首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Based on the daily maximum temperature data and average temperature data prediction for the period ranging from 2020 to 2099 under the scenario of BNU-ESM climate engineering(G4 test) and non-climate engineering(RCP4.5), the regional differences in the extreme high-temperature intensities in China during the implementation of climate engineering programs(2020 to 2069) and after the implementation of those programs(2070 to 2099) were analyzed using the Weibull Distribution Theory. The results are as follows.(1) The comparison of the two scenarios shows that climate engineering has not fundamentally changed the spatial variation of the intensity of extreme hightemperature events in different recurring periods in China. It was found that in both scenarios, the extreme hightemperature intensities were characterized by the spatial differentiations of low-temperature intensities on the QinghaiTibet Plateau, and high-temperature intensities in the eastern and northwestern region.(2) The comparison of the two scenarios shows that climate engineering in the two study periods could help mitigate the extreme high-temperature intensities with different recurrence periods in China, and the mitigation effects during the implementation period would be significantly higher than those after the implementation.(3) The comparison between the periods ranging from 2020 to 2069 and 2070 to 2099 under the proposed climate engineering scenarios suggests that there would be no strong rebounding of extreme high-temperatures following the implementation of climate engineering programs. Moreover, the mitigation effect of extreme high-temperature intensity during the implementation of climate engineering is significantly higher than that after the completion of climate engineering.(4) According to the comparison between the average temperature changes in China before and after the implementation of the climate project, the average temperature in China has been reduced by at least 1.25 ℃, which effectively alleviates global warming and is conducive to the realization of the 1.5 ℃ temperature control target of the Paris Agreement.  相似文献   

2.
The possible changes in the frequency of extreme temperature events in Hong Kong in the 21st century were investigated by statistically downscaling 26 sets of the daily global climate model projections (a combination of 11 models and 3 greenhouse gas emission scenarios, namely A2, A1B, and B1) of the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. The models’ performance in simulating the past climate during 1971–2000 has also been verified and discussed. The verification revealed that the models in general have an acceptable skill in reproducing past statistics of extreme temperature events. Moreover, the models are more skillful in simulating the past climate of the hot nights and cold days than that of the very hot days. The projection results suggested that, in the 21st century, the frequency of occurrence of extremely high temperature events in Hong Kong would increase significantly while that of the extremely low temperature events is expected to drop significantly. Based on the multi-model scenario ensemble mean, the average annual numbers of very hot days and hot nights in Hong Kong are expected to increase significantly from 9 days and 16 nights in 1980–1999 to 89 days and 137 nights respectively in 2090–2099. On the other hand, the average annual number of cold days will drop from 17 days in 1980–1999 to about 1 day in 2090–2099. About 65 percent of the model-scenario combinations indicate that there will be on average less than one cold day in 2090–2099. While all the model-emission scenarios in general have projected consistent trends in the change of temperature extremes in the 21st century, there is a large divergence in the projections between difierent model/emission scenarios. This reflects that there are still large uncertainties in the model simulation of the future climate of extreme temperature events.  相似文献   

3.
Model Projections of Precipitation Minus Evaporation in China   总被引:1,自引:0,他引:1       下载免费PDF全文
Changes in precipitation minus evaporation (P -E) are analyzed to investigate the possible impacts of climate change on water resource conditions in China. Simulations of SRES A1B and 20C3M scenarios from the WCRP CMIP3 GCMs are employed in the study. Time slice analysis shows that there would be more annual mean P -E across China in 2040-2055 and 2080-2099, compared to 1980-1999, with the largest percentage change over Northwest China and the Bohai Rim area. Precipitation and evaporation would also increase over entire China during these two periods. Annual mean P -E, precipitation, and evaporation averaged over the whole China and its eight sub-areas all yield generally upward trends during the 21st century. This indicates that on annual mean scale, the global warming related precipitation dominates the hydroclimate conditions in China. On seasonal mean scale, although precipitation is projected to increase over China, P -E exhibits both decreasing and increasing trends over certain regions of China. This suggests that the variation of global warming related evaporation dominates hydroclimate conditions over some parts of China, especially in northern China. Therefore, in hydroclimate condition projections, considering both evaporation and precipitation changes should be more reasonable than considering only precipitation.  相似文献   

4.
With temperatures increasing as a result of global warming,extreme high temperatures are becoming more intense and more frequent on larger scale during summer in China.In recent years,a variety of researches have examined the high temperature distribution in China.However,it hardly considers the variation of temperature data and systems when defining the threshold of extreme high temperature.In order to discern the spatio-temporal distribution of extreme heat in China,we examined the daily maximum temperature data of 83 observation stations in China from 1950 to 2008.The objective of this study was to understand the distribution characteristics of extreme high temperature events defined by Detrended Fluctuation Analysis(DFA).The statistical methods of Permutation Entropy(PE)were also used in this study to analyze the temporal distribution.The results showed that the frequency of extreme high temperature events in China presented 3 periods of 7,10—13 and 16—20 years,respectively.The abrupt changes generally happened in the 1960s,the end of 1970s and early 1980s.It was also found that the maximum frequency occurred in the early 1950s,and the frequency decreased sharply until the late 1980s when an evidently increasing trend emerged.Furthermore,the annual averaged frequency of extreme high temperature events reveals a decreasing-increasing-decreasing trend from southwest to northeast China,but an increasing-decreasing trend from southeast to northwest China.And the frequency was higher in southern region than that in northern region.Besides,the maximum and minimum of frequencies were relatively concentrated spatially.Our results also shed light on the reasons for the periods and abrupt changes of the frequency of extreme high temperature events in China.  相似文献   

5.
The possible changes in the frequency of extreme rainfall events in Hong Kong in the 21st century wereinvestigated by statistically downscaling 30 sets of the daily global climate model projections (involvinga combination of 12 models and 3 greenhouse gas emission scenarios,namely,A2,A1B,and B1) of theFourth Assessment Report of the Intergovernmental Panel on Climate Change.To cater for the intermittentand skewed character of the daily rainfall,multiple stepwise logistic regression and multiple stepwise linearregression were employed to develop the downscaling models for predicting rainfall occurrence and rainfallamount,respectively.Verification of the simulation of the 1971-2000 climate reveals that the models ingeneral have an acceptable skill in reproducing past statistics of extreme rainfall events in Hong Kong.Theprojection results suggest that,in the 21st century,the annual number of rain days in Hong Kong is expectedto decrease while the daily rainfall intensity will increase,concurrent with the expected increase in annualrainfall.Based on the multi-model scenario ensemble mean,the annual number of rain day is expected todrop from 104 days in 1980-1999 to about 77 days in 2090-2099.For extreme rainfall events,about 90% ofthe model-scenario combinations indicate an increase in the annual number of days with daily rainfall 100mm (R100) towards the end of the 21st century.The mean number of R100 is expected to increase from 3.5days in 1980-1999 to about 5.3 days in 2090-2099.The projected changes in other extreme rainfall indicesalso suggest that the rainfall in Hong Kong in the 21st century may also become more extreme with moreuneven distributions of wet and dry periods.While most of the model-emission scenarios in general projectconsistent trends in the change of rainfall extremes in the 21st century,there is a large divergence in theprojections among different model/emission scenarios.This reflects that there are still large uncertainties inmodel simulations of future extreme rainfall events.  相似文献   

6.
During phase Ⅱof the Regional Climate Model Inter-comparison Project (RMIP) for Asia,the Asian climate was estimated from July 1988 to December 1998 using six climate models.In this paper,the abilities of six climate models to simulate several important extreme climate events in China during the last years of the last century were analyzed.The modeled results for the intensity of the precipitation anomaly over the Yangtze-Huaihe Valley during the summers of 1991 and 1998 were weaker than the observed values.The positive precipitation anomaly responsible for a catastrophic flood in 1991 was well reproduced in almost all simulation results,but the intensity and range of the precipitation anomaly in 1998 were weaker in the modeled results.The spatial distribution of extreme climate events in 1997,when severe drought affected North China and flood impacted South China,was reproduced by most of the regional models because the anomaly of the large-scale background field was well-simulated,despite poor simulation of high temperature areas in the north during the summer by all models.  相似文献   

7.
Many studies have shown evidence for significant changes in surface climate in different regions of the world and during different seasons over the past 100 years. Based on daily temperature and precipitation data from 720 climate stations in China, cluster analysis was used to identify regions in China that have experienced similar changes in the seasonal cycle of temperature and precipitation during the 1971-2000 climate normal period. Differences in 11-day averages of daily mean temperature and total precipitation between the first (1971-1985) and second (1986-2000) halves of the record were analyzed using the Mann- Whitney U test and the global κ-means clustering algorithm. Results show that most parts of China experienced significant increases in temperature between the two periods, especially in winter, although some of this warming may be attributable to the urban heat island effect in large cities. Most of western China experienced more precipitation in 1986-2000, while precipitation decreased in the Yellow River valley. Changes in the summer monsoon were also evident, with decreases in precipitation during the onset and decay phases, and increases during the wettest period.  相似文献   

8.
Recent Progress in Studies of Climate Change in China   总被引:7,自引:0,他引:7  
An overview of basic research on climate change in recent years in China is presented. In the past 100 years in China, average annual mean surface air temperature (SAT) has increased at a rate ranging from 0.03℃ (10 yr)-1 to 0.12℃ (10 yr)-1 . This warming is more evident in northern China and is more significant in winter and spring. In the past 50 years in China, at least 27% of the average annual warming has been caused by urbanization. Overall, no significant trends have been detected in annual and/or summer precipitation in China on a whole for the past 100 years or 50 years. Both increases and decreases in frequencies of major extreme climate events have been observed for the past 50 years. The frequencies of extreme temperature events have generally displayed a consistent pattern of change across the country, while the frequencies of extreme precipitation events have shown only regionally and seasonally significant trends. The frequency of tropical cyclone landfall decreased slightly, but the frequency of sand/dust storms decreased significantly. Proxy records indicate that the annual mean SAT in the past a few decades is the highest in the past 400-500 years in China, but it may not have exceeded the highest level of the Medieval Warm Period (1000-1300 AD). Proxy records also indicate that droughts and floods in eastern China have been characterized by continuously abnormal rainfall periods, with the frequencies of extreme droughts and floods in the 20th century most likely being near the average levels of the past 2000 years. The attribution studies suggest that increasing greenhouse gas (GHG) concentrations in the atmosphere are likely to be a main factor for the observed surface warming nationwide. The Yangtze River and Huaihe River basins underwent a cooling trend in summer over the past 50 years, which might have been caused by increased aerosol concentrations and cloud cover. However, natural climate variability might have been a main driver for the mean and extreme precipitation variations observed over the past century. Climate models generally perform well in simulating the variations of annual mean SAT in China. They have also been used to project future changes in SAT under varied GHG emission scenarios. Large uncertainties have remained in these model-based projections, however, especially for the projected trends of regional precipitation and extreme climate events.  相似文献   

9.
Interdecadal variation of the relationships between ENSO and the summer interannual climate variability in China is investigated by using techniques of sliding correlation analysis with the tropical Pacific SSTA and the observed surface air temperature and precipitation from stations in China. The results indicate that there are stable and robust relations that the Northern China is relatively dry during the developing phase of ENSO while the Yangtze River valley is relatively wet during the decaying phase of ENSO. On the other hand, interdecadal variations of the relations are also found in other regions. Over the time both prior to the Pacific decadal climate shift (before the late 1970s) and after it (after the late 1970s), during the developing phases of ENSO the summer precipitation anomaly in South China changed from below to above normal, whereas that in Northeast China changed from above to below normal; the summer surface air temperature anomaly in North and Northeast China changed from cooling to warming, whereas that in South China changed to cooling; during the decaying phases of ENSO the North China changed from wetter to dryer while the Huai River valley changed from dryer to normal; North China, Yangtze River valley and South China tend to be warmer. Based on the composite analysis of the NCAR/NCEP reanalyze datasets, significant differences existing in ENSO-related atmospheric circulation anomaly in East Asia during pre- and post-shift periods may be responsible for the interdecadal variation of relationships between ENSO and surface air temperature and precipitation in China.  相似文献   

10.
Monte-Carlo method is applied to simulate the intensities and degrees of polarization in twilight sky after the eruption of the El Chichon volcano and during the 1977 volcanically quiet period, respectively. The results coincide well with the observations. It is found that the significance of multiple scattering is com-pletely different in these two periods; the background concentration of stratospheric aerosols has probably increased since the 1960’s. It is necessary to study the cause of the increase and its impact on climate.  相似文献   

11.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China. Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed significantly. These changes have significant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation backgrou  相似文献   

12.
Monte-Carlo method is applied to simulate the intensities and degrees of polarization in twilight sky after the eruption of the El Chichon volcano and during the 1977 volcanically quiet period, respectively. The results coincide well with the observations. It is found that the significance of multiple scattering is completely different in these two periods; the background concentration of stratospheric aerosols has probably increased since the 1960's. It is necessary to study the cause of the increase and its impact on climate.  相似文献   

13.
The atmospheric water holding capacity will increase with temperature according to Clausius-Clapeyron scaling and affects precipitation.The rates of change in future precipitation extremes are quantified with changes in surface air temperature.Precipitation extremes in China are determined for the 21st century in six simulations using a regional climate model,RegCM4,and 17 global climate models that participated in CMIP5.First,we assess the performance of the CMIP5 models and RCM runs in their simulation of extreme precipitation for the current period(RF:1982-2001).The CMIP5 models and RCM results can capture the spatial variations of precipitation extremes,as well as those based on observations:OBS and XPP.Precipitation extremes over four subregions in China are predicted to increase in the mid-future(MF:2039-58)and far-future(FF:2079-98)relative to those for the RF period based on both the CMIP5 ensemble mean and RCM ensemble mean.The secular trends in the extremes of the CMIP5 models are predicted to increase from 2008 to 2058,and the RCM results show higher interannual variability relative to that of the CMIP5 models.Then,we quantify the increasing rates of change in precipitation extremes in the MF and FF periods in the subregions of China with the changes in surface air temperature.Finally,based on the water vapor equation,changes in precipitation extremes in China for the MF and FF periods are found to correlate positively with changes in the atmospheric vertical wind multiplied by changes in surface specific humidity(significant at the p<0.1 level).  相似文献   

14.
气候变化国家评估报告(Ⅱ):气候变化的影响与适应   总被引:10,自引:1,他引:10  
Significant and various impacts of climate change have been observed in China, showing both positive and adverse effects, dominantly the latter, in different sectors and regions. It is very likely that future climate change would cause significant adverse impacts on the ecosystems, agriculture, water resources, and coastal zones in China. Adoption of adaptive measures to climate change can alleviate the adverse impact, therefore such measures should be incorporated into the medium-and long-term national economic and social development plans. Because China has done relatively limited research on impact assessment and our understanding of climate change is incomplete, the current impact assessment methodologies used and results obtained contain many uncertainties. To reduce the uncertainties and develop effective and practical climate change adaptive measures in China, it is necessary to emphasize regional case studies on adaptive measures, enlarge the scope of climate change research, and strengthen the assessment of the impacts resulted from extreme weather/climate events.  相似文献   

15.
Evaluating the projection capability of climate models is an important task in climate model development and climate change studies. The projection capability of the Beijing Climate Center (BCC) Climate System Model BCC CSM1.0 is analyzed in this study. We focus on evaluating the projected annual mean air temperature and precipitation during the 21st century under three emission scenarios (Special Report on Emission Scenarios (SRES) B1, A1B, and A2) of the BCC CSM1.0 model, along with comparisons with 22 CMIP3 (Coupled Model Intercomparison Project Phase 3) climate models. Air temperature averaged both globally and within China is projected to increase continuously throughout the 21st century, while precipitation increases intermittently under each of the three emission scenarios, with some specific temporal and spatial characteristics. The changes in globally-averaged and China-averaged air temperature and precipitation simulated by the BCC CSM1.0 model are within the range of CMIP3 model results. On average, the changes of precipitation and temperature are more pronounced over China than over the globe, which is also in agreement with the CMIP3 models. The projection capability of the BCC CSM1.0 model is comparable to that of other climate system models. Furthermore, the results reveal that the climate change response to greenhouse gas emissions is stronger over China than in the global mean, which implies that China may be particularly sensitive to climate change in the 21st century.  相似文献   

16.
 Based on the China Rural Statistical Yearbook of 1984-2003 published by State Statistics Bureau, and the annual temperature in the same period, impacts of temperature change, agricultural input, and planting area on grain production were analyzed for different regions of China during the last 20 years. The results show that the main characteristic of climate warming has obviously promoted the increase of grain yield in Northeast China, but to some extent suppressed it in North China, Northwest China and Southwest China, and shown no obvious effect on it in East China and Central-South China. The increase in agricultural input facilitated the grain production obviously in various regions in the early stage of the past 20 years, but showed no obvious effect in the late stage. The continuous reduction in sown area had a significant negative effect on the grain production in East China and Central-South China.  相似文献   

17.
Driven by the global model,Beijing Climate Center Climate System Model version 1.1(BCC_CSM1.1),climate change over China in the 21st century is simulated by a regional climate model(RegCM4.0)under the new emission scenarios of the Representative Concentration Pathways—RCP4.5 and RCP8.5.This is based on a period of transient simulations from 1950 to2099,with a grid spacing of 50 km.The present paper focuses on the annual mean temperature and precipitation in China over this period,with emphasis on their future changes.Validation of model performance reveals marked improvement of the RegCM4.0 model in reproducing present day temperature and precipitation relative to the driving BCC_CSM1.1 model.Significant warming is simulated by both BCC_CSM1.1 and RegCM4.0,however,spatial distribution and magnitude differ between the simulations.The high emission scenario RCP8.5 results in greater warming compared to RCP4.5.The two models project different precipitation changes,characterized by a general increase in the BCC_CSM1.1,and broader areas with decrease in the RegCM4.0 simulations.  相似文献   

18.
Winter wheat is one of China’s most important staple food crops, and its production is strongly influenced by weather, especially droughts. As a result, the impact of drought on the production of winter wheat is associated with the food security of China. Simulations of future climate for scenarios A2 and A1B provided by GFDL-CM2, MPI_ECHAM5, MRI_CGCM2, NCAR_CCSM3, and UKMO_HADCM3 during 2001-2100 are used to project the influence of drought on winter wheat yields in North China. Winter wheat yields are simulated using the crop model WOFOST (WOrld FOod STudies). Future changes in temperature and precipitation are analyzed. Temperature is projected to increase by 3.9-5.5 for scenario A2 and by 2.9-5.1 for scenario A1B, with fairly large interannual variability. Mean precipitation during the growing season is projected to increase by 16.7 and 8.6 mm (10 yr)-1 , with spring precipitation increasing by 9.3 and 4.8 mm (10 yr)-1 from 2012-2100 for scenarios A2 and A1B, respectively. For the next 10-30 years (2012-2040), neither the growing season precipitation nor the spring precipitation over North China is projected to increase by either scenario. Assuming constant winter wheat varieties and agricultural practices, the influence of drought induced by short rain on winter wheat yields in North China is simulated using the WOFOST crop model. The drought index is projected to decrease by 9.7% according to scenario A2 and by 10.3% according to scenario A1B during 2012-2100. This indicates that the drought influence on winter wheat yields may be relieved over that period by projected increases in rain and temperature as well as changes in the growth stage of winter wheat. However, drought may be more severe in the near future, as indicated by the results for the next 10-30 years.  相似文献   

19.
Variations in surface air temperature and precipitation are closely associated because of their thermodynamic relations. The climate shift in the late 1970s and associated changes in precipitation over East Asia have been well reported. However, how the covariability of surface air temperature and precipitation responds to the climate shift is not yet well understood. We used the observed mean(Tmean), daily maximum(Tmax), and minimum(Tmin) surface air temperatures and precipitation during the period of 1953–2000 to explore this issue. Results show that the covariability between Tmean and precipitation experienced remarkable changes over certain areas of East Asia after the climate shift with evident seasonal dependencies. In winter, after the climate shift significantly negative correlations occupied more areas over Mongolia and China. By contrast, in summer after the climate shift significantly negative correlations which existed over almost entire East Asia during the pre-shift period were mostly weakened with the exception of enhanced correlations over some small isolated areas. Changes in the covariability of Tmax and precipitation showed a similar spatial pattern to that of the Tmean, whereas the Tmin-precipitation covariability did not. In winter, after the climate shift positive correlations between Tmin and precipitation over southern China were largely weakened, while the areas with significantly negative correlations increased over Mongolia. In summer, changes in Tmin-precipitation covariability appeared to be a negative-positive-negative pattern from south to north over East Asia, with positive changes occurring in the Yangtze-Huai River valley and Korea and negative changes occurring over South China and Japan, and northern part of East Asia.  相似文献   

20.
陈尚锋  陈文  魏科 《大气科学进展》2013,30(6):1712-1724
Interannual variations in the number of winter extreme warm and cold days over eastern China (EC) and their relationship with the Arctic Oscillation (AO) and E1 Nifio-Southern Oscillation (ENSO) were investigated using an updated temperature dataset comprising 542 Chinese stations during the period 1961- 2011. Results showed that the number of winter extreme warm (cold) days across EC experienced a significant increase (decrease) around the mid-1980s, which could be attributed to interdecadal variation of the East Asian Winter Monsoon (EAWM). Probability distribution functions (PDFs) of winter temperature extremes in different phases of the AO and ENSO were estimated based on Generalized Extreme Value Distribution theory. Correlation analysis and the PDF technique consistently demonstrated that interannual variation of winter extreme cold days in the northern part of EC (NEC) is closely linked to the AO, while it is most strongly related to the ENSO in the southern part (SEC). However, the number of winter extreme warm days across EC has little correlation with both AO and ENSO. Furthermore, results indicated that, whether before or after the mid-1980s shift, a significant connection existed between winter extreme cold days in NEC and the AO. However, a significant connection between winter extreme cold days in SEC and the ENSO was only found after the mid-1980s shift. These results highlight the different roles of the AO and ENSO in influencing winter temperature extremes in different parts of EC and in different periods, thus providing important clues for improving short-term climate prediction for winter temperature extremes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号