首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wang  Dayang  Wang  Dagang  Mo  Chongxun  Du  Yi 《Natural Hazards》2021,108(2):1585-1608

The risk analysis of reservoir regulation in the flood season is crucial and provides the valuable information for reservoir flood control, safety operation, and decision making, especially under climate change. The purpose of this study is to propose a framework for reasonably estimating the variation of reservoir regulation risk including the dam extreme risk and the overtopping risk during the flood season under climate change. The framework consists of an integrated diagnostic system for detecting the climate abrupt change time, a copula function-based bivariate statistical approach for modeling the dependence between the flood peak and flood volume, a Monte Carlo simulation for generating numerous random flood peak–volume pairs, and a risk calculation model for routing the design flood hydrographs to obtain the frequency curve of the maximum water level reached in front of dam and evaluating the reservoir regulation risk. The methodology was implemented in the Chengbihe reservoir in south China by using the 55-year (1963–2017) hydrometeorological data, including temperature, evaporation, precipitation, and streamflow, in the flood season. Results show that the hydrometeorological series during the flood season changed abruptly in 1992 and the entire data can be divided into two periods (1963–1992 and 1993–2017). The dam extreme risk and overtopping risk during the two periods are assessed, respectively, and a comparison analysis is made based on different flood limit water-level schemes (185.00–188.50 m). It demonstrates that both the dam extreme risk and the dam overtopping risk increase under the influence of climate change. The dam extreme risk increases by 22.91–95.03%, while the climate change-induced increase in the dam overtopping risk is between 38.62 and 123.59%, which indicates that the dam overtopping risk is more sensitive to climate change than the dam extreme risk. The risk evaluations in the study are of great significance in the safety operation and risk management of reservoirs under future climate change.

  相似文献   

2.
An Ms 6.5 earthquake shocked the Ludian County, Yunnan Province, China, on 3 August 2014 and triggered the Hongshiyan landslide dam. The dam, with a height of 83 m and a lake capacity of 260?×?106 m3, threatened more than 10,000 people. A unique feature of this landslide dam was that it formed between a man-made dam and a hydropower plant. An existing drainage tunnel connecting the lake and the hydropower plant became a natural drainage conduit for the landslide dam, which played an important role in the mitigation of the landslide dam risks. This paper reports a quantitative risk assessment for the Hongshiyan landslide dam considering both engineering and non-engineering risk mitigation measures. The risk assessment is divided into three stages according to the implementation of two engineering measures: construction of a diversion channel and excavation of a branch drainage tunnel. The dam breaching hydrographs, flood zones, population at risk, and likely fatalities in each of the three stages are analysed. The optimum evacuation strategy in each stage is also studied based on the principle of minimum total consequence. It is found that the diversion channel decreases the dam breaching peak discharge and the associated risks significantly. The branch drainage tunnel prevent the landslide dam from overtopping failure in non-flooded period; however, the landslide dam may fail by overtopping in a future flood if the inflow rate is larger than the outflow rate through the drainage tunnels, resulting in serious losses of lives and properties. The dam breaching risks in all the three stages could be largely reduced by the optimal evacuation decision, which shows that timely evacuation is vital to save life and properties. The study provides a scientific basis for decision making in landslide dam risk management.  相似文献   

3.
李平  黄跃飞  李兵 《水科学进展》2018,29(5):677-684
为研究梯级水库漫坝连溃的风险,并探索贝叶斯网络在水库连溃风险分析中的可行性,通过构建洪水作用下双库连溃的贝叶斯网络模型,并选取四川省大渡河上两相邻梯级水库进行分析,以推求水库漫(溃)坝概率及评估连溃风险。分析过程表明贝叶斯网络方法能直观、简便地分析多风险源共同作用下的水库群连溃风险问题。结果表明,两水库天然洪水漫坝条件概率的数量级均为10-6,洪水引发单库漫坝风险较小;正常蓄水位以上,上游水库溃坝洪水致下游水库漫坝条件概率超0.8,即上游水库溃坝导致水库连溃的风险很大。  相似文献   

4.
土石坝漫顶溃决往往在其下游产生巨大的洪水灾难,研究坝体溃决及洪水演进是防灾减灾的需要。对土石坝漫顶溃决过程现象、机理及其模拟的研究进展进行了综述。讨论了物理模型试验的尺度设计,总结了不同尺度、不同类型、不同条件溃坝试验的研究成果;按照参数模型、简化物理模型、精细物理模型,分类总结了漫顶溃坝数学模型研究进展;阐述了溃坝洪水演进方面的试验与模拟研究。在此基础上,对该研究领域今后的研究工作提出了若干展望,包括河道边界对溃坝过程及溃坝洪水传播过程的影响、非均质土石坝溃决机理、溃坝过程中挟沙水流冲蚀规律、溃坝下游河床的冲淤调整及泥沙分选、溃坝对水生态环境的冲击影响等。  相似文献   

5.
粘土心墙坝漫顶溃坝过程离心模型试验与数值模拟   总被引:1,自引:0,他引:1  
利用作者研制成功的溃坝离心模型试验系统,对粘土心墙坝漫顶溃决过程进行了试验研究,结果发现粘土心墙坝与均质坝溃决机理与溃口发展规律明显不同,随着漫坝水流对下游坝壳冲蚀程度的增加,粘土心墙发生剪断破坏,溃口洪水流量迅速增大.基于上述试验结果,提出了一个描述粘土心墙坝漫顶溃坝过程的数学模型,并建议了相应的数值计算方法.该模型...  相似文献   

6.
土石坝漫顶溃决及洪水演进研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
土石坝漫顶溃决往往在其下游产生巨大的洪水灾难,研究坝体溃决及洪水演进是防灾减灾的需要。对土石坝漫顶溃决过程现象、机理及其模拟的研究进展进行了综述。讨论了物理模型试验的尺度设计,总结了不同尺度、不同类型、不同条件溃坝试验的研究成果;按照参数模型、简化物理模型、精细物理模型,分类总结了漫顶溃坝数学模型研究进展;阐述了溃坝洪水演进方面的试验与模拟研究。在此基础上,对该研究领域今后的研究工作提出了若干展望,包括河道边界对溃坝过程及溃坝洪水传播过程的影响、非均质土石坝溃决机理、溃坝过程中挟沙水流冲蚀规律、溃坝下游河床的冲淤调整及泥沙分选、溃坝对水生态环境的冲击影响等。  相似文献   

7.
Landslide dam failure can trigger catastrophic flooding in the downstream. However, field observation of such flooding is rarely available, while laboratory experimental studies are sparse. The mechanism of landslide dam failure and the flood has so far remained insufficiently understood. Here, we present an experimental investigation of landslide dam failure and the flood. A total of 28 runs of experiments are carried out in a flume of 80 m × 1.2 m × 0.8 m, with differing inflow discharge, dam composition, dam geometry, and initial breach dimension. An array of twelve automatic water-level probes is deployed to measure the stage hydrographs along the flume, and the video recording of the dam failure processes facilitates an estimation of the widening of initial breach. Under the present experimental conditions with dams composed of homogeneous materials, landslide dam failure is primarily caused by erosion of overtopping flow, and lateral mass collapse is also considerable during the cause of breach widening. Cohesive clay may act to mitigate the seepage through the dam and thus its subsidence and appreciably modulate the dam failure process and the flood. However, the impacts of clay may be readily overwhelmed by a large inflow discharge and initial breach. Gravels in the dam may appreciably depress the rate of the dam failure process and thus modify the flood. The present work provides new experimental data set for testing mathematical models of the flood flow due to landslide dam failure.  相似文献   

8.
This study presents a risk analysis model to evaluate the failure risk for the flood-control structures in the Keelung River due to the uncertainties in the hydrological and hydraulic analysis, including hydrologic, hydraulic, and geomorphologic uncertainty factors. This study defines failure risk as the overtopping probability of the maximum water level exceeding the levee crown, and the proposed risk analysis model integrates with the advanced first-order and second-moment (AFOSM) method to calculate the overtopping probability of levee system. The proposed model is used to evaluate the effects of the freeboard and flood-diversion channel on the flood-control ability of the levees in the Keelung River, which were designed based on the 3-day, 200-year design rainfall event. The numerical experiments indicate that the hydrologic uncertainty factors have more effect on the estimated maximum water level than hydraulic and geomorphologic uncertainty factors. In addition, the freeboard and the flood-diversion channel can effectively reduce the overtopping probability so as to significantly enhance the flood-control capacity of the levee system in the Keelung River. Eventually, the proposed risk analysis successfully quantifies the overtopping risk of the levee system under a scenario, the increase in the average 200-year rainfall amount due to climate change, and the results could be useful when planning to upgrade the existing levee system.  相似文献   

9.
Landslides may obstruct river flow and result in landslide dams; they occur in many regions of the world. The formation and disappearance of natural lakes involve a complex earth–surface process. According to the lessons learned from many historical cases, landslide dams usually break down rapidly soon after the formation of the lake. Regarding hazard mitigation, prompt evaluation of the stability of the landslide dam is crucial. Based on a Japanese dataset, this study utilized the logistic regression method and the jack-knife technique to identify the important geomorphic variables, including peak flow (or catchment area), dam height, width and length in sequence, affecting the stability of landslide dams. The resulting high overall prediction power demonstrates the robustness of the proposed logistic regression models. Accordingly, the failure probability of a landslide dam can also be evaluated based on this approach. Ten landslide dams (formed after the 1999 Chi-Chi Earthquake, the 2008 Wenchuan Earthquake and 2009 Typhoon Morakot) with complete dam geometry records were adopted as examples of evaluating the failure probability. The stable Tsao-Ling landslide dam, which was induced by the Chi-Chi earthquake, has a failure probability of 27.68% using a model incorporating the catchment area and dam geometry. On the contrary, the Tangjiashan landslide dam, which was artificially breached soon after its formation during the Wenchuan earthquake, has a failure probability as high as 99.54%. Typhoon Morakot induced the Siaolin landslide dam, which was breached within one hour after its formation and has a failure probability of 71.09%. Notably, the failure probability of the earthquake induced cases is reduced if the catchment area in the prediction model is replaced by the peak flow of the dammed stream for these cases. In contrast, the predicted failure probability of the heavy rainfall-induced case increases if the high flow rate of the dammed stream is incorporated into the prediction model. Consequently, it is suggested that the prediction model using the peak flow as causative factor should be used to evaluate the stability of a landslide dam if the peak flow is available. Together with an estimation of the impact of an outburst flood from a landslide-dammed lake, the failure probability of the landslide dam predicted by the proposed logistic regression model could be useful for evaluating the related risk.  相似文献   

10.
Numerical simulation of landslide dam breaching due to overtopping   总被引:1,自引:0,他引:1  
The breach of landslide dam often causes significant disaster in the inundated area; the prediction of breach hydrograph is in high demand for the dam breach risk evaluation. In this study, according to the model tests and Tangjiashan landslide dam breach case, the surface erosion accompanied by intermittent mass failure is known as the key breaching mechanism for landslide dam due to overtopping failure. The downstream slope angle would gradually decrease during the dam-breaching process, whereas a planar wedge failure occurs when the breach slopes at the dam crest and downstream breach channel fail. Based on the breach mechanism, a numerical model for landslide dam breach due to overtopping is developed to simulate the coupling process of water and soil. The model focuses on the breach morphology evolution during the breaching for the sake of the improvement of breach hydrograph prediction. Furthermore, the model can handle one- and two-sided breach, as well as incomplete and base erosion at the vertical direction. The case study of Tangjiashan landslide dam-breaching feedback analysis testifies the rationality of the present model with the relative errors less than 10% for peak discharge, final breach widths, and time to peak. The sensitivity analysis indicates that the final breach depth and soil erodibility affect the breach flow prediction of the landslide dam significantly, whereas the one- or two-sided breach mode is less sensitive.  相似文献   

11.
The Usoi dam was created in the winter of 1911 after an enormous seismogenic rock slide completely blocked the valley of the Bartang River in the Pamir Mountains of southeastern Tajikistan. At present the dam impounds 17 million cubic meters of water in Lake Sarez. Flood volume and discharge estimates were made for several landslide generated floods that could overtop the dam. For landslide volumes of 200, 500, and 1,000 million cubic meters, estimated overtopping flood volumes were 2, 22, and 87 million cubic meters of water, respectively. Estimated peak discharge at the dam for these three flood scenarios were 57,000, 490,000, and 1,580,000 m3/s, based on triangular hydrographs of 70-, 90-, and 110-s durations, respectively. Flood-routing simulations were made for the three landslide-induced overtopping floods over a 530-km reach of the Bartang and Panj Rivers below the Usoi dam. A one-dimensional flow model using a Riemann numerical solution technique was selected for the analysis. For the 87 million cubic meter volume overtopping flood scenario, the peak flows were approximately 1, 100, 800, and 550 m3/s at locations 50, 100, and 150 km downstream of the dam respectively.  相似文献   

12.
The downstream effects of flood risk mitigation measures and the necessity to develop flood risk management strategies that are effective on a basin scale call for a flood risk assessment methodology that can be applied at the scale of a large river. We present an example of a rapid flood risk assessment methodology for the Elbe River. A 1D hydraulic routing model is extended by including the effect of planned (regulated and unregulated) and unintended retention (dike breaches) on the peak water levels. We further add an inundation model for dike breaches due to dike overtopping and a macroscale economic approach to assess the flood damage. The flexible approach to model the effects of measures by means of volume storage functions allows for rapid assessment of combinations of retention measures of various proposed dimensions and at multiple locations. The method allows for the comparison of the flood risk at the scale of the main river trajectory, which has not been possible for the Elbe River to date. The model is applied to a series of exemplary flood risk mitigation measures to show the downstream effects and the additive effects of combinations of measures on the flood risk along the river. We further demonstrate the increase in the downstream flood risk resulting from unilateral decisions to increase the dike height at upstream locations. As expected, the results underline the potential effectiveness of increased retention along the river. The effects of controlled retention at the most upstream possible location and largest possible extent generate the most pronounced reduction of average annual damage. As expected, the effect of uncontrolled retention with dike relocations is significantly lower.  相似文献   

13.
Risk, including flood risk, can be defined as ??the combination of the probability of an event and its consequences??. Assessing and managing the risk from flooding should explicitly include the estimation of impacts to people. Extensive research is currently ongoing looking at both quantitative and qualitative approaches for assessing flood impacts on people. Although there is some literature available on such approaches, examples of methodological and routinely applications of these methodologies as part of flood risk assessments are rare. This paper focuses on quantitative approaches for estimating impacts of flooding to people, notably on methods for assessing fatality numbers associated with flooding. Three methods for assessing losses of life are discussed in detail. The methods discussed here constitute the forefront of research in Canada, UK and The Netherlands. These methods provide an assessment of the physical consequences of flooding on people and can be used to introduce the impacts to people as quantitative metric for the assessment of flood risk. In this paper, the three methodologies are discussed and applied in a UK case study reproducing the 1953 East Coast flood event. This study aims to provide a comprehensive comparison on both the reliability and the applicability of the methods. We analyse possible added values on using of these methods in systematic analyses, aiming to provide guidelines for applying these methods for flood fatality risk assessment.  相似文献   

14.
目前在尾矿坝稳定性和溃坝模拟分析方面,对溃口位置及水砂的流动状态难以做出准确判断。将尾矿坝稳定性和溃坝模拟有机结合,采用FLAC3D计算正常水位、洪水位、漫顶水位三种工况下尾矿坝稳定性,并利用Rhino与Fluent建立尾矿库及下游精细地形,开展尾矿库溃坝水砂在不同时刻及不同地形下的流动状态研究分析。结果表明:(1)浸润线的埋深随尾矿库水位的升高而变小,由正常水位升高至洪水位时浸润线埋深下降5~8 m,漫顶水位时坝顶浸润线沿坡面向下运移约8 m;(2)库水位对剪切带及尾矿坝稳定性有显著影响,从正常水位到洪水位时,剪切带纵向上不断向坝体内部延伸,横向上不断向坝脚延伸,剪切应变率增大为5.78×10?5,尾矿坝稳定系数由1.80下降至1.32;(3)达到坝顶时剪切带急剧缩短,而剪切应变率进一步增大为3.32×10?4,尾矿坝稳定系数由1.32下降到1.18。溃坝水砂的流动状态受地形影响明显,在山谷中表现为范围减小、流速增大的汇聚流动,在平坦农田处表现为范围增大、流速减小的发散流动特点。  相似文献   

15.
滑坡堰塞坝作为结构松散的堆积物,随着上游水位的不断上涨,其稳定性不断降低,并存在突然溃坝的风险。以唐家山滑坡堰塞坝为研究对象,基于相似原理,开展符合坝体颗粒级配的室内水槽物理模型实验,模拟了不同坝后蓄水量、不同水位和不同颗粒物质组成条件下坝体渗流、漫顶破坏的整个过程。监测结果显示:堰塞坝漫顶溃坝主要分为渗流、漫顶、冲刷和溃决4个过程;坝体堆积颗粒级配越差,坝体允许渗流坡降越小;相同材料配比的坝体,上游水位相同时,坝体底部水平位移最大,且漫顶溃坝时溃口尺寸与蓄水量正相关。该研究结果揭示了堰塞坝漫顶破坏规律,可为堰塞坝溃坝防治提供理论参考。  相似文献   

16.
Inundation caused by landslide dams may occur in the upstream and downstream of the dams. A proper flooding hazard assessment is required for reaction planning and decision-making to mitigate possible flooding hazards caused by landslide dams. Both quick and detailed procedures can be used to evaluate inundation hazards, depending on the available time and information. This paper presents a systematic approach for the assessment of inundation hazards and risks caused by landslide dam formation and breaches. The approach includes the evaluation of dam-breach probability, assessment of upstream inundation hazard, assessment of downstream inundation hazard, and the classification of flooding risk. The proposed assessment of upstream inundation estimates the potential region of inundation and predicts the overtopping time. The risk level of downstream flooding is evaluated using a joint consideration of the breach probability of a landslide dam and the level of flooding hazard, which is classified using a flooding hazard index that indicates the risk of potential inundation. This paper proposes both quick and detailed procedures for the assessments of inundation in both the upstream and downstream of a landslide dam. An example of a landslide dam case study in southern Taiwan was used to demonstrate the applicability of the systematic approach.  相似文献   

17.
尾矿坝垮塌机制与溃决模式试验研究   总被引:1,自引:0,他引:1  
基于云南拉拉铜矿小打鹅尾矿库工程设计资料,采用现场排放尾矿砂为试验材料,进行了尾矿堆积坝在洪水情况下发生垮塌破坏的模型试验。通过水流控制系统模拟尾矿坝遭遇洪水情况,采用侧面示踪点、水位测压管、应力传感器以及数码摄像机等设备获得了尾矿坝溃决过程中坝坡的位移矢量演化、浸润线与应力的变化特性以及坝体破坏发展过程,揭示了洪水作用下尾矿坝的垮塌机制和溃决模式。试验结果发现:尾矿堆积坝的浸润线变化存在滞后性;在洪水入库致库区最高设计洪水水位过程中,靠近坝坡中部处水平方向的总应力增量较垂向总应力增量大,增大的水平应力是坝体产生破坏的重要因素之一;洪水导致坝坡尾矿砂所受的渗透力、上浮力、重力以及孔隙水压力增大,削弱了坝体材料的黏聚力,并加大了自身荷载,降低了坝体的稳定性;尾矿坝溃决模式一般为逆流渐进型,破坏先是从坡脚处发生,继而向上游发展,呈现牵引式发展,破坏的滑动面由多个弧形滑移面构成。研究成果加深了对尾矿堆积坝垮塌机制和溃决模式的认识,并在洪水灾害的预防和控制方面作了一些新的探索  相似文献   

18.
Flood and sediment disasters caused by glacial lake outbursts have occurred frequently in recent years in the Himalayas of Nepal. Glacial lake outburst floods (GLOFs) can cause catastrophic flooding in downstream areas with serious damage to lives and property. It is thus important to investigate outburst floods from potentially dangerous glacial lakes. In this study, the characteristics of potential outburst floods from the Tsho Rolpa glacial lake due to two types of moraine dam failure caused by seepage flow or water overtopping were analyzed with various scenarios by using integrated modeling system of three numerical models: (1) the flow and bed-surface erosion model, (2) the seepage model and (3) the slope stability model. Flood inundation areas were also identified by using the numerical model of the flow and moraine dam failure and geographical information system tools. Possible threats and damages due to the potential GLOF events from the lake were also analyzed based on numerical results, flood inundation maps and field investigations.  相似文献   

19.
An extreme rainfall event on August 9, 2009, which was close to setting a world record for 48-h accumulated rainfall, induced the Xiaolin deep-seated landslide, which was located in southwestern Taiwan and had volume of 27.6?×?106?m3, and caused the formation of a landslide dam. The landslide dam burst in a very short time, and little information remained afterward. We reconstructed the process of formation and failure of the Xiaolin landslide dam and also inferred the area of the impoundment and topographic changes. A 5?×?5-m digital elevation model, the recorded water stage of the Qishan River, and data from field investigation were used for analysis. The spectral magnitude of the seismic signals induced by the Xiaolin landslide and flooding due to failure of the landslide dam were analyzed to estimate the timing of the dam breach and the peak discharge of the subsequent flood. The Xiaolin landslide dam failure resulted from overtopping. We verified the longevity of the Xiaolin landslide dam at about 2 h relying on seismic signals and water level records. In addition, the inundated area, volume of the impoundment behind the Xiaolin landslide dam, and peak discharge of the flood were estimated at 92.3 ha, 19.5?×?106?m3, and 17?×?103?m3/s, respectively. The mean velocity of the flood-recession wave front due to the dam blockage was estimated at 28 km/h, and the peak flooding velocity after failure of the dam was estimated at 23 km/h. The Xiaolin landslide provides an invaluable opportunity for understanding the mechanism of deep-seated landslides and flooding processes following a landslide dam failure.  相似文献   

20.
A Probabilistic Modelling System for Assessing Flood Risks   总被引:4,自引:2,他引:4  
In order to be economically viable, flood disaster mitigation should be based on a comprehensive assessment of the flood risk. This requires the estimation of the flood hazard (i.e. runoff and associated probability) and the consequences of flooding (i.e. property damage, damage to persons, etc.). Within the “German Research Network Natural Disasters” project, the working group on “Flood Risk Analysis” investigated the complete flood disaster chain from the triggering event down to its various consequences. The working group developed complex, spatially distributed models representing the relevant meteorological, hydrological, hydraulic, geo-technical, and socio-economic processes. In order to assess flood risk these complex deterministic models were complemented by a simple probabilistic model. The latter model consists of modules each representing one process of the flood disaster chain. Each module is a simple parameterisation of the corresponding more complex model. This ensures that the two approaches (simple probabilistic and complex deterministic) are compatible at all steps of the flood disaster chain. The simple stochastic approach allows a large number of simulation runs in a Monte Carlo framework thus providing the basis for a probabilistic risk assessment. Using the proposed model, the flood risk including an estimation of the flood damage was quantified for an example area at the river Rhine. Additionally, the important influence of upstream levee breaches on the flood risk at the lower reaches was assessed. The proposed model concept is useful for the integrated assessment of flood risks in flood prone areas, for cost-benefit assessment and risk-based design of flood protection measures and as a decision support tool for flood management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号