首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Non-Darcy mixed convective flow of water due to external pressure gradient and buoyancy opposed forces are considered in a vertical channel filled with porous medium, which can be either isotropic or anisotropic. The linear theory of stability analysis has been used to numerically investigate the dependence of the transition behavior of the fully developed basic flow on the permeability of the medium. Numerical experiments indicate that mainly two main instability modes appear: Rayleigh–Taylor (R–T) and buoyant instability. For Darcy numbers (Da) ?10−9, R–T instability dominates within the entire Reynolds number (Re) range considered here. It was also found that for the same Re, the fully developed base flow is highly unstable (stable) for porous media with high (low) permeability. Further, it was seen that the disturbance isotherm cells migrate from the channel walls toward the centerline when permeability is reduced. Reducing the permeability by one order of magnitude (corresponding to a decrease of Darcy number from 10−6 to 10−7) increases base flow stability approximately 20-fold. For higher Reynolds numbers, buoyant, mixed and shear instability of the basic flow were found when Da was increased from 10−7 to 10−3. However, for cases in which permeability and porosity behaved as suggested by Carman–Kozeny relation (CKR), buoyant stability was the only mode of instability. Critical values of the Rayleigh (Ra) and Darcy (Da) numbers in the R–T mode of instability were related to each other by the hyperbolic function RaDa = −2.465.  相似文献   

2.
The case is presented that the efficiency of variable viscosity convection in the Earth's mantle to remove heat may depend only very weakly on the internal viscosity or temperature. An extensive numerical study of the heat transport by 2-D steady state convection with free boundaries and temperature dependent viscosity was carried out. The range of Rayleigh numbers (Ra) is 104?107 and the viscosity contrast goes up to 250000. Although an absolute or relative maximum of the Nusselt number (Nu) is obtained at long wavelength in a certain parameter range, at sufficiently high Rayleigh number optimal heat transport is achieved by an aspect ratio close to or below one. The results for convection in a square box are presented in several ways. With the viscosity ratio fixed and the Rayleigh number defined with the viscosity at the mean of top and bottom temperature the increase of Nu with Ra is characterized by a logarithmic gradient β = ?ln(Nu)/? ln(Ra) in the range of 0.23–0.36, similar to constant viscosity convection. More appropriate for a cooling planetary body is a parameterization where the Rayleigh number is defined with the viscosity at the actual average temperature and the surface viscosity is fixed rather than the viscosity ratio. Now the logarithmic gradient β falls below 0.10 when the viscosity ratio exceeds 250, and the velocity of the surface layer becomes almost independent of Ra. In an end-member model for the Earth's thermal evolution it is assumed that the Nusselt number becomes virtually constant at high Rayleigh number. In the context of whole mantle convection this would imply that the present thermal state is still affected by the initial temperature, that only 25–50% of the present-day heat loss is balanced by radiogenic heat production, and the plate velocities were about the same during most of the Earth's history.  相似文献   

3.
This study proposes the use of several problems of unstable steady state convection with variable fluid density in a porous layer of infinite horizontal extent as two-dimensional (2-D) test cases for density-dependent groundwater flow and solute transport simulators. Unlike existing density-dependent model benchmarks, these problems have well-defined stability criteria that are determined analytically. These analytical stability indicators can be compared with numerical model results to test the ability of a code to accurately simulate buoyancy driven flow and diffusion. The basic analytical solution is for a horizontally infinite fluid-filled porous layer in which fluid density decreases with depth. The proposed test problems include unstable convection in an infinite horizontal box, in a finite horizontal box, and in an infinite inclined box. A dimensionless Rayleigh number incorporating properties of the fluid and the porous media determines the stability of the layer in each case. Testing the ability of numerical codes to match both the critical Rayleigh number at which convection occurs and the wavelength of convection cells is an addition to the benchmark problems currently in use. The proposed test problems are modelled in 2-D using the SUTRA [SUTRA––A model for saturated–unsaturated variable-density ground-water flow with solute or energy transport. US Geological Survey Water-Resources Investigations Report, 02-4231, 2002. 250 p] density-dependent groundwater flow and solute transport code. For the case of an infinite horizontal box, SUTRA results show a distinct change from stable to unstable behaviour around the theoretical critical Rayleigh number of 4π2 and the simulated wavelength of unstable convection agrees with that predicted by the analytical solution. The effects of finite layer aspect ratio and inclination on stability indicators are also tested and numerical results are in excellent agreement with theoretical stability criteria and with numerical results previously reported in traditional fluid mechanics literature.  相似文献   

4.
We are using a three-dimensional convection-driven numerical dynamo model without hyperdiffusivity to study the characteristic structure and time variability of the magnetic field in dependence of the Rayleigh number (Ra) for values up to 40 times supercritical. We also compare a variety of ways to drive the convection and basically find two dynamo regimes. At low Ra, the magnetic field at the surface of the model is dominated by the non-reversing axial dipole component. At high Ra, the dipole part becomes small in comparison to higher multipole components. At transitional values of Ra, the dynamo vacillates between the dipole-dominated and the multipolar regime, which includes excursions and reversals of the dipole axis. We discuss, in particular, one model of chemically driven convection, where for a suitable value of Ra, the mean dipole moment and the temporal evolution of the magnetic field resemble the known properties of the Earth’s field from paleomagnetic data.  相似文献   

5.
Direct atmospheric greenhouse gas emissions can be greatly reduced by CO2 sequestration in deep saline aquifers. One of the most secure and important mechanisms of CO2 trapping over large time scales is solubility trapping. In addition, the CO2 dissolution rate is greatly enhanced if density-driven convective mixing occurs. We present a systematic analysis of the prerequisites for density-driven instability and convective mixing over the broad temperature, pressure, salinity and permeability conditions that are found in geological CO2 storage. The onset of instability (Rayleigh–Darcy number, Ra), the onset time of instability and the steady convective flux are comprehensively calculated using a newly developed analysis tool that accounts for the thermodynamic and salinity dependence on solutally and thermally induced density change, viscosity, molecular and thermal diffusivity. Additionally, the relative influences of field characteristics are analysed through local and global sensitivity analyses. The results help to elucidate the trends of the Ra, onset time of instability and steady convective flux under field conditions. The impacts of storage depth and basin type (geothermal gradient) are also explored and the conditions that favour or hinder enhanced solubility trapping are identified. Contrary to previous studies, we conclude that the geothermal gradient has a non-negligible effect on density-driven instability and convective mixing when considering both direct and indirect thermal effects because cold basin conditions, for instance, render higher Ra compared to warm basin conditions. We also show that the largest Ra is obtained for conditions that correspond to relatively shallow depths, measuring approximately 800 m, indicating that CO2 storage at such depths favours the onset of density-driven instability and reduces onset times. However, shallow depths do not necessarily provide conditions that generate the largest steady convective fluxes; the salinity determines the storage depth at which the largest steady convective fluxes occur. Furthermore, we present a straight-forward and efficient procedure to estimate site-specific solutal Ra that accounts for thermodynamic and salinity dependence.  相似文献   

6.
The magnetohydrodynamic dynamo problem is solved for an electrically conducting spherical fluid shell with spherically symmetric distributions of gravity and heat sources. The dynamics of motions generated by thermal buoyancy are dominated by the effects of rotation of the fluid shell. Dynamos are found for low and intermediate values of the Taylor number, T ? 105, if the scale of the nonaxisymmetric component of the velocity field is sufficiently small. The generation of magnetic fields of quadrupolar symmetry is preferred at Rayleigh numbers close to the critical value Rc for onset of convection. As the Rayleigh number increases, the generation of dipolar magnetic fields becomes preferred.  相似文献   

7.
We investigate instability of convective flows of simple structure (rolls, standing and travelling waves) in a rotating layer with stress-free horizontal boundaries near the onset of convection. We show that the flows are always unstable to perturbations, which are linear combinations of large-scale modes and short-scale modes, whose wave numbers are close to those of the perturbed flows. Depending on asymptotic relations of small parameters α (the difference between the wave number of perturbed flows and the critical wave number for the onset of convection) and ε (ε2 being the overcriticality and the perturbed flow amplitude being O(ε)), either small-angle or Eckhaus instability is prevailing. In the case of small-angle instability for rolls the largest growth rate scales as ε8/5, in agreement with results of Cox and Matthews (Cox, S.M. and Matthews, P.C., Instability of rotating convection. J. Fluid. Mech., 2000, 403, 153–172) obtained for rolls with k = k c . For waves, the largest growth rate is of the order ε4/3. In the case of Eckhaus instability the growth rate is of the order of α2.  相似文献   

8.
Whether in the mantle or in magma chambers, convective flows are characterized by large variations of viscosity. We study the influence of the viscosity structure on the development of convective instabilities in a viscous fluid which is cooled from above. The upper and lower boundaries of the fluid are stress-free. A viscosity dependence with depth of the form ν0 + ν1 exp(?γ.z) is assumed. After the temperature of the top boundary is lowered, velocity and temperature perturbations are followed numerically until convective breakdown occurs. Viscosity contrasts of up to 107 and Rayleigh numbers of up to 108 are studied.For intermediate viscosity contrasts (around 103), convective breakdown is characterized by the almost simultaneous appearance of two modes of instability. One involves the whole fluid layer, has a large horizontal wavelength (several times the layer depth) and exhibits plate-like behaviour. The other mode has a much smaller wavelength and develops below a rigid lid. The “whole layer” mode dominates for small viscosity contrasts but is suppressed by viscous dissipation at large viscosity contrasts.For the “rigid lid” mode, we emphasize that it is the form of the viscosity variation which determines the instability. For steep viscosity profiles, convective flow does not penetrate deeply in the viscous region and only weak convection develops. We propose a simple method to define the rigid lid thickness. We are thus able to compute the true depth extent and the effective driving temperature difference of convective flow. Because viscosity contrasts in the convecting region do not exceed 100, simple scaling arguments are sufficient to describe the instability. The critical wavelength is proportional to the thickness of the thermal boundary layer below the rigid lid. Convection occurs when a Rayleigh number defined locally exceeds a critical value of 160–200. Finally, we show that a local Rayleigh number can be computed at any depth in the fluid and that convection develops below depth zr (the rigid lid thickness) such that this number is maximum.The simple similarity laws are applied to the upper mantle beneath oceans and yield estimates of 5 × 1015?5 × 1016 m2 s?1 for viscosity in the thermal boundary layer below the plate.  相似文献   

9.
Geothermal fields and hydrothermal mineral deposits are manifestations of the interaction between heat transfer and fluid flow in the Earth’s crust. Understanding the factors that drive fluid flow is essential for managing geothermal energy production and for understanding the genesis of hydrothermal mineral systems. We provide an overview of fluid flow drivers with a focus on flow driven by heat and hydraulic head. We show how numerical simulations can be used to compare the effect of different flow drivers on hydrothermal mineralisation. We explore the concepts of laminar flow in porous media (Darcy’s law) and the non-dimensional Rayleigh number (Ra) for free thermal convection in the context of fluid flow in hydrothermal systems in three dimensions. We compare models of free thermal convection to hydraulic head driven flow in relation to hydrothermal copper mineralisation at Mount Isa, Australia. Free thermal convection occurs if the permeability of the fault system results in Ra above the critical threshold, whereas a vertical head gradient results in an upward flow field.  相似文献   

10.
ABSTRACT

The present study aims to link the dynamics of geophysical fluid flows with their vortical structures in physical space and to study the transition of these structures due to the control parameters. The simulations are carried in a rectangular box filled with liquid gallium for three different cases, namely, Rayleigh–Bénard convection (RBC), magnetoconvection (MC) and rotating magnetoconvection (RMC). The physical setup and material properties are similar to those considered by Aurnou and Olson in their experimental work. The simulated results are validated with theoretical results of Chandrasekhar and experimental results of Aurnou and Olson. The results are also topologically verified with the help of Euler number given by Ma and Wang. For RBC, the onset is obtained at Ra greater than 1708 and at this Ra, the symmetric rolls are orientated in/along a horizontal axis. As the value of Ra increases further, the width of the horizontal rolls starts to amplify. It is observed that these two-dimensional rolls are nothing but the cross-sections of three-dimensional (3D) cylindrical rolls with wave structures. When the vertically imposed magnetic field is added to RBC, the onset of convection is delayed due to the effect of Lorentz force on the thermal buoyancy force. The presence of 3D rectangular structures is highlighted and analysed. When the magnetically influenced rectangular box rotates about vertical axis at low rotation rates in magnetoconvection model, the onset of convection gets further delayed by magnetic field, which is in general agreement with the theoretical predictions. The critical Ra increases linearly with magnetic field intensity. Coherent thermal oscillations are detected near the onset of convection, at moderate rotation rates.  相似文献   

11.
Abstract

An investigation is made of steady thermal convection of a Boussinesq fluid confined in a vertically-mounted rotating cylinder. The top and bottom endwall disks are thermal conductors at temperatures Tt and Tb with δT = Tt ? Tb >0. The vertical sidewall has a finite thermal conductance. A Newtonian heat flux condition is adopted at the sidewall. The Rayleigh number of the fluid system is large to render a boundary layer-type flow. Finite-difference numerical solutions to the full Navier-Stokes equations are obtained. The vertical motions within the buoyancy layer along the sidewall induce weak meridional flows in the interior. Because of the Coriolis acceleration, the meridional flows give rise to azimuthal flows relative to the rotating container. Strong vertical gradients of azimuthal flows exist in the regions near the endwalls. As the stratification effect increases, concentration of flow gradients in thin endwall boundary layers becomes more pronounced. The azimuthal flow field exhibits considerable horizontal gradients. The temperature field develops horizontal variations superposed on the dominant vertical distribution. As either the sidewall thermal conductance or the stratification effect decreases, the temperature distribution tends to the profile varying linearly with height. Comparisons of the sizes of the dynamic effects demonstrate that, in the bulk of flow field, the vertical shear of azimuthal velocity is supported by the horizontal temperature gradient, resulting in a thermal-wind relation.  相似文献   

12.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

13.
Upscaling pore-scale processes into macroscopic quantities such as hydrodynamic dispersion is still not a straightforward matter for porous media with complex pore space geometries. Recently it has become possible to obtain very realistic 3D geometries for the pore system of real rocks using either numerical reconstruction or micro-CT measurements. In this work, we present a finite element–finite volume simulation method for modeling single-phase fluid flow and solute transport in experimentally obtained 3D pore geometries. Algebraic multigrid techniques and parallelization allow us to solve the Stokes and advection–diffusion equations on large meshes with several millions of elements. We apply this method in a proof-of-concept study of a digitized Fontainebleau sandstone sample. We use the calculated velocity to simulate pore-scale solute transport and diffusion. From this, we are able to calculate the a priori emergent macroscopic hydrodynamic dispersion coefficient of the porous medium for a given molecular diffusion Dm of the solute species. By performing this calculation at a range of flow rates, we can correctly predict all of the observed flow regimes from diffusion dominated to convection dominated.  相似文献   

14.
板块运动是地幔对流的主要证据之一.同时,作为地球动力系统中一个相对独立部分,板块自身的存在和运动对地幔内部物质的流动形态有巨大影响.地幔内部的流动由两部分组成:一是由内部非绝热温度差异造成的自由对流解;另一部分是由在地表运动的板块所激发.作为系列工作的第一部分,本文研究球腔中的自由热对流问题.得到了对地幔对流研究有实际意义的下边界为自由、上边界为刚性情况下的临界瑞利数值,不同的瑞利数时球腔内流场和温度场的分布形态等.  相似文献   

15.
Large eddy simulations (LES) of two-dimensional turbulent convection within the anelastic approximation are presented for Rayleigh number Ra?=?109, Prandtl number Pr?=?1 with free-slip boundary conditions. Various subgrid-scale (SGS) models are investigated such as a similarity model, a dynamic similarity model, a dynamic eddy-viscosity model, a hyperdiffusion model and a hybrid model (dynamic similarity hyperdiffusion model). To study the effects of density stratification on the models, we have also carried out simulations for a Boussinesq flow. The SGS models are compared to direct numerical simulation (DNS) data on the basis of kinetic energy and entropy variance spectra, mean entropy profiles, r.m.s. entropy profiles and r.m.s. kinetic energy density profiles. The results show that for the Boussinesq flow, all the SGS models agree fairly well with the high resolution DNS data. However, for the strongly density-stratified flow, only the hyperdiffusion and the hybrid model show good performance.  相似文献   

16.
The D″ layer is a dense and chemically distinct layer at the base of the convecting mantle. Numerical modeling of the entrainment of this layer by mantle convection requires the solution of the advective transport equation without introducing numerical diffusion across sharp material boundaries. We use our improved second moment numerical method to solve the equation. The method conserves the amount of material and the first and second moments of material distribution in each control volume. We first consider two examples of isothermal Rayleigh–Taylor instability to illustrate the performance of our method by comparing our results with those of a number of field, tracer and marker chain methods. We show that the performance of our method in minimizing the numerical diffusion is better than the field methods and comparable to the tracer and marker chain methods. We then study the instability of the dense D″ layer and its interaction with the overlying mantle. A range of density contrast between the D″ layer and the mantle, layer thickness, and the Rayleigh number, Ra, is examined. We show that for higher values of these parameters, the amount of entrainment decreases and the layer remains stable over longer periods of time. For very thick D″ layers and high Ra values, internal convection can take place within the layer.  相似文献   

17.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell heated from below and within have been carried out with a nonlinear, three-dimensional, time-dependent pseudospectral code. The investigated phenomena include the sequence of transitions to chaos and the differential mean zonal rotation. At the fixed Taylor number T a =106 and Prandtl number Pr=1 and with increasing Rayleigh number R, convection undergoes a series of bifurcations from onset of steadily propagating motions SP at R=R c = 13050, to a periodic state P, and thence to a quasi-periodic state QP and a non-periodic or chaotic state NP. Examples of SP, P, QP, and NP solutions are obtained at R = 1.3R c , R = 1.7 R c , R = 2R c , and R = 5 R c , respectively. In the SP state, convection rolls propagate at a constant longitudinal phase velocity that is slower than that obtained from the linear calculation at the onset of instability. The P state, characterized by a single frequency and its harmonics, has a two-layer cellular structure in radius. Convection rolls near the upper and lower surfaces of the spherical shell both propagate in a prograde sense with respect to the rotation of the reference frame. The outer convection rolls propagate faster than those near the inner shell. The physical mechanism responsible for the time-periodic oscillations is the differential shear of the convection cells due to the mean zonal flow. Meridional transport of zonal momentum by the convection cells in turn supports the mean zonal differential rotation. In the QP state, the longitudinal wave number m of the convection pattern oscillates among m = 3,4,5, and 6; the convection pattern near the outer shell has larger m than that near the inner shell. Radial motions are very weak in the polar regions. The convection pattern also shifts in m for the NP state at R = 5R c , whose power spectrum is characterized by broadened peaks and broadband background noise. The convection pattern near the outer shell propagates prograde, while the pattern near the inner shell propagates retrograde with respect to the basic rotation. Convection cells exist in polar regions. There is a large variation in the vigor of individual convection cells. An example of a more vigorously convecting chaotic state is obtained at R = 50R c . At this Rayleigh number some of the convection rolls have axes perpendicular to the axis of the basic rotation, indicating a partial relaxation of the rotational constraint. There are strong convective motions in the polar regions. The longitudinally averaged mean zonal flow has an equatorial superrotation and a high latitude subrotation for all cases except R = 50R c , at this highest Rayleigh number, the mean zonal flow pattern is completely reversed, opposite to the solar differential rotation pattern.  相似文献   

18.
Abstract

Finite-difference calculations have been carried out to determine the structure of finite-amplitude thermal convection within a self-gravitating fluid sphere with uniform heat release. For a fixed-surface boundary condition single-cell convection breaks up into double-cell convection at a Rayleigh number of 3 × 104, at a Rayleigh number of 5 × 105 four-cell convection is observed. With a free-surface boundary condition only single cell convection is obtained up to a Rayleigh number of 5 × 106.  相似文献   

19.
Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y 2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core.  相似文献   

20.
Abstract

In a rapidly rotating, electrically conducting fluid we investigate the thermal stability of the fluid in the presence of an imposed toroidal magnetic field and an imposed toroidal differential rotation. We choose a magnetic field profile that is stable. The familiar role of differential rotation is a stabilising one. We wish to examine the less well known destabilising effect that it can have. In a plane layer model (for which we are restricted to Roberts number q = 0) with differential rotation, U = sΩ(z)1 ?, no choice of Ω(z) led to a destabilising effect. However, in a cylindrical geometry (for which our model permits all values of q) we found that differential rotations U = sΩ(s)1 ? which include a substantial proportion of negative gradient (dΩ/ds ≤ 0) give a destabilising effect which is largest when the magnetic Reynolds number R m = O(10); the critical Rayleigh number, Ra c, is about 7% smaller at minimum than at Rm = 0 for q = 106. We also find that as q is reduced, the destabilising effect is diminished and at q = 10?6, which may be more appropriate to the Earth's core, the effect causes a dip in the critical Rayleigh number of only about 0.001%. This suggests that we see no dip in the plane layer results because of the q = 0 condition. In the above results, the Elsasser number A = 1 but the effect of differential rotation is also dependent on A. Earlier work has shown a smooth transition from thermal to differential rotation driven instability at high A [A = O(100)]. We find, at intermediate A [A = O(10)], a dip in the Rac vs. Rm curve similar to the A = 1 case. However, it has Rac ≤ 0 at its minimum and unlike the results for high A, larger values of Rm result in a restabilisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号