首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The climate change in China shows a considerable similarity to the global change, though there still exist some significant differences between them. In the context of the global warming, the annual mean surface air temperature in the country as a whole has significantly increased for the past 50 years and 100 years, with the range of temperature increase slightly greater than that in the globe. The change in precipitation trends for the last 50 and 100 years was not significant, but since 1956 it has assumed a weak increasing trend. The frequency and intensity of main extreme weather and climate events have also undergone a significant change. The researches show that the atmospheric CO2 concentration in China has continuously increased and the sum of positive radiative forcings produced by greenhouse gases is probably responsible for the country-wide climate warming for the past 100 years, especially for the past 50 years. The projections of climate change for the 21st century using global and regional climate models indicate that, in the future 20-100 years, the surface air temperature will continue to increase and the annual precipitation also has an increasing trend for most parts of the country.  相似文献   

2.
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃over the past 100 years,slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 models developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is projected to increase by 1.5-2.1℃by 2020,2.3-3.3℃by 2050, and by 3.9-6.0℃by 2100,in comparison to the 30-year average of 1961 1990.Most models project a 10% 12% increase in annual precipitation in China by 2100,with the trend being particularly evident in Northeast and Northwest China,but with parts of central China probably undergoing a drying trend.Large uncertainty exists in the projection of precipitation,and further studies are needed.Furthermore,anthropogenic climate change will probably lead to a weaker winter monsoon and a stronger summer monsoon in eastern Asia.  相似文献   

3.
利用区域气候模式RegCM4的逐日气温和降水资料,预估1.5℃和2.0℃升温情景下,东北地区平均气候和极端气候事件的变化。结果表明:RCP4.5排放情景下,模式预计在2030年和2044年左右稳定达到1.5℃和2.0℃升温;两种升温情景下,东北地区气温、积温、生长季长度均呈增加趋势,且增幅随着升温阈值的升高而增加;1.5℃升温情景下,年平均气温增幅为1.19℃,年平均降水距平百分率增幅为5.78%,积温增加247.1℃·d,生长季长度延长7.0 d;2.0℃升温情景下气温、积温、生长季长度增幅较1.5℃升温情景下显著,但是年和四季降水普遍减少,年降水距平百分率减小1.96%。两种升温情景下,极端高温事件显著增加,极端低温事件显著减少,极端降水事件普遍增加。霜冻日数、结冰日数均呈显著减少趋势,热浪持续指数呈显著增加趋势;未来东北地区降水极端性增强,不仅单次降水过程的量级增大,极端降水过程的量级也明显增大,随着升温阈值的增大,极端降水的强度也逐渐增大。  相似文献   

4.
青藏高原与中国其他地区气候突变时间的比较   总被引:25,自引:5,他引:20  
丁一汇  张莉 《大气科学》2008,32(4):794-805
基于1961~2006年中国地面观测气温和降水资料,对青藏高原地区以及中国其他6个地区地表气温、降水的变化趋势和突变时间进行了检测和比较。结果发现,(1)地表气温:1961~2006年青藏高原地区年和四季的地表气温都呈增加趋势。年平均地表气温在20世纪80年代中期开始变暖,但显著快速增暖的突变发生在90年代中期,该时间比东北、华北、西北和淮河地区晚,与长江中下游和华南地区接近,不同季节青藏高原地区与其他地区变暖突变时间的差别也各有不同,但所有季节快速变暖突变的时间都比东北地区晚,中国东部陆地地区年和冬季平均地表气温表现出北早南晚的经向差异;(2)降水:1961~2006年青藏高原地区年降水量没有检测到显著的变化趋势,冬春降水量显著增加,而夏季降水有微弱的减少,秋季降水显著减少。降水突变的信号明显比温度突变的信号弱,年降水量和春季降水都没有检测到突变的发生,降水突变方向(增或减)和突变时间在区域与区域之间以及不同季节之间都存在较大差异。由上可见,青藏高原气候的显著快速变化比中国东部长江以北地区有明显的滞后现象,尤其是冬春温度变化,这可能是由于青藏高原地区积雪增加导致的反照率增加和冰川融化吸热对青藏高原变暖的减弱作用所致。  相似文献   

5.
近年来,城市气候变化问题引起高度关注.综合IPCC第一工作组第六次评估报告(IPCC AR6)关于气候变暖背景下城市对极端天气气候事件影响的评估,本文得到以下科学认识:城市化加剧了局部气候变暖,全球许多城市都面临更多更强的高温热浪事件;城市化使得诸多城市区域及其下风向极端降水增加,地表径流加强;沿海城市受到日益加剧的与...  相似文献   

6.
气候变化的归因与预估模拟研究   总被引:14,自引:2,他引:12  
本文总结了近五年来中国科学院大气物理研究所在气候变暖的归因模拟与预估研究上的主要进展。研究表明,利用海温、太阳辐射和温室气体等实际强迫因子驱动大气环流模式,能够较为合理地模拟全球平均地表气温在20世纪的演变,但是难以模拟出包括北大西洋涛动/北极涛动和南极涛动在内的高纬度环流的长期变化趋势。利用温室气体和硫酸盐气溶胶等“历史资料”驱动气候系统模式,能够较好地模拟出20世纪后期的全球增暖,但如果要再现20世纪前期(1940年代)的变暖,还需同时考虑太阳辐射等自然外强迫因子。20世纪中国气温演变的耦合模式模拟技巧,较之全球平均情况要低;中国气候在1920年代的变暖机理目前尚不清楚。对于近50年中国东部地区“南冷北暖”、“南涝北旱”的气候变化,基于大气环流模式特别是区域气候模式的数值试验表明,夏季硫酸盐气溶胶的负辐射效应超过了温室气体的增暖效应,从而对变冷产生贡献。但现有的数值模拟证据,不足以说明气溶胶增加对“南涝北旱”型降水异常有贡献。20世纪中期以来,青藏高原主体存在明显增温趋势,温室气体浓度的增加对这种增暖有显著贡献。多模式集合预估的未来气候变化表明,21世纪全球平均温度将继续增暖,增温幅度因不同排放情景而异;中国大陆年均表面气温的增暖与全球同步,但增幅在东北、西部和华中地区较大,冬季升温幅度高于夏季、日最低温度升幅要强于日最高温度;全球增暖有可能对我国中东部植被的地理分布产生影响。伴随温室气体增加所导致的夏季平均温度升高,极端温度事件增多;在更暖的气候背景下,中国大部分地区总降水将增多,极端降水强度加大且更频繁发生,极端降水占总降水的比例也将增大。全球增暖有可能令大洋热盐环流减弱,但是减弱的幅度因模式而异。全球增暖可能不是导致北太平洋副热带-热带经圈环流自20世纪70年代以来变弱的原因。文章同时指出了模式预估结果中存在的不确定性。  相似文献   

7.
CHANGE TRENDS OF EXTREME CLIMATE EVENTS IN CHINA   总被引:5,自引:0,他引:5  
The variations of extreme climate events such as cold wave, typhoon, hot and cold days havebeen discussed using the recent 45-year data. The reductions of nationwide cold wave activities andannual cold day number in northern China all have close relationship with warming winters,especially during 1980s and early 1990s. Decrements of annual hot day number are associated withcooling summers. The typhoon variation has connection with the tropical Pacific sea surfacetemperature conditions. The increments of drought/flood events since 1980s may be connectedindirectly with climate warming up significantly since 1980s. The climate variability of theseextreme climate events has decreased with time since 1980s.  相似文献   

8.
 中国的气候变化与全球变化有相当的一致性,但也存在明显差别。在全球变暖背景下,近100 a来中国年平均地表气温明显增加,升温幅度比同期全球平均值略高。近100 a和近50 a的降水量变化趋势不明显,但1956年以来出现了微弱增加的趋势。近50 a来中国主要极端天气气候事件的频率和强度也出现了明显的变化。研究表明,中国的CO2年排放量呈不断增加趋势,温室气体正辐射强迫的总和是造成气候变暖的主要原因。对21世纪气候变化趋势做出的预测表明:未来20~100 a,中国地表气温增加明显,降水量也呈增加趋势。  相似文献   

9.
利用1961-2012年中国区域1353个站的年平均气温和年降水资料,分析南方和北方4种气候态的变化特征,并探索气候态的改变对南方和北方气候检测的影响。结果表明:气候变暖对气候态的影响较为明显,气候态的改变会使得南北方气候分析结果发生改变。北方近52年来年平均气温的升温趋势较明显,南方升温趋势较弱,南北方在I态、II态和III态下的年平均气温均呈现一致的增加趋势,但北方比南方升温更快。南北方年降水量的历年变化差异较大,北方年降水量呈现弱的“降-升-降-升”变化趋势,南方年降水量的历年变化较大,多项式趋势线呈“2峰3谷”。气候态的改变使得北方和南方的气温和降水等级均向着高等级移动,北方气温等级的变化受气候态的影响比南方更明显。  相似文献   

10.
极端天气气候事件监测与预测研究进展及其应用综述   总被引:8,自引:2,他引:6  
极端天气气候事件(简称"极端事件")分为单站极端事件和区域性极端事件。本文回顾了极端事件的研究进展,首先回顾了单站极端温度、极端降水和干旱事件的观测研究及相关指数,进而对近年来不断增多的区域性极端事件研究做了简要回顾,最后还回顾了极端事件气候预测研究进展。同时,对国内外在极端事件气候监测和预测业务现状进行了初步总结,并指出:在极端事件气候监测方面中国的业务产品较丰富,并率先开展了针对区域性极端事件的监测业务,但在产品表现形式上缺乏统一组织,特别是英文产品表现力严重不足;在极端事件气候预测方面,国家气候中心发展了两种方法:一个是基于物理统计的BP-CCA和OSR的干旱预测方法,另一个基于国家气候中心月动力延伸预报模式(DERF)的高温预测方法。最后,对极端事件监测和预测业务发展及相关科学问题给出展望,指出应根据极端事件的业务需求继续加强相关研究和业务能力建设。  相似文献   

11.
周晶  陈海山 《大气科学》2012,36(6):1077-1092
利用NCAR大气模式CAM3.1对中国区域近40年的极端气候事件进行了模拟试验;在此基础上, 利用1961~2000年中国区域452站的逐日最高、最低气温和降水资料, 从气候平均、年际变化和长期变化趋势等方面全面评估了该模式对中国极端气候事件的模拟能力。结果表明:(1)模式对中国区域极端气候指数气候平均态的大尺度空间分布特征具有一定的模拟能力;模式对极端降水指标空间分布的模拟能力较好, 而对极端气温指标的模拟较差;模式对极端气候指标的模拟存在系统性的偏差, 模拟的极端降水的系统性偏差要远大于对极端温度的模拟。(2)模式对极端气温指数的年际变化特征具有较强的模拟能力, 而对极端降水指数的年际变化基本没有模拟能力;模式模拟的各极端降水指标的年际变幅与观测存在较大的偏差。(3)模式较好地模拟出了暖夜和暖昼指数在中国大部分区域的增加趋势, 但变幅较实测偏小;模式对热浪持续指数长期趋势的模拟则相对略差。模式对极端气温指标长期趋势的模拟能力总体优于对极端降水指标的模拟。模式对极端降水频次和中雨日数长期趋势的模拟尚可, 但对持续湿期长期趋势的空间分布模拟较差。研究结果可为该模式用于极端气候的模拟研究提供一定参考。  相似文献   

12.
In this study, the trends and periodicity in climate extremes are examined in Hunan Province over the period 1960–2013 on the basis of 27 extreme climate indices calculated from daily temperature and precipitation records at 89 meteorological stations. The results show that in the whole province, temperature extremes exhibit a warming trend with more than 50% stations being statistically significant for 7 out of 16 temperature indices, and the nighttime temperature increases faster than the daytime temperature at the annual scale. The changes in most extreme temperature indices show strongly coherent spatial patterns. Moreover, the change rates of almost all temperature indices in north Hunan are greater than those of other regions. However, the statistically significant changes in indices of extreme precipitation are observed at fewer stations than in extreme temperature indices, forming less spatially coherent patterns. Positive trends in indices of extreme precipitation show that the amount and intensity of extreme precipitation events are generally increasing in both annual and seasonal scales, whereas the significant downward trend in consecutive wet days indicates that the precipitation becomes more even over the study period. Analysis of changes in probability distributions of extreme indices for 1960–1986 and 1987–2013 also demonstrates a remarkable shift toward warmer condition and increasing tendency in the amount and intensity of extreme precipitation during the past decades. The variations in extreme climate indices exhibit inconstant frequencies in the wavelet power spectrum. Among the 16 temperature indices, 2 of them show significant 1-year periodic oscillation and 7 of them exhibit significant 4-year cycle during some certain periods. However, significant periodic oscillations can be found in all of the precipitation indices. Wet-day precipitation and three absolute precipitation indices show significant 1-year cycle and other seven provide significant power at the 4-year period, which are mainly found during 1970–1980 and after 1992.  相似文献   

13.
Based on daily precipitation and monthly temperature data in southern China, the winter extreme precipitation changes in southern China have been investigated by using the Mann-Kendall test and the return values of Generalized Pareto Distribution. The results show that a winter climate catastrophe in southern China occurred around 1991, and the intensity of winter extreme precipitation was strengthened after climate warming. The anomalous circulation characteristics before and after the climate warming was further analyzed by using the U.S. National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis data. It is found that the tropical winter monsoon over East Asia is negatively correlated with the precipitation in southeastern China. After climate warming the meridionality of the circulations in middle and high latitudes increases, which is favorable for the southward movement of the cold air from the north. In addition, the increase of the temperature over southern China may lead to the decrease of the differential heating between the continent and the ocean. Consequently, the tropical winter monsoon over East Asia is weakened, which is favorable for the transport of the warm and humid air to southeastern China and the formation of the anomalous convergence of the moisture flux, resulting in large precipitation over southeastern China. As a result, the interaction between the anomalous circulations in the middle and high latitudes and lower latitudes after the climate warming plays a major role in the increase of the winter precipitation intensity over southeastern China.  相似文献   

14.
本文以华北五省为研究区,基于1960—2014年小时降水数据建立1、2、3、6、12和24 h极端降水序列,对比分析稳态和非稳态假设下极端降水重现期估计的差异。研究表明:1960―2014年华北不同时间极端降水的变化趋势略有不同,时间越短呈上升趋势的站点越多,1~3 h的极端降水呈上升趋势的站点较多,稳态和非稳态假设下的20~100 a一遇重现期平均差异较大,其中,1 h极端降水的显著上升站点中,二者的平均相对误差达30%~43%;而6~24 h极端降水中,呈下降趋势的站点增多,其中,24 h极端降水显著下降站点中,二者的平均相对误差达-43%~-32%;无显著趋势站点,二者的平均相对误差大部分介于-10%~10%。随着重现期增大,二者差异的不确定性区间增大,不同变化趋势站点表现一致。研究发现,华北地区短历时极端降水强度增加,稳态假设下极端降水的重现期会严重低估。因此,选用非稳态假设估计极端降水的重现期,将降低极端降水的灾害风险。  相似文献   

15.
16.
In this study, regional climate changes for seventy years (1980–2049) over East Asia and the Korean Peninsula are investigated using the Special Reports on Emission Scenarios (SRES) B1 scenario via a high-resolution regional climate model, and the impact of global warming on extreme climate events over the study area is investigated. According to future climate predictions for East Asia, the annual mean surface air temperature increases by 1.8°C and precipitation decreases by 0.2 mm day?1 (2030–2049). The maximum wind intensity of tropical cyclones increases in the high wind categories, and the intra-seasonal variation of tropical cyclone occurrence changes in the western North Pacific. The predicted increase in surface air temperature results from increased longwave radiations at the surface. The predicted decrease in precipitation is caused primarily by northward shift of the monsoon rain-band due to the intensified subtropical high. In the nested higher-resolution (20 km) simulation over the Korean Peninsula, annual mean surface air temperature increases by 1.5°C and annual mean precipitation decreases by 0.2 mm day?1. Future surface air temperature over the Korean Peninsula increases in all seasons due to surface temperature warming, which leads to changes in the length of the four seasons. Future total precipitation over the Korean Peninsula is decreased, but the intensity and occurrence of heavy precipitation events increases. The regional climate changes information from this study can be used as a fruitful reference in climate change studies over East Asia and the Korean peninsula.  相似文献   

17.
In a globally warming world,subtropical regions are generally expected to become drier while the tropics and mid–high latitudes become wetter.In line with this,Southwest China,close to 25?N,is expected to become increasingly prone to drought if annual mean precipitation decreases.However,despite this trend,changes in the temporal distribution of moisture supply might actually result in increased extreme rainfall in the region,whose climate is characterized by distinct dry and wet seasons.Using hourly and daily gauge observations,rainfall intensity changes since 1971 are examined for a network of 142 locations in the region.From the analysis,dry season changes are negligible but wet season changes exhibit a significantly strong downward trend [-2.4%(10 yr)~(-1)],particularly during the past 15 years [-17.7%(10 yr)~(-1)].However,the intensity of events during the wettest of 5% hours appears to steadily increase during the whole period [1.4%(10 yr)~(-1)],tying in with government statistical reports of recent droughts and flooding.If the opposing trends are a consequence of a warming climate,it is reasonable to expect the contradictory trend to continue with an enhanced risk of flash flooding in coming decades in the region concerned.  相似文献   

18.
Based on the Multi-Scale Standardized Precipitation Index (MSPI), extreme severe drought events in China during 1961-2010 were identified, and the seasonal, annual, and interdecadal variations of the clustering extreme drought events were investigated by using the spatial point process theory. It is found that severe droughts present a trend of gradual increase as a result of the significant increase and clustering tendency of severe droughts in autumn. The periodicity analysis of the clustering extreme droughts in different seasons suggests that there is a remarkable interdecadal change in the occurrence of clustering extreme droughts in winter. Meanwhile, it is revealed that the clustering extreme drought events exhibit greatly different annual mean spatial distributions during 1961-2010, with scattered and concentrated clustering zones alternating on the decadal timescale. Furthermore, it is found that the decadal-mean spatial distributions of extreme drought events in summer are correlated out of phase with those of the rainy bands over China in the past 50 years, and a good decadal persistence exists between the autumn and winter extreme droughts, implying a salient feature of consecutive autumn-winter droughts in this 50-yr period. Compared with other regions of China, Southwest China bears the most prominent characteristic of clustering extreme droughts.  相似文献   

19.
In recent years,the global warming and its influences on people and social economy have received increasing attention from international communities.Determining the current trend of global temperature variation has become one of the critical issues in climate change research.Obviously,it is rather important to develop new climate change detection technology in order to identify new characteristics of the global warming.This review introduces the latest advances and past achievements on the climate change...  相似文献   

20.
[Translated by the editorial staff] An analysis of climate trends and return levels for the period 1960–2008, using the ETCCDI-CLIVAR/JCOMM project approach, has been conducted for Chad, where droughts and flooding are recurrent. Using the RClimDex software, we show that almost all rainfall trends are decreasing, as in Central and Northern Africa. Rare extreme rain events (R99p) decrease significantly: 0.85?mm per decade. However, we note a slightly upward trend of 0.5 day per decade, in the number of consecutive dry days (CDD). Temperature indices are all positive except for the frequencies of very hot days (TX90p) and very cold nights (TN10p), which decrease significantly: ?0.39% day per year per decade, as in Central Africa and globally. Sequences of hot or cold days decrease as well, but by about 1% per year per decade. Return periods identified with the generalized extreme value (GEV) distributions show that they are well defined from 1 to 10 years. Extremely rare events from 10 to 50 years are associated with a mean return level of 660?mm of annual precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号