锡林郭勒盟大部地区牧草返青期推迟了15~20天,主要作物播种期推迟了10~15天,影响了牧草和农作物生产,推迟了牲畜采青。  相似文献   

11.
全球变暖背景下,极端天气气候事件频发,并表现出群发性、持续性、复合性等特点,不可预测性增加;持续性强降水、极端低温、复合型极端高温干旱、群发性热浪和台风等极端天气气候事件对我国经济社会和可持续发展影响巨大。然而,上述极端天气气候事件的新特征、关键过程和机理尚不完全清楚,重大极端事件的预报预测水平亟待提升。文章首先简要介绍“地球系统与全球变化”重点专项项目“中国极端天气气候事件的形成机理及其预测和归因”的基本情况。项目拟在分析全球变化背景下对我国造成重大影响的极端天气气候事件新特征的基础上,深入研究多尺度海-陆-气耦合过程影响极端天气气候事件的机理,挖掘极端天气气候事件次季节-季节预测的前兆信号;发展动力与物理统计相结合的极端事件预测新方法,研制针对中国极端事件的新一代高分辨率数值预报与检测归因系统。文章重点总结了自2022年12月项目立项至今取得的最新研究成果和进展。  相似文献   

12.
黄海西部海洋工程风、浪设计参数的分析和计算   总被引:1,自引:1,他引:1       下载免费PDF全文
使用黄海西部站点观测、船舶记录及海洋调查资料,建立计算海面风速的转换关系式。综合转换风速、台风报告或台风风场计算风速,分七个区块建立年最大风速序列;藉助极值Ⅰ型概率分布,推导了各区不同重现期的大风极值。开发使用美国SOWM波浪谱模式产品,推导了二个格点上不同重现期的波高极值,该值与近海波浪计算值一起组成合理的极端波高分布。  相似文献   

13.
台风“莫拉克”影响期间浙江大风成因分析   总被引:1,自引:0,他引:1  
曹楚  王忠东  郑峰 《气象科技》2013,41(6):1109-1115
利用常规资料、浙江省自动站加密资料、NCEP/NCAR1°×1°每日4次再分析资料和多普勒天气雷达资料对2009年第8号台风“莫拉克”影响期间浙江大风的成因进行了分析。此次台风大风影响具有影响时间早、持续时间长、影响范围大和大风强度强的特点。副热带高压快速加强西进是造成台风大风提早出现的主要原因之一。鞍型场、3个台风相互影响使得“莫拉克”台风移速减慢,导致台风大风对浙江沿海的影响时间增长。“莫拉克”登陆福建后其西北侧华北高压以及东南侧海上高压的存在使得地面气压梯度维持,导致大风影响时间增长和影响范围增大。垂直方向环流将高层动量下传导致低层风速猛增。多普勒天气雷达径向速度产品VCP21进行速度退模糊后可以作为台风大风分布范围和极大风速预测的一个参考依据,预测时其在沿海海面效果要较内陆好。  相似文献   

14.
Extreme weather events and changed climate parameters have impacts on power plants and their connected infrastructures. Therefore, adaptation, especially in the context of a changing climate and a resulting shift in the intensity and frequency of extreme events, is necessary. Thermal power plants are subject to a diversity of extreme weather impacts, making them vulnerable if not adapted. In this paper, the impacts of extreme weather events on thermal power plants are first identified and structured. Then selected adaptation options for thermal power plants are presented. Three major types of adaptation option are identified: adaptation of cooling, infrastructure, and sites. The Supplementary Material introduces a GIS-based (Geographic Information System) decision-support tool for power plant adaptation and planning.  相似文献   

15.
WonMoo Kim  Wenju Cai 《Climate Dynamics》2014,42(11-12):3005-3014
Extreme El Niño (e.g., 1983/1983 and 1997/1998) causes severe weather and climate impacts globally, but the associated dynamics is not fully understood. The present study shows that advection of mean temperature by anomalous eastward zonal current plays an important role in producing such extreme events especially during the early part of the developing period. While the climatological direction of the upper oceanic current in the equatorial Pacific is westward, at times the direction reverses. These eastward current events are well distinguished from the normal, westward conditions. The upper-layer zonal current in the equatorial Pacific is basically in geostrophic balance and forced by wind stress. However, in the case of the eastward zonal current events, persistent westerly winds are observed in the Western Pacific, and the current becomes synchronized with the westerly wind stress above. The advection of the mean temperature by the anomalous zonal current in the early developing period always precedes strong El Niño, though it does not significantly contribute to the growth of La Niña, neutral, and moderate El Niño; and is the major contributor of asymmetry in the early developing phase.  相似文献   

16.
Abstract

A mathematical model (Microsim) was developed to estimate the microclimate at the top of nearby crops using inputs of weather station data and some knowledge about crop characteristics, such as height, albedo, and leaf area index. The model was tested using data measured simultaneously over a weather station and over each of two crops ‐ corn and soybean. Temperatures at the top of unstressed, uniform crops on level terrain within 1600 m of a recording weather station were estimated within 1.0° C 96% of the time for a corn crop and 92% of the time for a soybean crop. Winds at crop top were estimated within 0.4 m s?1 92% of the time for corn and 100% of the time for soybean. Energy balance flux density estimates for the corn crop resulted in correlation coefficients of r > 0.89 for each of Rn, LE, H and G. microsim worked well under atmospheric conditions that ranged from very stable to unstable.

An enhancement was made to the model to describe wind and temperature profiles based on the complete fetch characteristics of the sites. This resulted in significantly better wind estimates, but had the disadvantage of requiring more information about the crop and weather station surroundings.  相似文献   

17.
The limitations of observational data available for the study of damaging weather conditions (e.g., storms and extreme temperature events) are discussed. Crop and property insurance loss records are advocated as a potential supplement to traditional weather observations, as they integrate specific information about the spatial dimension of damaging weather conditions and the cost of damage they cause. Insurance loss data may also be analyzed in combination with meteorological data sets to derive indicator variables for the detection of damaging weather events.Two sets of insurance data are described. One record provides adjusted property losses associated with "catastrophic" weather events since 1949, and the other is an index of the amount of crop-hail losses per year since 1948. Additionally, an example of the benefits of the combination of insurance and meteorological data is presented through a selection of results from a recent study of freezing temperatures in the southeastern United States and associated insurance claims related to pipe bursting.If insurance data are to be applied in the future in similar studies of damaging weather conditions, it is essential that the insurance industry continues to collect and adjust loss data and periodically confirm that adjustment factors are temporally consistent.  相似文献   

18.
与IPCC第五次评估报告相比,第六次评估报告(AR6)有关农业的评估对象由作物生产系统延伸到粮食供应链系统,气候变化对作物生产不利影响的证据在加强。气候变化改变了作物适宜种植区,使中高纬度及温带地区作物种植界限向高纬度、高海拔地区推移。人为引起的气候变暖阻碍了作物产量的增长,地表O3浓度增加使作物产量降低,CH4排放加剧了这种不利影响。气候变化加剧作物病虫草害,极端气候事件高发加剧了粮食不安全,推升了国际粮食价格。适应措施有助于减缓气候变化不利影响,基于自然的适应方案在增强作物生产系统气候恢复力和保障粮食安全方面具有较高潜力。从保障国家粮食安全和重大战略需求出发,AR6报告对我国农业应对气候变化相关工作的启示如下:需要高度重视气候变化背景下作物种植适宜区转变与种植带北移的重要战略价值,合理规划农业生产布局;加强农业气象灾害和病虫害防治体系和能力建设,保障粮食生产稳定性;关注气候变化对国际作物生产和谷物贸易的影响,统筹国内、国际市场粮食资源,保障粮食安全;推进农业温室气体减排与作物生产高效协同,为实现国家减排目标做出贡献。  相似文献   

19.
China experienced significant flooding in the summer of 2020 and multiple extreme cold surges during the winter of 2020/21. Additionally, the 2020 typhoon season had below average activity with especially quiet activity during the first half of the season in the western North Pacific(WNP). Sea surface temperature changes in the Pacific, Indian, and Atlantic Oceans all contributed to the heavy rainfall in China, but the Atlantic and Indian Oceans seem to have played dominant roles. Enhancement and movement of the Siberian High caused a wavier pattern in the jet stream that allowed cold polar air to reach southward, inducing cold surges in China. Large vertical wind shear and low humidity in the WNP were responsible for fewer typhoons in the first half of the typhoon season. Although it is known that global warming can increase the frequency of extreme weather and climate events, its influences on individual events still need to be quantified.Additionally, the extreme cold surge during 16–18 February 2021 in the United States shares similar mechanisms with the winter 2020/21 extreme cold surges in China.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号