首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report is a summary of China's climate, as well as major weather and climate events, during 2021. In 2021, the mean temperature in China was 10.5°C, which was 1.0°C above normal (1981–2010 average) and broke the highest record since 1951. The annual rainfall in China was 672.1 mm, which was 6.7% above normal. Also, the annual rainfall in northern China was 40.2% above normal, which ranked second highest since 1961. The rainstorm intensity in the rainy season was strong and featured significant extremes, and disasters caused by rainstorms and flooding were more serious than the average in the past decade. In particular, the extremely strong rainstorm in Henan during July and autumn caused flooding in the middle and lower reaches of the Yellow River with severe consequences. Heatwaves occurred more frequently than normal, and their durations in southern China were longer than normal in summer and autumn. Phased drought was obvious, and caused serious impacts in South China. The number of generated and landfalling typhoons was lower than normal; however, Typhoon In-fa broke the record for the longest overland duration, held since 1949, and affected a wide area. Severe convective weather and extreme windy weather occurred frequently, causing serious impacts. The number of cold waves was more than normal, which caused wide-ranging extremely low temperatures in many places. Sandstorms appeared earlier than normal in 2021, and the number of strong dust storm processes was more than normal.摘要2021年, 中国气候暖湿特征明显, 全国平均气温10.5℃, 较常年偏高1.0℃, 创下了1951年以来最高纪录; 全国平均降水量672.1毫米, 比常年偏多6.7%, 其中北方地区平均降水量较常年偏多40.2%, 为1961年以来第二多. 汛期暴雨过程强度大, 极端性显著, 河南特大暴雨灾害影响重, 黄河中下游流域秋汛明显; 高温过程多, 夏秋南方高温持续时间长; 区域性, 阶段性气象干旱明显, 华南干旱影响较重; 台风生成和登陆均偏少, “烟花”陆地滞留时间长, 影响范围广; 强对流天气强发, 极端大风频发, 局地致灾重; 寒潮过程多, 强度大, 极端低温频现; 沙尘天气出现早, 强沙尘暴过程多.  相似文献   

2.
2019年,长江三峡地区年平均气温17.5℃,较常年偏高0.3℃;冬季偏冷,春,夏,秋三季气温均偏高;年高温日数偏多.2019年三峡地区年降水量1035.1毫米,较常年偏少13%;四季降水均偏少;年暴雨日数偏少.2019年,长江三峡地区年平均风速较常年偏大;年平均相对湿度接近常年;酸雨强度弱,为1999年以来的最弱年,近十余年酸雨强度呈现明显的减弱趋势.2019年,长江三峡地区高温过程多,持续时间长;三峡中东部地区出现伏秋连旱;华西秋雨开始旱,三峡中西部雨量多.  相似文献   

3.
China experienced significant flooding in the summer of 2020 and multiple extreme cold surges during the winter of 2020/21. Additionally, the 2020 typhoon season had below average activity with especially quiet activity during the first half of the season in the western North Pacific(WNP). Sea surface temperature changes in the Pacific, Indian, and Atlantic Oceans all contributed to the heavy rainfall in China, but the Atlantic and Indian Oceans seem to have played dominant roles. Enhancement and movement of the Siberian High caused a wavier pattern in the jet stream that allowed cold polar air to reach southward, inducing cold surges in China. Large vertical wind shear and low humidity in the WNP were responsible for fewer typhoons in the first half of the typhoon season. Although it is known that global warming can increase the frequency of extreme weather and climate events, its influences on individual events still need to be quantified.Additionally, the extreme cold surge during 16–18 February 2021 in the United States shares similar mechanisms with the winter 2020/21 extreme cold surges in China.  相似文献   

4.
Based on the daily maximum temperature data and average temperature data prediction for the period ranging from 2020 to 2099 under the scenario of BNU-ESM climate engineering (G4 test) and non-climate engineering (RCP4.5), the regional differences in the extreme high-temperature intensities in China during the implementation of climate engineering programs (2020 to 2069) and after the implementation of those programs (2070 to 2099) were analyzed using a Weibull Distribution Theory. The results indicated the following: (1) The results of this study’s comparison between the two scenarios had shown that climate engineering had not fundamentally changed the spatial features of the high and low differentiations for the extreme high-temperature intensities with the different recurrence periods in China. It was found that in both scenarios, the extreme high-temperature intensities were characterized by the spatial differentiations of low-temperature intensities on the Qinghai-Tibet Plateau, and high-temperature intensities in the eastern and northwestern region; (2) This study’s comparison results of the two scenarios had indicated that the climate engineering processes during the two study periods could potentially help mitigate the extreme high-temperature intensities with different recurrence periods in China. Furthermore, the mitigation effects during the implementation period would be significantly higher than those after the implementation; (3) This study’s results of the comparison between the periods ranging from 2020 to 2069 and 2070 to 2099 under the proposed climate engineering scenarios suggested that there would be no strong rebounding of the extreme high-temperatures following the implementation of climate engineering programs, and the mitigation effects on the extreme high-temperature intensities during the implementation of the climate engineering programs would be significantly higher than after the implementation of the programs; (4) When comparisons were made of the changes of the average temperatures in China before and after the implementation of climate engineering programs, the results had shown that the average temperature in China had been reduced by at least 1.25℃ as a result of climate engineering, which would effectively alleviate the global warming trend, and could also be conducive to the realization of a temperature control target of 1.5℃ in accordance with the Paris Agreement.  相似文献   

5.
中国是自然灾害频发的国家,气象灾害造成的损失占自然灾害造成损失的70%。2020年夏季出现超长梅雨期,长江和淮河发生洪水;2021年夏季,华北雨季开始早,结束晚,期间发生了“21·7”河南地区特大暴雨事件。这些气象灾害都对人民生命财产造成严重损失。因此,有必要提前对气候异常进行预测,以提高国家的防灾减灾能力。2022年3月,中国科学院大气物理研究所开展汛期(6~8月)的全国汛期气候趋势预测会商会。通过综合大气所各个数值模式和统计模型的结果,在未来4~6个月全球短期气候仍处在La Ni?a事件恢复到ENSO正常状态的背景下,预计2022年汛期(6~8月),东北东部和中部、华北大部分地区、黄河中下游、东南沿海、西北地区中部、西藏大部分地区、西南地区东部和云南大部分地区降水正常略偏多,其中环渤海湾地区降水偏多2~5成,可能发生局地洪涝灾害。全国其他大部分地区降水正常略偏少,其中长江下游地区和新疆北部降水偏少2~5成。预计今年登陆台风数正常略偏多。由于未来ENSO的趋势演变具有一定的不确定性以及夏季降水受到中高纬大气环流季节内变化的影响,因此,此次汛期预测结果具有一定的不确定性。我们将根据2022年春末、夏初大气环流和海洋等因子的实际演变趋势,做进一步补充订正预测。  相似文献   

6.
2011年中国气候概况   总被引:9,自引:3,他引:6  
2011年,我国气候总体呈现暖干特征。全国年平均气温较常年偏高0.5℃,为1997年以来连续第15个暖年;年降水量556.8mm,较常年偏少9%,为1951年以来最少。年内,我国未出现大范围持续性严重干旱和流域性洪涝灾害,低温冰冻和雪灾、局地强对流、热带气旋灾害较轻。但区域性、阶段性气象灾害频发。华北、黄淮出现近41年来最重秋冬连旱;长江中下游出现近60年来最重冬春连旱,6月旱涝急转,发生暴雨洪涝灾害;西南出现近60年来最重夏秋旱;华西和黄淮秋汛明显;华南南部10月发生较重暴雨灾害;强降水造成北京等大城市发生内涝;夏季南方大部持续高温,多地高温破历史纪录;台风纳沙、梅花影响范围广、致灾程度较重。2011年中国气象灾害为正常偏轻年份,直接经济损失偏多,死亡人数和受灾面积均为1990年以来最少。  相似文献   

7.
2021年10月3—6日,我国北方地区经历了历史罕见的持续性极端强降水过程,暴雨中心稳定维持在陕西中部、山西、京津冀、辽宁等地南部和山东北部,给上述地区造成了巨大的经济损失和严重的人员伤亡。基于台站观测降水、NCEP/NCAR和ERA5再分析资料诊断了本次降水过程的极端性。结果表明,本次暴雨过程无论是降水强度、持续时长还是经向水汽输送均表现出典型北方夏季暴雨和大气环流配置特征。上述五省二市区域平均的过程累计雨量强度远远超过秋季其他暴雨个例,即使在夏季也位列第二。本次过程的极端性与强降水中心稳定在上述地区密切相关。上述五省二市区域平均降水连续4日均超过15 mm,这在秋季历史上从未出现过。除过程的极端性强外,9月山西等地降水异常偏多对10月初秋涝也起到了叠加作用。本次秋涝对应的大气环流呈现出典型的北方夏季主雨季环流型,表现为西太平洋副热带高压(副高)偏西偏北,副高西侧的经向水汽输送异常强盛,同时10月4—6日北方地区发生一次强冷空气过程,冷暖气流交汇在上述地区。水汽收支计算表明,本次过程的经向水汽输送强度为秋季历史之最,甚至超过了盛夏时期北方大部分暴雨过程水汽输送强度。上述分析结果表明,即使在仲秋时节亦可产生有利于北方极端持续暴雨的环流形势和水汽输送,并导致秋涝发生。  相似文献   

8.
迟茜元  马学款  江琪  尤媛  关良 《气象》2021,(3):381-388
2020年12月大气环流的主要特征是:北半球极涡呈偶极分布,环流呈三波型,欧亚中高纬度环流经向度大,东亚大槽偏强,南支槽偏弱。12月,全国平均降水量为5.8 mm,比常年同期(10.5 mm)偏少45.3%,全国平均气温为-3.9℃,比常年同期(-3.2℃)偏低0.7℃。月内共出现2次强冷空气过程、2次大范围降水过程和2次大范围雾-霾天气过程。其中27—31日,我国大部分地区遭遇寒潮天气,降温幅度大,影响范围广,多地最低气温突破历史极值。  相似文献   

9.
利用1961—2020年中国区域2089个地面观测站资料,分析了1991—2020年和1981—2010年新、旧气候态下,平均气温、最高气温、最低气温和降水量等变量的空间变化特征,探讨对气候距平值、极端事件等评估结果的影响。结果表明:新气候态下,全国三类气温年和季节平均均一致升高,年降水增加,空间上气温偏高(低)、降水偏多(少)的特征将弱(强)化;华北东部、华东中部和北部以及青海西南部的年平均风速和日照时数距平增加;极端高温年减少,低温年增多,其中平均气温和最低气温受到的影响较最高气温更大;夏季南北方两条雨带极端强降水年的发生概率降低,冬季东北中部和南部、华北、华东北部、西北东部极端弱降水年概率显著增加;全国超过一半的站点极端日高温、低温和强降水事件的历史频次发生改变;新气候态还减弱了极端日高温事件的增速,加快了极端日低温事件的降速。  相似文献   

10.
2020年,长江三峡地区年平均气温17.2℃,接近常年;年平均降水量1530.8毫米,偏多29%,为1961年以来第二多,仅次于1998年.6月,7月降水量及年平均暴雨日数均为1961年以来第二多.平均风速较常年偏大;相对湿度略偏高;各月均无酸雨出现,近十余年酸雨强度呈现明显减弱趋势.2020年,三峡地区夏季暴雨洪涝灾...  相似文献   

11.
利用全国175个测站1960—1999年间的日平均气温资料,分别选取1960—1989年(气候态A)、1970—1999年(气候态B)作为气候背景,采用蒙特卡洛显著性检验法检验了这两个气候态背景下我国冬夏两季季节平均气温的差异显著性。并在此基础上利用气候百分位法分别分析了在这两个气候态背景下2000—2010年间我国冬夏两季的极端气温特征。分析结果表明,相对于夏季,冬季气候态A、B背景下季节平均气温的差异更为显著。冬夏两季,我国大部分地区极端低温事件的发生频率相对较低,而极端高温事件的发生频率相对较高。由于气候态B包含了全球变暖特征最为显著的20a,故在气候态B背景下,冬夏两季极端低(高)温事件的发生频率要高(低)于气候态A,这与全球变暖的趋势相吻合。  相似文献   

12.
基于RegCM4.4高分辨率区域气候模式数据和华中区域1986—2005年逐日气象观测资料,在对模式模拟性能检验的基础上,对中国华中区域未来不同时期、1.5℃和2℃温升阈值下气候变化进行预估。结果表明:模拟结果能较准确反映出区域气温、降水年内变化特征及空间分布特征;与观测值相比,气温模拟值偏低、降水模拟值偏大;与1986—2005年相比,未来RCP4.5温室气体排放情景下2020—2098年中国华中区域气温增幅为2.1℃,且以0.3℃/10 a的趋势增加,降水量无明显变化趋势;远期(2080—2098年)气温将上升2.88℃,降水将增加7.58%,均高于近期(2020—2035年)和中期(2046—2065年);1.5℃温升情景下华中区域气温上升1.22℃,降水增加1.93%;2℃温升情景下,华中区域气温上升1.36℃,降水增加3.57%。  相似文献   

13.
利用1961—2022年江西74个气象站平均气温、最高气温、最低气温、降水量、相对湿度、平均风速和日照时数资料,对比分析了1991—2020年和1981—2010年新、旧气候态下气象要素差异,探讨气候平均值改变对气候影响评价和预测业务的影响。结果表明:新气候态下,江西省三类气温的年和季节平均值均上升,年降水量总体增加将弱化气温偏高、降水偏多的变化特征。年和季节平均风速距平山区减小而平原地区增大;年日照时数距平总体增加。极端高温年份减少,极端低温年份增多,其中平均气温和最低气温的极端高(低)温年发生概率的降幅(增幅)比最高气温更大。极端强降水年发生概率在赣西北、赣中大部、赣南西北部等地区夏季减少,赣南中南部地区冬季增大。全省历年极端日高温、低温和强降水事件发生站次总体减少。新、旧气候态的更替会对气候业务产生影响,如冬季气温偏冷的年份增加,偏暖的年份减少,需对冷、暖冬事件进行重新评估,夏季降水增多的变化特征减弱,将导致夏季降水预测量级和趋势发生改变。  相似文献   

14.
RegCM3 CORDEX东亚试验模拟和预估的中国夏季温度变化   总被引:1,自引:1,他引:0  
按照CORDEX (COordinated Regional Downscaling Experiment) 计划试验设计要求,利用中国科学院大气物理研究所全球模式FGOALS-g2的数据驱动区域气候模式RegCM3,针对1986~2005年历史气候和2010~2065年RCP8.5排放情景下气候预估,对东亚地区进行了50 km动力降尺度模拟。首先评估了RegCM3模式及驱动模式FGOALS-g2对1986~2005年夏季中国地表气温和极端高温事件的模拟能力,然后比较了两个模式在RCP8.5排放情景下对中国夏季地表气温和极端高温事件预估的变化,重点分析了动力降尺度结果的优势。结果表明,两个模式均能合理再现夏季中国地表气温和极端高温事件的大尺度气候态特征。相对于全球模式,区域模式由于水平分辨率较高,能在刻画地表气温分布的细节上体现出优势。在RCP8.5排放情景下,两个模式预估的三个地表气温指标均显著升高,到21世纪中期 (2046~2065年),两个模式预估的全国平均地表气温增幅相当,气温日较差变化均较小。在FGOALS-g2模式预估中,到21世纪中期,三个地表气温指标的增幅相当,气温日较差没有明显变化,东北和青藏高原的地表气温增幅最大。在RegCM3模式预估中,到21世纪中期,中国大部分地区日最高气温 (Tmax) 增幅大于日最低气温 (Tmin) 增幅,气温日较差增加;而在青藏高原西部,Tmax的增幅较Tmin偏低,气温日较差减小。在RCP8.5排放情景下,两个模式预估的极端高温事件到21世纪中期也显著增加,RegCM3模式预估的极端高温事件全国平均增幅略高于FGOALS-g2模式的预估。在两个模式的预估中,日最高气温最大值 (TXx)、暖昼指数 (TX90p) 和持续暖期指数 (WSDI) 变化的空间分布特征与Tmax相似;和当代相比TX90p增加了60%以上,而WSDI增加了一倍以上。  相似文献   

15.
东北地区夏季气温变化特征分析   总被引:52,自引:17,他引:35       下载免费PDF全文
采用1951~2003年26个气象台站的夏季气温资料对我国东北地区夏季气温变化特征进行了分析。结果表明:近50多年来我国东北地区夏季气温主要经历了冷期、相对正常期和暖期3个阶段,夏季升温趋势达到0·15℃/10a,远超过全球、北半球、东北亚夏季的增暖程度。其对全球气候变暖的响应,一方面表现在夏季变暖、平均气温升高;另一方面表现在夏季气温变率加大;第三,气候变暖使东北夏季低温冷害明显减少、异常高温气候明显增多,但在变暖形势下局部发生低温冷害的现象仍然存在。  相似文献   

16.
采用泰勒图和偏差分析等统计方法,评估分析了德国区域气候模式(REMO)对中国1989-2008年气温和降水的模拟能力。结果表明:REMO气温模拟值与观测值空间相关系数为0.94,降水空间相关系数较低(0.42),气温模拟结果明显优于降水;从空间偏差上看,在中国大部分地区,REMO模拟的气温高于观测值,偏差在±4℃以内,青藏高原整体有明显的-4~-2℃的冷偏差;模拟的降水值则高于观测值,空间偏差分布较均匀,中国大部分地区偏差在±300 mm之内;除青藏高原、华南和西南地区外,REMO能较准确地反映出中国气温和降水的空间分布特征,其中华北和东北地区模拟效果最好;REMO对夏季气温和冬季降水的模拟能力相对较好;REMO在地形起伏较大地区的模拟能力有待提高。  相似文献   

17.
利用1960-2010年华北、东北地区165个气象站日平均气温资料,运用线性倾向估计等方法,对近51 a来≥0 ℃和≥10 ℃积温及其持续天数和起止日期的时、空分布特征进行分析,以了解气候变暖对华北、东北地区热量资源分布的影响。结果表明:近51 a来华北、东北地区气温增暖趋势明显,气候倾向率达0.32 ℃/10 a(P<0.001),且与各项热量资源指标相关显著。随着气候变暖,≥0 ℃和≥10 ℃积温及持续天数普遍显著增加,其气候倾向率分别在(30 ℃·d)/10 a和2 d/10 a以上;2000年以后亚热带北界和暖温带北界在华北、东北地区均出现了北移,以亚热带北界移动幅度更大;20世纪90年代以后,一年两熟制种植北界在山西和辽宁两省明显北抬,平均移动幅度超过1.5个纬距。华北、东北地区≥0 ℃和≥10 ℃积温及持续天数普遍增加是受起始日期提前和终止日期延后共同影响,≥0 ℃前者比后者的影响更明显,≥10 ℃两者作用相当。  相似文献   

18.
对我国极端高温事件阈值的探讨   总被引:7,自引:1,他引:6       下载免费PDF全文
利用我国1951-2008年逐日最高气温资料集,进行缺测资料的恢复整理,得到较完整的1961-2008年224站逐日最高气温资料集.在此基础上,采用两种基于正态分布的传统阈值计算的方法(方法1,方法2)和该文提出的基于实际样本频率分布的阈值计算方法(方法3),对我国高温阈值的确定进行比较研究.结果表明:该文提出根据最高...  相似文献   

19.
2011/2012年冬季,我国大部气温异常偏低,全国平均气温仅有-4.8℃,为1986年以来最低值,同时我国内蒙古、新疆、西藏和陕西一些地区日最低气温均突破历史极值。本文利用1951—2010年的中国台站气温资料及NCEP再分析资料对冬季气温异常偏低的原因分析后表明,2011/2012年东亚冬季风异常偏强造成了我国气温大范围异常偏低。异常偏强的东亚冬季风环流系统也表现为:对流层低层西伯利亚地区为异常冷高压控制,对流层中高层从乌拉尔山到贝加尔湖地区上空阻塞异常偏强,东亚大槽异常偏深。进一步的分析表明,2011年冬季时期赤道中东太平洋地区出现的La Nina事件可能是造成东亚冬季风系统异常的原因之一。  相似文献   

20.
应用多种常规和非常规观测气象资料以及再分析资料对2020年2月13日夜间至14日白天北京地区一次极端雨雪过程的成因进行了分析,并重点探讨了模式降水相态预报的误差及其原因。结果表明:(1)本次降水过程中,低涡系统深厚,强度异常强,移速慢,影响时间长,导致北京地区部分站点降水持续12 h左右。异常偏强的东南风急流向北京西部山前输送水汽,配合与急流相伴的较强低空风切变形成的对称不稳定,产生高降水率的斜升对流降水。较长的降水时间以及冬季夜间罕见的高降水率共同造成了此次极端日降水。(2)北京凌晨0℃层高度和地面气温下降缓慢,北京西部处于两股冷空气间的暖舌中,冷空气从东路入侵造成北京东部降温时间较西部早,且降温辐度较大,导致0℃层高度呈西高东低形势,故转雪时间东部早于西部。(3)模式预报的东路冷空气较观测偏强偏早,降水的对流性也显著弱于观测,导致其预报的凌晨地面气温较观测低,0℃层高度下降过快,从而过早预报转雪时间,高估了降雪量和积雪深度,利用非常规温度观测对模式温度廓线预报误差进行检验,可为订正模式相态转化时间预报偏差提供依据。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号