首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 330 毫秒
1.
利用1979-2011年ECMWF月平均再分析资料、逐月青藏高原地面加热场强度距平指数(B-H)以及中国地面国际交换站逐日24 h降水量,研究了高原热力作用与高原夏季风之间的联系,结果表明:B-H与传统高原季风指数(TPMI)之间存在较好的同时相关关系,B-H与动态高原季风指数(DPMI)之间存在较好的超前1~3个月的相关关系,这种关系在干季尤为明显。前期2月青藏高原热力作用偏强将会导致高原夏季风爆发偏早,爆发初期强度偏强。  相似文献   

2.
本文是系列文章的第二篇,首先分析了1989年亚洲夏季风爆发时期青藏高原及邻近地区地表感热通量和大气温度场季节变化的基本特征,着重讨论了春季高原地表感热加热和亚洲季风爆发的联系,然后分析了1980~1989年10a南海季风爆发的气候学特征。上述工作表明,在春末初夏过渡季节,高原上空大气温度变化出现阶段性的跃升,并同亚洲夏季风阶段性的爆发有很好的对应关系。高原地表感热通量的持续增大导致了对流层高层局地反气旋式扰动环流的出现,使南亚反气旋北进的过程明显受到高原局地热力环流的调制,而热带东风急流入口区所产生的强烈的高层辐散,提供了有利于热带季风对流在南海地区首先爆发的动力学条件。此外,从5月份至6月中下旬,青藏高原、伊朗—阿富汗上空强大暖中心相继建立的结果,直接导致了热带地区上空大气南北温度梯度的反向依次在南海—孟加拉湾东部和阿拉伯海—印度次大陆由东向西相继建立,从而决定了亚洲季风建立的过程在不同地区爆发的时间不同。  相似文献   

3.
青藏高原积雪对亚洲夏季风影响的诊断及数值研究   总被引:60,自引:15,他引:60       下载免费PDF全文
张顺利  陶诗言 《大气科学》2001,25(3):372-390
通过对青藏高原多、少雪年的合成分析及数值试验,研究了青藏高原积雪对亚洲 夏季风和我国东部气候异常的影响。结果表明:青藏高原积雪造成亚洲大气环流较大的年际变化。高原积雪改变了高原陆面春、夏季的热状况,使亚洲夏季风爆发推迟20天左右。高原积雪通过以下物理过程影响亚洲夏季风和我国东部气候:高原积雪多(少)→高原春、夏季的感热弱(强)→感热加热引起的上升运动弱(强),高原强(弱)环境风场→不利(有利)于高原感热通量向上输送→高原上空对流层加热弱(强)→高原对流层温度低(高)→高原南侧温度对比弱(强)→造成亚洲夏季风弱(强)→我国长江流域易涝(旱)。  相似文献   

4.
张盈盈  李忠贤  刘伯奇 《大气科学》2015,39(6):1059-1072
本文基于日本气象厅(JMA)的JRA-25再分析资料,分析了春季青藏高原表面感热加热年际变化的时空特征,及其对印度夏季风爆发过程的影响。EOF分析结果表明,春季高原感热加热的年际变化在高原中西部最为明显,这主要与局地地-气温差的年际变率有关。统计分析表明,当春季高原中西部表面感热偏强(弱)时,印度夏季风爆发偏早(晚),且高原中西部表面感热与ENSO事件无显著相关。春季高原中西部感热能够通过改变印度季风区对流层高层和低层的经向热力结构来影响印度夏季风的爆发时间。当春季高原中西部感热偏强时,造成的上升气流在高原以西的印度季风区北部下沉,通过绝热增暖引起局地对流层中上部的异常暖中心,令印度季风区对流层中上部平均温度经向梯度由冬至夏的季节性反转提早。同时,印度季风区北部的下沉运动能够抑制当地降水,令陆面温度升高,并通过非绝热过程造成对流层低层的异常暖中心,进一步增强了印度季风区的海陆热力对比。在印度季风区以北地区对流层高、低层异常增暖的共同作用下,印度夏季风提前爆发。  相似文献   

5.
青藏高原冬春积雪影响南海季风爆发的数值研究   总被引:1,自引:1,他引:1  
采用NCAR CAM3.0大气环流模式,研究了冬春季青藏高原积雪异常对南海夏季风爆发的可能影响机制.通过比较多雪年与少雪年试验中的热力场、环流场季节演变的差异得出,多雪年青藏高原感热加热偏弱、高原纬度的中上层大气温度偏低,导致大尺度经向温度梯度反转时间偏晚;同时,青藏高原感热加热偏弱将不利于Hadley环流的季节转换,使得中南半岛上空的下沉异常气流维持时间较长、副高在孟加拉湾断裂的时间偏晚、中南半岛对流爆发偏晚、中南半岛地表温度下降时间偏晚,从而造成中南半岛与南海局地纬向温度梯度反转时间也偏晚.在上述大尺度经向温度梯度以及中南半岛与南海局地纬向温度梯度的共同作用下,多雪年南海季风爆发偏晚.  相似文献   

6.
包庆  Bin WANG  刘屹岷 《大气科学》2008,32(5):997-1005
20世纪50年代以来,随着全球海表面温度年代际变化和全球变暖现象的出现,东亚夏季风降水和环流场也出现相应的年代际变化。是什么原因引起这个长期的变化趋势?研究表明青藏高原增暖可能是导致东亚夏季风年代际变化的重要因子之一。为了能够更好地理解青藏高原地表状况对下游东亚季风的影响,作者使用德国马普气象研究所大气环流模式(ECHAM)进行一系列数值试验。在两组敏感性试验中,通过改变高原上的地表反照率从而达到改变地表温度的目的。数值试验结果表明:青藏高原增暖有助于增强对流层上层的南亚高压、高原北侧西风急流和高原南侧东风急流以及印度低空西南季风;与此同时,东亚地区低层西南气流水汽输送增强。高原增暖后降水场的变化表现为:印度西北部季风降水增加,长江中下游以及朝鲜半岛梅雨降水增多;在太平洋副热带高压控制下的西北太平洋地区和孟加拉湾东北部,季风降水减少。对数值模拟结果的初步诊断分析表明:在感热加热和对流引起的潜热加热相互作用下,南亚高压强度加强,东亚夏季低层西南季风增大、梅雨锋降水增强,高原东部对流层上层的副热带气旋性环流增加,以及对流层低层的西太平洋副热带高压增强。另外,在青藏高原增暖的背景下,孟加拉湾地区季风降水减弱。本项研究有助于更好地理解东亚夏季风年代际变化特征和未来气候变化趋势。  相似文献   

7.
青藏高原热源异常对1999年东亚夏季风异常活动的影响   总被引:13,自引:4,他引:9  
孙颖  丁一汇 《大气科学》2002,26(6):817-828
以1999年青藏高原的热源异常为出发点,讨论了其对东亚夏季风异常活动的影响,并从陆气相互作用的角度分析了该年热源异常的原因.结果表明,1999年青藏高原大气热源建立的时间明显偏晚,春夏季热源强度异常偏弱.这使得向高原的低层流入气流明显偏弱,垂直上升运动减弱,向高原的辐合减少,季风经圈环流变弱,高原南侧、东南侧的西南夏季风减弱,引起了夏季风的爆发偏晚及在中国东部北进的偏弱.而进一步对热源异常成因的分析表明,陆面因子的异常变化所引起的感热加热偏弱是热源偏弱的主要因子.高原积雪的减幅在春夏季变小,地表温度的增加变慢,地表温度偏低,引起了感热加热在春夏季的偏弱,进而导致了热源异常.  相似文献   

8.
春季青藏高原加热异常对亚洲热带环流和季风爆发的影响   总被引:5,自引:0,他引:5  
使用NCEP/NCAR再分析等资料,从年际变化的角度,选取季风爆发前青藏高原感热加热异常强/弱年进行合成分析,结果表明:季风爆发前高原加热异常偏强,使得高层环流趋向于季节变化的方向;中、低层孟加拉湾等地区有气旋式环流、上升运动及降水增强,孟加拉湾季风爆发偏早。为进一步证实合成分析的相关结论,设计了对春季高原感热加热异常的敏感性数值试验,结果表明:高原感热加热异常对环流的影响结果与资料诊断分析基本一致,高原感热加热加强(减弱)导致孟加拉湾季风爆发偏早(偏晚)。  相似文献   

9.
青藏高原对亚洲夏季风爆发位置及强度的影响   总被引:14,自引:7,他引:14       下载免费PDF全文
通过数值模拟,研究了青藏高原位于不同经度位置时,亚洲夏季风的爆发和演变情况,从动力和热力学角度分析了青藏高原大地形对亚洲夏季风爆发位置的影响。结果表明,青藏高原的“热力滑轮”作用引起:高原东南面热带陆地上空的偏南气流加强,降水增加,凝结潜热加强;高原西南面热带陆地上空出现偏北气流,降水减弱,陆面的感热加热加强。青藏高原对于亚洲夏季风的爆发地点有锚定的作用,在热带海陆分布的背景下,使亚洲夏季风首先在高原东南面的海洋东岸—陆地西岸爆发,并使亚洲季风降水重新分布。  相似文献   

10.
青藏高原冬春季积雪影响南海季风爆发的机制   总被引:4,自引:0,他引:4  
利用1958-1998年NCEP/NCAR再分析资料、1975-1998年OLR资料和1973-1998年青藏高原月平均积雪日数站点资料,分析了高原冬春季积雪影响南海季风爆发的可能机制。结果表明:多雪年,高原感热加热偏弱,高原地区以及东侧的中上层大气温度偏低,大尺度经向温度梯度逆转时间偏晚;同时高原地区Hadley环流季节转换时间偏晚,中南半岛上空维持下沉异常气流,导致孟加拉湾副高断裂偏晚,中南半岛地区对流爆发偏晚,中南半岛地表温度下降时间偏晚,中南半岛与南海局地纬向温度梯度逆转时间偏晚;上述大尺度经向温度梯度和中南半岛与南海局地纬向温度梯度的共同作用使得南海季风爆发偏晚。  相似文献   

11.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SMMR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvions in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

12.
南亚高压上下高原时间及其与高原季风建立早晚的关系   总被引:5,自引:3,他引:2  
本文利用1948—2013年NCEP/NCAR逐日再分析资料,定义了南亚高压动态特征指数,讨论了南亚高压上下高原的时间以及与高原季风建立早晚的关系。研究表明,南亚高压北界位置在4月初开始北移,5月迅速北抬,最北可达到55°N,9月开始南撤,西伸脊点在5—10月移动较稳定,5—7月向西移动到青藏高原上空,8—10月向东移动撤离高原,11月—次年4月东西摆动剧烈。南亚高压初上高原大致为6月第3候(33候),而撤离约为10月第4候(58候)。南亚高压移上高原的时间较高原夏季风建立晚73 d左右。南亚高压撤离高原时间较高原冬季风建立约早5 d。高原夏季风的建立和南亚高压初上高原是青藏高原热力作用在不同阶段的结果,反映在了高原的高低层上。  相似文献   

13.
The effect of anomalous snow cover over the Tibetan Plateau upon the South Asian summer monsoon is investigated by numerical simulations using the NCAR regional climate model (RegCM2) into which gravity wave drag has been introduced. The simulations adopt relatively realistic snow mass forcings based on Scanning Multi-channel Microwave Radiometer (SNINIR) pentad snow depth data. The physical mechanism and spatial structure of the sensitivity of the South Asian early summer monsoon to snow cover anomaly over the Tibetan Plateau are revealed. The main results are summarized as follows. The heavier than normal snow cover over the Plateau can obviously reduce the shortwave radiation absorbed by surface through the albedo effect, which is compensated by weaker upward sensible heat flux associated with colder surface temperature, whereas the effects of snow melting and evaporation are relatively smaller.The anomalies of surface heat fluxes can last until June and become unobvious in July. The decrease of the Plateau surface temperature caused by heavier snow cover reaches its maximum value from late April to early May. The atmospheric cooling in the mid-upper troposphere over the Plateau and its surrounding areas is most obvious in May and can keep a fairly strong intensity in June. In contrast, there is warming to the south of the Plateau in the mid-lower troposphere from April to June with a maximum value in May.The heavier snow cover over the Plateau can reduce the intensity of the South Asian summer monsoon and rainfall to some extent, but this influence is only obvious in early summer and almost disappears in later stages.  相似文献   

14.
高原地表过程中冻融过程在东亚夏季风中的作用   总被引:3,自引:0,他引:3  
用茶卡站冻结日数与季风指数的相关简单说明高原冻融过程与东亚夏季风之间存在联系。作为个例,对沱沱河区域1998,1999年从冬到夏过渡季节的冻融过程与感、潜热变化及东亚夏季风建立之间的关系进行了初步分析。结果表明:从冬到夏的过渡季节中,青藏高原的冻融过程与高原加热存在着联系,土壤季节性冻融使得高原地表向大气的感、潜热输送随季节发生变化,青藏高原的加热作用对东亚夏季风的爆发时间和强度有重要影响。因此,高原地表过程中土壤冻融过程在东亚夏季风的爆发过程中扮演着重要角色。  相似文献   

15.
青藏高原大气科学试验研究进展   总被引:24,自引:4,他引:24       下载免费PDF全文
该文对半个世纪以来, 我国气象工作者在青藏高原研究, 特别是1979年和1998年两次大规模青藏高原大气科学试验科学成果进行了全面回顾, 给出近年来青藏高原研究许多有重要价值的研究成果, 可概要地归纳为以下几个方面:两次青藏高原大气科学试验在青藏高原边界层研究、对流特征研究方面取得新进展, 发现许多新的观测事实。证明青藏高原也可能是低频振荡源地。试验发现青藏高原摩擦层风的Ekman螺线及热力混合层特征, 发现青藏高原上对流边界层高度可达2200 m, 湍流边界层高度比平原地区明显偏高; 研究给出了青藏高原近地层与边界层动力、热力结构及其湍流、对流云特征可构成青藏高原地区边界层的综合物理图像。追踪分析研究发现, 连续成串从青藏高原中部或东部发生、发展的对流云团族呈显著东移的特征, 认为长江暴雨洪水的初始对流云系统可追溯到青藏高原; 研究发现, 在适当的云天条件下, 在青藏高原上可观测到极大的太阳总辐射、有效辐射和地表净辐射。青藏高原地面反照率的变化产生热源、热汇的区域影响效应, 这种源汇带来季节性和区域性的变化将进一步影响到大气中长波波形的季节尺度变化, 研究还强调指出青藏高原雪盖的年度变化的反馈作用表现对行星尺度环流特征的影响, 在热带洋面也产生对SST异常的相互作用与影响; 青藏高原与亚洲季风系统影响研究取得显著进展; 研究发现, 青藏高原“感热气泵” (SHAP) 的有效工作导致了青藏高原地区由冬到夏大气环流的突变及南亚高压的突然北跳, 并维持着亚洲季风期; 研究揭示出青藏高原周边“大三角”区域是影响我国长江中下游暴雨的水汽输送关键区, 揭示在青藏高原地区及其东部水汽输送的“转运站”特征。水汽流向东的“转运”效应对长江梅雨期洪涝形成甚为重要; 青藏高原大气物质输送及其臭氧异常特征研究取得进展, 研究发现夏季在青藏高原上大气臭氧总量有一明显的低值中心存在, 并且发现拉萨的臭氧递减趋势比我国东部同纬度地区大, 而拉萨位于青藏高原臭氧低值中心的区域。  相似文献   

16.
首先对青藏高原地表热通量再分析资料与自动气象站(AWS)实测资料进行对比, 结果表明: 相对于美国国家环境预报中心和国家大气中心20世纪90年代研制的NCEP/NCAR(Kalnay 等1996)和NCEP/DOE (Kanamitsu 等2002) 再分析资料, ECMWF(Uppala 等2004)资料在高原地区的地表热通量具有较好的代表性。进一步利用奇异值分解(SVD)方法分析了ECMWF资料反映的高原地面热源与我国夏季降水的关系, 发现前期青藏高原主体的冬季地面热源与长江中下游地区夏季降水量呈负相关, 与华北和东南沿海地区的夏季降水量呈正相关。而长江中下游地区夏季降水量还与春季高原南部的地面热源存在负相关、与高原北部的地面热源存在正相关。高原冬、春季地面热源场的变化是影响我国夏季降水的重要因子。  相似文献   

17.
青藏高原作为世界第三极,其热力强迫作用不仅对亚洲季风系统的发展和维持十分重要,也会对大气环流场产生深远影响。利用欧洲中期天气预报中心(ECMWF)的ERA-Interim中1979-2016年3-10月青藏高原及其周边地区的地表热通量月平均再分析资料,通过分析得出以下结论:3-5月青藏高原主体由感热占据,感热强度快速上升且呈西高东低的分布态势,潜热强度较小但随时间而增强。季风爆发后的6-8月,青藏高原感热强度减弱,潜热强度迅速增强且呈东高西低的分布特征。季风消退后的9-10月,感热与潜热强度相当,但感热呈现出西高东低的分布特征。过去38年,青藏高原地表感热总体呈现微弱下降趋势,潜热呈较弱上升趋势。青藏高原西部地区感热呈微弱下降趋势,潜热呈上升趋势。东部感热呈较为明显的下降趋势且近年来变化趋势增强,东部潜热通量则呈现较为明显的上升趋势,分析结论与近期全球变暖条件下青藏高原气候变暖变湿这一变化状况一致,通过对青藏高原地表热通量的变化分析为下一步运用第三次青藏高原大气科学试验所获资料分析青藏高原上空大气热源的变化以及地表加热场如何影响大气环流奠定基础。   相似文献   

18.
李博  杨柳  唐世浩 《气象学报》2018,76(6):983-995
利用2010-2014年静止气象卫星FY-2E的红外TBB资料,分析了夏季青藏高原(高原)及周围地区对流的气候特征。分析表明,5月,高原最主要的对流发生在东部边缘。6月,随着亚洲夏季风爆发,最强的对流(强对流)发生在高原的东南侧。7-8月,强盛的西南风给高原中东部部分地区带来丰沛的水汽,高原的东南部形成一条对流(强对流)活跃带。在高原西部,对流发生频率大于6%的区域出现在西部南麓的时间约为37候,并于7月底-8月初到达最北。在高原中部,对流(强对流)开始活跃的时间为6月上旬(中旬),维持整个盛夏,并分别经历3次向北推进,最北约到达34°N。在高原东部,5月底开始对流都处于相对活跃期,有3次(两次)对流(强对流)的北进。高原对流(强对流)发生频率存在两个季节内变率大值区,分别位于高原中南部雅鲁藏布江中段和高原东南部西藏、青海、四川三省交界处。对流发生频率的第一模态主要是高原东南部和南部的印度季风区对流的反向模态,第二模态则体现了高原西部和印度大陆80°E以西地区与南亚大陆80°E以东地区的对流发生频率的三极型变化。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号