首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Landward retreat (marine transgression) is a common response of coastal systems to rising relative sea level. However, given sufficient sediment supply, the coast may advance seaward. The latter response of gravel barriers has been recorded in parts of southeastern and northwestern Canada, where seaward‐rising sets of beach ridges are observed in areas of Holocene RSL rise. Cape Charles Yorke, northern Baffin Island, is a 5 km long gravel foreland characterized by seaward‐rising beach‐ridge crest elevations. The prograded morphology of the Cape Charles Yorke foreland is a prime example of coastal response to a combination of rising RSL and abundant sediment supply, an unusual and little‐documented pattern in the Canadian Arctic. The main gravel supply to Cape Charles Yorke is likely from eroding bedrock and raised marine deposits southwest of the foreland. Although not the dominant sediment source, the Cape Charles Yorke delta contributed to the formation of the foreland by sheltering it from easterly storm waves and providing an anchor point for the prograding ridges. The truncation of relict ridges by the modern shoreline suggests a recent regime shift from continuous deposition to predominant erosion. The cause and timing of this shift are unknown but could result from a recent dwindling in sediment supply, increased accommodation space, increased wave energy, and/or an accelerated rise of relative sea level.  相似文献   

2.
姜锋  李志忠  靳建辉  邓涛  王贤立  夏菁 《地理研究》2015,34(8):1559-1568
运用探地雷达对河北昌黎海岸带横向沙脊的沉积构造进行探测,通过对探地雷达探测影像进行处理与解译,获得海岸沙丘约20 m深度范围内的海岸横向沙脊沉积构造图像,包括沉积层理的倾向、倾角与平面展布信息等。研究发现,昌黎海岸横向沙脊北段的沉积构造主要由高角度交错层理和波状交错层理组成,两者之间界面应为古海滩沿岸沙坝的顶面。界面以上发育稳定的向SWW倾斜的高角度交错层理,倾角约为30°~32°,为向岸风作用形成的前积层理;横向沙脊的丘顶可见槽状交错层理,可能是沙丘脊顶部沉积作用对风向季节性变化的响应。界面以下波状交错层理发育,为波浪作用形成的海滩沉积构造。结合前人对探测区地层调查以及全新世晚期以来海岸线变迁研究成果综合分析,认为海岸横向沙脊是大约2000 aBP以来,以澙湖海滩沿岸沙坝为基础经长期风力吹扬作用持续增长而发育的风成沙丘。  相似文献   

3.
The Otranto–Leuca coastal tract is marked by the presence of numerous sea caves placed close to present sea level. They are located generally at the back of a shore platform covered by a sequence of breccia deposits, marine sediments and speleothems. At Grotta di Masseria dell'Orte, marine cemented sands rest on a narrow shore platform at about 6.2 m above mean sea level and are covered by speleothems older than 185 ka. At Grotta del Diavolo, which is mostly filled by breccia deposits, three beach levels have been detected at about 3.0, 3.5 and 5.9 m above msl. They are either covered by or overlie speleothems that yield an U/Th age of 340, 78 ka and between 170.3 and 146.5, respectively. Geomorphological evidence and radiometric ages indicate that the area after a period of uplift has been tectonically stable since the last part of the Middle Pleistocene so that marine landforms close to the present shoreline underwent a polycyclic evolution. The sedimentary fills of sea caves formed during Middle-Late Pleistocene glacial stages, when arid or semiarid conditions promoted the removal of regolith and the development of thick breccia deposits. During Marine Isotope Stages (MIS) 9.3, 5.5 and 5.1, cave sediments were partially eroded whereas beach layers and related speleothems developed. These are, in fact, the only marine isotope stages marked by a sea level position which in this Mediterranean region was either close to, or slightly higher than, the present one.  相似文献   

4.
海平面上升与海滩侵蚀   总被引:27,自引:1,他引:27  
世纪性的海平面持续上升,加大了海岸水下斜坡深度,逐渐减小波浪对沉溺古海岸的扰动作用而形成海底的横向供沙减少,却加强激浪对上部海滩的冲刷。逐渐上升的海平面,降低了河流坡降而减少了入海沙量。因此世界海滩普遍出现沙量补给匮乏。海平面上升伴随着厄尔尼诺现象与风暴潮频率的增加,水动力加大。这两者的综合效应,使海滩遭受冲刷,沙坝向陆移动。如按IPCC估计,至2100年海面上升50cm时,中国主要旅游海滨的沙滩将损失现有面积的13%─66%。主要对策是海岸防护与海滩人工喂养。  相似文献   

5.
Holocene coastal evolution in New South Wales has been interpreted essentially as the unfolding of the impact of marine transgression. Sea level on this coast supposedly reached its present height at 6–6.5 ka, and varied < 1 m since then. The early Holocene rise of the sea has been considered the key factor (“forcing function”) in dune migration, coastal sand barrier development, and the evolution of estuaries. Episodic storminess during the late Holocene has been seen as an important, though secondary, factor in beach erosion and dune mobilisation. An alternate interpretation presented here challenges the concept of the marine transgression as the primary “forcing function”. It (a) attributes early Holocene dune mobilisation to climate rather than the rising sea; (b) shows that the sea reached its present level by 7 ka and rose to at least + 2 m until 1.5 ka; (c) links late Holocene dune activity to local disruption of vegetation rather than to regional episodic storminess; (d) demonstrates a fall of 2°C in sea surface temperature after 3 ka that coincides with the onset of barrier erosion; (e) recognises the imprint of at least three tsunamis in the coastal sedimentary record.  相似文献   

6.
Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumula  相似文献   

7.
Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumulation of sands and clay. This research indicates the GPR is a non-intrusive, rapid, and economical method for high-resolution profiling of subsurface sediments in sandy gravelly coast.  相似文献   

8.
Estuarine shore platforms in Whanganui Inlet, South Island, New Zealand   总被引:1,自引:0,他引:1  
D.M. Kennedy  R. Paulik   《Geomorphology》2007,88(3-4):214-225
Whanganui Inlet is a low mesotidal environment where wave energy at the shoreline is limited due to a small fetch, a narrow entrance and tidal flat accretion to intertidal elevations. Wave energy is therefore only an erosive force at high tide and under storm conditions. Despite this low-energy environment extensive shore platforms occur within the inlet. They are sub-horizontal and range in width from 4.1 to 185.2 m with an average of 44.9 m. All the platforms are formed in sandstone of low resistance (mean N-type Schmidt Hammer rebound value of 17 ± 8) and have their seaward edges buried by intertidal sediment flats. The majority of platforms occur at around MHWN level, corresponding to the elevation of those flats. Where wave energy is highest, opposite the inlet's entrance and at those sites with the largest fetch, platforms develop to 0.5–1.0 m below MSL. A higher platform level is also found at MHWS elevations, however it appears to be relict with active erosion of its seaward edge occurring and therefore is most likely related to a higher mid-Holocene sea level. Apart from the location of the lowest platforms little correspondence is found between platform morphology and wave energy. Platform evolution appears to be intrinsically linked to the intertidal sediment flats which determine the degree of surface saturation of the bedrock and, hence, the number of wetting and drying cycles the platforms may undergo. As the seaward edge is buried platform development is primarily through retreat of the landward cliff. This process can, however, be complicated by the migration of intertidal water channels onto the seaward edge of the platforms or relative sea level fall which may rejuvenate landward retreat of the low-tide cliff.  相似文献   

9.
《Geomorphology》2007,83(1-2):29-47
Many coastal dune systems in Western Europe were emplaced during the Little Ice Age (LIA). The formation of such dune fields has generally been ascribed to a combination of low sea level and strong winds during that time period, providing a supply of sand from the exposed shoreface and sufficient wind energy to transport this sand landward. However, little information exists on the processes that controlled sediment supply to the beach and why this onshore supply was initiated at all. In this contribution, we consider the origin and development of older dune fields on a barrier spit complex (Skallingen) located in the northern part of the Danish Wadden Sea. Maps and new data on dune litho- and chrono-stratigraphy, the latter based on OSL-dating, allow a precise estimate of the initiation and termination of dune emplacement. Dune formation at Skallingen started at a relatively late stage of the LIA and it can be temporally correlated with a phase of relative sea level rise in North Western Europe and with a high frequency of storm surges along the Danish west coast. These are the conditions during which nearshore bars currently migrate onshore across the shoreface off Skallingen. The bars eventually merge with the beach and constitute a source of sand for modern foredune accretion. It is probable that the onshore bar migration occurred under similar conditions in the past and the migration was triggered, or enhanced, by the sea level recovery from the mid-LIA low-stand and the associated frequent storm surge activity. Consequently, at Skallingen onshore sand supply was caused by marine, rather than aeolian, agents; this supply provided the basis for subsequent dune formation. Indications are, however, that the sediment supply to the beach/dunes was a factor of 2–3 larger in the past. Dune aggradation eventually ceased around 1900AD because of dyke construction. Hence, the association between dune formation and sea level/surge variation at Skallingen is somewhat contrary to other statements of coastal dune development during the LIA in North Western Europe.  相似文献   

10.
Sedimentary successions and internal structure of the coastal barrier-lagoon system of Boao, eastern Hainan Island were studied through utilizing data from test holes and trenches and ground-penetrating-radar (GPR) profiles. During late Pleistocene, fluvial and delta plains developed over an unevenly eroded bedrock during low sea level stand, followed by the formation of littoral and lagoon facies and defined coastal barrier-lagoon-estuary system during the post-glacial uppermost Pleistocene-lower Holocene eustatic rise of the sea level, and the upper Holocene high stand. GPR results show that Yudaitan, a sandy coastal bar backed by a low-laying land (shoal) just east of the active lagoon, is a continuous, parallel and slightly-wavy reflectors indicating homogeneous sandy or sandy gravel sediments, and inclined reflectors partly caused by progradation and accumulation of beach sand and gravel. Quasi-continuous, hummocky and chaotic reflectors from the shoal of Nangang village correspond to mixed accumulation of sands and clay. This research indicates the GPR is a non-intrusive, rapid, and economical method for high-resolution profiling of subsurface sediments in sandy gravelly coast.  相似文献   

11.
This study documents two different modes of berm development: (1) vertical growth at spring tides or following significant beach cut due to substantial swash overtopping, and (2) horizontal progradation at neap tides through the formation of a proto-berm located lower and further seaward of the principal berm. Concurrent high-frequency measurements of bed elevation and the associated wave runup distribution reveal the details of each of these berm growth modes. In mode 1 sediment is eroded from the inner surf and lower swash zone where swash interactions are prevalent. The net transport of this sediment is landward only, resulting in accretion onto the upper beach face and over the berm crest. The final outcome is a steepening of the beach face gradient, a change in the profile shape towards concave and rapid vertical and horizontal growth of the berm. In mode 2 sediment is eroded from the lower two-thirds of the active swash zone during the rising tide and is transported both landward and seaward. On the falling tide sediment is eroded from the inner surf and transported landward to backfill the zone eroded on the rising tide. The net result is relatively slow steepening of the beach face, a change of the profile shape towards convex, and horizontal progradation through the formation of a neap berm. The primary factor determining which mode of berm growth occurs is the presence or absence of swash overtopping at the time of sediment accumulation on the beach face. This depends on the current phase of the spring-neap tide cycle, the wave runup height (and indirectly offshore wave conditions) and the height of the pre-existing berm. A conceptual model for berm morphodynamics is presented, based on sediment transport shape functions measured during the two modes of berm growth.  相似文献   

12.
Dungeness Foreland is a large sand and gravel barrier located in the eastern English Channel that during the last 5000 years has demonstrated remarkable geomorphological resilience in accommodating changes in relative sea-level, storm magnitude and frequency, variations in sediment supply as well as significant changes in back-barrier sedimentation. In this paper we develop a new palaeogeographic model for this depositional complex using a large dataset of recently acquired litho-, bio- and chrono-stratigraphic data. Our analysis shows how, over the last 2000 years, three large tidal inlets have influenced the pattern of back-barrier inundation and sedimentation, and controlled the stability and evolution of the barrier by determining the location of cross-shore sediment and water exchange, thereby moderating sediment supply and its distribution. The sheer size of the foreland has contributed in part to its resilience, with an abundant supply of sediment always available for ready redistribution. A second reason for the landform's resilience is the repeated ability of the tidal inlets to narrow and then close, effectively healing successive breaches by back-barrier sedimentation and ebb- and/or flood-tidal delta development. Humans emerge as key agents of change, especially through the process of reclamation which from the Saxon period onwards has modified the back-barrier tidal prism and promoted repeated episodes of fine-grained sedimentation and channel/inlet infill and closure. Our palaeogeographic reconstructions show that large barriers such as Dungeness Foreland can survive repeated “catastrophic” breaches, especially where tidal inlets are able to assist the recovery process by raising the elevation of the back-barrier area by intertidal sedimentation. This research leads us to reflect on the concept of “coastal resilience” which, we conclude, means little without a clearly defined spatial and temporal framework. At a macro-scale, the structure as a whole entered a phase of recycling and rapid progradation in response to changing sediment budget and coastal dynamics about 2000 years ago. However, at smaller spatial and temporal scales, barrier inlet dynamics have been associated with the initiation, stabilisation and breakdown of individual beaches and complexes of beaches. We therefore envisage multiple scales of “resilience” operating simultaneously across the complex, responding to different forcing agents with particular magnitudes and frequencies.  相似文献   

13.
Four years of bi-monthly topographic surveys have been conducted on a 350 m stretch of the meso- to macro-tidal Truc Vert beach, France. Here we study the dynamics of both the inner bar and the upper part of the beach where a berm can develop in the presence of fair weather conditions. For the inner bar, the occurrences of the different states within the intermediate classification, following that of Wright and Short (Wright, L.D., Short, A.D. 1984. Morphodynamic variability of surf zones and beaches: a synthesis. Marine Geology 56, 93–118), are presented and compared to other sites in both micro- and meso-tidal environments. The results show a similar frequency of occurrence of the Transverse Bar and Rip (TBR) state, while the more dissipative states, Rhythmic Bar and Beach (RBB) and Longshore Bar and Trough (LBT), are less regularly observed despite the high wave energy levels. The LBT and RBB states are also observed in the presence of fair weather conditions and the TBR state can persist during very energetic events. Similar results are also observed with the upper beach dynamics. Very energetic events are not necessarily associated with erosion while and low-energy events are not necessarily accompanied by accretion. The conditions given here indicate, that berm development occurs preferentially when the beach morphology exhibits a TBR or a LTT state. Apart from the control exerted by offshore wave conditions, the beach state and berm development patterns exhibited by Truc Vert beach are also discussed within the framework of possible morphological (morphodynamic) feedback and of the influence of the meso- to macrotidal range which modulates the type, intensity and duration of the wave processes operating on the cross-shore profile.  相似文献   

14.
The characteristics of foredunes created in a municipal management program on a developed barrier island are evaluated to identify how landforms used as protection structures can be natural in appearance and function yet compatible with human values. Shoreline management zones include a naturally evolving, undeveloped segment; a noneroding, developed segment; eroding and noneroding segments of an “improved beach” where dunes have been built by artificial nourishment; and a privately built, artificially nourished dune on the shoreline of an inlet.A disastrous storm in 1962 resulted in an aggressive program for building dunes using sand fences, vegetation plantings, purchase of undeveloped lots, and sediment backpassing to maintain beach widths and dune elevations. The present nourished and shaped foredune in the improved beach is higher, wider, and closer to the berm crest than the natural dune. Restricted inputs of aeolian sand keep the surface flat and poorly vegetated. A stable section of this engineered shore has a wider beach, and sand fences have created a higher foredune with greater topographic diversity. The cross shore zonation of vegetation here is more typical of natural dunes, but the environmental gradient is much narrower. The privately built dune is low, narrow, and located where it could not be created naturally. Foreshore and aeolian sediments in the undeveloped segment and the improved beach are similar in mean grain size (0.16–0.21 mm) and sorting (0.31–0.39φ), but sediment on the surface of the nourished dune is coarser (28.1% gravel) with a more poorly sorted sand fraction (1.30φ) representing lag elements on the deflation surface.Willingness to enhance beaches and dunes for protection has reduced insurance premiums and allowed the municipality to qualify for funds from the Federal Emergency Management Agency (FEMA) to replace lost sediment, thus placing an economic value on dunes. Success of the management program is attributed to: (i) timing property-purchase and dune-building programs to periods immediately after storms (causing residents to accept high dunes that restrict access or views); (ii) instituting a vigorous education program (reminding residents of hazards during nonstorm periods); (iii) maintaining control over local sediment supplies (to keep pace with erosion and create new shoreline environments); (iv) investing private and municipal economic resources in landforms (qualifying them for external funds for replacement); and (v) maintaining, augmenting, or simply tolerating biodiversity and natural processes (retaining a natural heritage).  相似文献   

15.
Two types of depositional sequences can be defined within the sequence stratigraphic framework: the parasequence and the high‐frequency sequence. Both sequences consist of stacked regressive and transgressive deposits. However, a parasequence forms under conditions of overall sea‐level rise, whereas a high‐frequency sequence forms as the sea level oscillates which results in typical forced regressive deposits during sea‐level fall. Both depositional sequences may develop over comparable temporal (10–100 kyr) and spatial (1–20 km wide and 1–40 m thick) scales. Numerical modelling is used to compare the architecture, preservation potential, internal volumes, bounding surfaces, condensed and expanded sections and facies assemblages of parasequences and high‐frequency sequences. Deposits originating from transgression are less pronounced than their regressive counterparts and consist of either preserved backbarrier deposits or shelf deposits. Shoreface deposits are not preserved during transgression. The second half of the paper evaluates in detail the preservation potential of backbarrier deposits and proposes a mechanism that explains the occurrence of both continuous and discontinuous barrier retreat in terms of varying rates of sea‐level rise and sediment supply. The key to this mechanism is the maximum washover capacity, which plays a part in both barrier shoreline retreat and backbarrier‐lagoonal shoreline retreat. If these two shorelines are not balanced, then the retreat of the coastal system as a whole is discontinuous and in time barrier overstep may take place.  相似文献   

16.
Using 28 topographic profiles, air-photo interpretation, and historical shoreline-change data, coastal processes were evaluated along the Chenier Plain to explain the occurrence, distribution, and geomorphic hierarchy of primary landforms, and existing hypotheses regarding Chenier-Plain evolution were reconsidered. The Chenier Plain of SW Louisiana, classified as a low-profile, microtidal, storm-dominated coast, is located west and downdrift of the Mississippi River deltaic plain. This Late-Holocene, marginal-deltaic environment is 200 km long and up to 30 km wide, and is composed primarily of mud deposits capped by marsh interspersed with thin sand- and shell-rich ridges (“cheniers”) that have elevations of up to 4 m.In this study, the term “ridge” is used as a morphologic term for a narrow, linear or curvilinear topographic high that consists of sand and shelly material accumulated by waves and other physical coastal processes. Thus, most ridges in the Chenier Plain represent relict open-Gulf shorelines. On the basis of past movement trends of individual shorelines, ridges may be further classified as transgressive, regressive, or laterally accreted. Geomorphic zones that contain two or more regressive, transgressive, or laterally accreted ridges are termed complexes. Consequently, we further refine the Chenier-Plain definition by Otvos and Price [Otvos, E.G. and Price, W.A., 1979. Problems of chenier genesis and terminology—an overview. Marine Geology, 31: 251–263] and define Chenier Plain as containing at least two or more chenier complexes. Based on these definitions, a geomorphic hierarchy of landforms was refined relative to dominant process for the Louisiana Chenier Plain. The Chenier Plain is defined as a first-order feature (5000 km2) composed of three second-order features (30 to 300 km2): chenier complex, beach-ridge complex, and spit complex. Individual ridges of each complex type were further separated into third-order features: chenier, beach ridge, and spit.To understand the long-term evolution of a coastal depositional system, primary process–response mechanisms and patterns found along the modern Chenier-Plain coast were first identified, especially tidal-inlet processes associated with the Sabine, Calcasieu, and Mermentau Rivers. Tidal prism (Ω) and quantity of littoral transport (Mtotal) are the most important factors controlling inlet stability. Greater discharge and/or tidal prism increase the ability of river and estuarine systems to interrupt longshore sediment transport, maintain and naturally stabilize tidal entrances, and promote updrift deposition. Thus, prior to human modification and stabilization efforts, the Mermentau River entrance would be classified as wave-dominated, Sabine Pass as tide-dominated, and Calcasieu Pass as tide-dominated to occasionally mixed.Hoyt [Hoyt, J.H., 1969. Chenier versus barrier, genetic and stratigraphic distinction. Am. Assoc. Petrol. Geol. Bull., 53: 299–306] presented the first detailed depositional model for chenier genesis and mudflat progradation, which he attributed to changes in Mississippi River flow direction (i.e., delta switching) caused by upstream channel avulsion. However, Hoyt's model oversimplifies Chenier-Plain evolution because it omits ridges created by other means. Thus, the geologic evolution of the Chenier Plain is more complicated than channel avulsions of the Mississippi River, and it involved not only chenier ridges (i.e., transgressive), but also ridges that are genetically tied to regression (beach ridges) and lateral accretion (recurved spits).A six-stage geomorphic process-response model was developed to describe Chenier-Plain evolution primarily as a function of: (i) the balance between sediment supply and energy dissipation associated with Mississippi River channel avulsions, (ii) local sediment reworking and lateral transport, (iii) tidal-entrance dynamics, and (iv) possibly higher-than-present stands of Holocene sea level. Consequently, the geneses of three different ridge types (transgressive, regressive, and laterally accreted) typically occur contemporaneously along the same shoreline at different locations.  相似文献   

17.
Remnants of the Last Interglacial shoreline occur at Middle Lagoon on the far south coast of New South Wales. Relict beach sediments can be traced to a height of at least +4.8 m and are indicative of a former mean sea level of about +3 m. Thermoluminescence (TL) ages of 126 ± 13 ka and 114 ± 15 ka were determined for beach and aeolian facies respectively. Sands in the lower part of an exposure on the adjacent Gillards Beach gave TL ages of 108 ± 13 ka, but sands in the upper part of that exposure gave an age of 19.9 ± 3.5 ka. This chronological evidence of a stratigraphic unconformity in what was initially taken as pedogenic differentiation at Gillards Beach is supported by contrasting electron traps and colour centres in crystal lattices of quartz grains in these two samples. No tectonic displacement is apparent. This site provides the first evidence of the Last Interglacial sea level for 1000 km along the coast between Gippsland and Newcastle.  相似文献   

18.
D T Tudor  A T Williams 《Area》2006,38(2):153-164
Questionnaires were completed by 2306 beach users at 19 Welsh beaches with respect to beach selection parameters. The modal group of respondents was female aged 30–39. Beach choice was primarily determined by clean litter-free sand and seawater, followed by safety. Refreshment facilities and beach awards were deemed minor considerations by the public when choosing a beach to visit. Approximately 58 per cent of respondents were aware of beach award and rating schemes. Of coastal visitors interviewed for this paper, 67 per cent rated a beach as 'important' or 'very important' to their holiday, with just 2 per cent replying that they were unimportant.  相似文献   

19.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

20.
Beach Profiles surveys and gale climate data were utilised to assess medium timescale beach rotation at four beaches located along the shores of a crenulated embayment within Swansea Bay, Southwest Wales. The proposed Tidal Lagoon is located within this Bay. Results identified a 7 year (1998–2005) record of cyclic summer/winter rotation and a 14 year (1999–2013) record of annual rotation within the subaerial zone on all four assessed beaches. In the absence of headlands to trap sediment it is asserted that the driving force for beach rotation is the presence of Swansea Dockland/Tawe dredged channel complex, Port Talbot Harbour and the Neath dredged channel which form surrogate headlands essentially creating four separate beach systems through restricting sediment by-pass. Seasonal averaged wind and wave variables showed differing correlation with volume changes and cross-correlation results showed that volume variation lagged behind forcing variables by up to six months (i.e. the resolution of the data). This was confirmed by the annually averaged results which showed only subtle correlation. Here volume change in most cases lagged forcing variables by less than one year. Based on correlations, wind direction variability follows closely with volume changes but wind speed, wave period and height are generally opposite. Initial results suggest that the proposed Swansea Bay Tidal Lagoon, located between sediment cells and surrogate headlands, would have little negative effect on subaerial coastal processes. These datasets will be used as a benchmark for monitoring prior to, during and post construction, with results being used to update and inform subsequent strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号