首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   5篇
地质学   11篇
天文学   8篇
自然地理   2篇
  2022年   2篇
  2019年   1篇
  2018年   2篇
  2017年   3篇
  2014年   3篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2006年   2篇
  2004年   1篇
  2003年   2篇
  1998年   1篇
  1995年   1篇
  1993年   1篇
  1989年   1篇
  1978年   2篇
  1977年   1篇
  1974年   1篇
  1970年   1篇
排序方式: 共有30条查询结果,搜索用时 15 毫秒
1.
The study of the expansion of the solar wind out of a system of coronal holes is continued. To this end, we consider the numerical integration of partial differential equations for problems with icosahedral symmetry, in general. First, employing Weyl theory, orbifold coordinates are introduced. Second, the icosahedral coordinates are discussed in detail. Third, following an analysis of the properties of these coordinates and the derivation of a few expressions useful for grid construction, various alternatives for the distribution of lattice points required for numerical integration are considered. A comparison of these numerical grids motivates the choice of a specific grid optimized for the numerical integration carried out in the accompanying paper by Kalish et al.(2002). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
2.
Most structures are subjected to more cyclic loads during their life time than static loads. These cyclic action could be a result of either natural or man-made activities and may lead to soil failure. In order to understand the response of the foundation and its interaction with these complex cyclic loadings, various researchers have over the years developed different constitutive models. Although a lot of research is being carried out on these relatively new models, little or no details exist in literature about the model-based identification of the cyclic constitutive parameters which to a large extent govern the quality of the model output. This could be attributed to the difficulties and complexities of the inverse modeling of such complex phenomena. A variety of optimisation strategies are available for the solution of the sum of least-squares problems as usually done in the field of model calibration. However, for the back analysis (calibration) of the soil response to oscillatory load functions, this article gives insight into the model calibration challenges and also puts forward a method for the inverse modeling of cyclic loaded foundation response such that high-quality solutions are obtained with minimum computational effort.  相似文献   
3.
Time delay problem and its compensation in active control of civil engineering structures were studied. It has been shown by stability analysis of a SDOF system with time delayed feedback that the maximum allowable time delay depends not only on the natural period of the structure but also on feedback gains. We have demonstrated by numerical simulation that the performance of the control system degrades significantly when the time delay is close to this value and it even becomes unstable when time delay is greater than or equal to this value. The maximum allowable time delay decreases with decrease in natural period of the structure as well as with increase in active damping. The paper presents a technique for compensation by modelling time delay as transportation lag. This method ensures the stability of the controlled system as well as the desired response reduction.  相似文献   
4.
A detailed accuracy analysis is presented for moments, up to order four, of both velocity (horizontal u and vertical w) and scalar (temperature and humidity q) fluctuations, as well as of the products uw, w and wq, in the atmospheric surface layer. The high-order moments and integral time scales required for this analysis are evaluated from data obtained at a height of about 5 m above the ocean surface under stability conditions corresponding to Z/L \- –0.05. Measured moments and probability density functions of some of the individual fluctuations show departures from Gaussianity, but these are sufficiently small to enable good estimates to be obtained using Gaussian instead of measured moments. For the products, the assumption of joint Gaussianity for individual fluctuations provides a reasonable, though somewhat conservative, estimate for the integration times required. The concept of Reynolds number similarity implies that differences in integration time requirements for flows at different Reynolds numbers arise exclusively from differences in integral time scales. A first approximation to the integral time scales relevant to atmospheric flows is presented.  相似文献   
5.
Dynamics of heavy metals in the surface sediments of Mahanadi river estuarine system were studied for three different seasons. This study demonstrates that the relative abundance of these metals follows in the order of Fe > Mn > Zn > Pb > Cr > Ni ≥ Co > Cu > Cd. The spatial pattern of heavy metals supported by enrichment ratio data, suggests their anthropogenic sources possibly from various industrial wastes and municipal wastes as well as agricultural runoff. The metal concentrations in estuarine sediments are relatively higher than in the river due to adsorption/accumulation of metals on sediments during saline mixing, while there is a decreasing trend of heavy metal concentrations towards the marine side. The temporal variations for metals, such as Fe, Mn, Zn, Ni and Pb exhibit higher values during monsoon season, which are related to agricultural runoff. Higher elemental concentrations are observed during pre-monsoon season for these above metals (except Ni) at the polluted stations and for metals, such as Cr, Co and Cd at all sites, which demonstrate the intensity of anthropogenic contribution. R-mode factor analysis reveals that “Fe–Mn oxy hydroxide”, “organic matter”, “CaCO3”, and “textural variables” factors are the major controlling geochemical factors for the enrichment of heavy metals in river estuarine sediment and their seasonal variations, though their intensities were different for different seasons. The relationships among the stations are highlighted by cluster analysis, represented in dendrograms to categorize different contributing sites for the enrichment of heavy metals in the river estuarine system.  相似文献   
6.
Soil–structure frictional resistance is required while designing foundation systems and retaining walls. Although much more attention has been paid in recent years regarding soil–structure interaction for dynamic loading, highly conservative values of the static frictional resistance between soil and structure are used in design. Not much emphasis has been given lately to evaluate static frictional resistance between soil and structure. In this study, a well graded sand, as per USCS classification system, was prepared in the laboratory at different relative densities and moisture contents i.e. dry and saturated, and frictional resistances of those soils were measured. Those soil samples were also sheared against wood, concrete, and steel blocks and corresponding soil–structure frictional resistances were measured. Moreover, similar experiments were performed for saturated and loose poorly graded sand (SP), silty sand (SM) and poorly graded sand with silt (SP–SM). The study result shows that the difference between frictional resistance of soil and skin friction depends on the type of soil, relative density and the moisture content. Interestingly, shear envelopes for soil–soil and soil–structure shearing resistance exhibited curvature. The traditionally adopted soil–structure frictional resistance values adopted by various geotechnical manuals were found to be highly conservative.  相似文献   
7.
Natural Hazards - The Hindu Kush Himalayan region is extremely susceptible to periodic monsoon floods. Early warning systems with the ability to predict floods in advance can benefit tens of...  相似文献   
8.
It is shown that the amplification of the magnetic energy that results in steady force-free dynamos automatically implies a depletion of the overall mechanical and thermal energies of the fluid in the region. The precise gain and loss of the field and the fluid, respectively, are demonstrated. This offers a natural and direct explanation of the relative coolness of sunspots with respect to their surroundings and also predicts lower velocities over sunspot regions resulting from the smoothing of turbulent fluctuations of velocities by viscous stresses in the magnetic region. The missing energy of the fluid in the region is shown to reside in the increased magnetic energy of the sunspots.It is also suggested that sunspots emerge from the photosphere in a manner analogous to the growth of salt fingers in thermohaline convection. Finally, it is pointed out that the growth and flaring process of solar magnetic fields can also be understood on the basis of the formalism presented.  相似文献   
9.
The M w 7.8 2015 Gorkha earthquake and its aftershocks significantly impacted the lives and economy of Nepal. The consequences of landslides included fatalities, property losses, blockades of river flow, and damage to infrastructural systems. Co-seismic landslides triggered by this earthquake were significantly widespread and pose a major geodisaster. There were tens of thousands of landslides triggered by the earthquake, majority of which were distributed in between the epicenter of the main shock and the M w 7.3 aftershock. Although 14,670 landslides triggered by this earthquake were identified, only approximately 23% of them were of moderate to large scale with areas greater than 100 m2. Of the moderate- to large-scale landslides identified, just over 90% were triggered by the main shock and smaller aftershocks prior to the major (M w 7.3) aftershock, while nearly 10% were triggered by the ground shaking induced by the major aftershock. Moreover, the number of landslides triggered by the 2015 Gorkha earthquake, specifically by the main shock, was slightly more than the expected number of landslides for the recorded maximum peak ground acceleration (PGA) in comparison to the co-seismic landslides triggered by 26 earthquakes. Over 90% of those moderate- to large-scale landslides were concentrated within the estimated fault rupture surface. Majority of these moderate- to large-scale landslides were disrupted failures with over 96% of which were classified as earth falls. However, the majority of small-scale landslides were rock or boulder falls. The most number of moderate- to large-scale landslides were triggered in the slate, shale, siltstone, phyllite, and schist of the Lesser Himalayan formation followed by an equally significant number in both schist, gneiss, etc. of the Higher Himalayan formation and the phyllite, metasandstone, schist, etc. of the Lesser Himalayan formation. The sizes (i.e., areas) of the landslides were lognormally distributed, with a mode area of 322.0 m2. Slope inclinations of the moderate- to large-scale landslides followed a normal distribution with a mean slope inclination of 32.6° and standard deviation of 13.5°. There exists a strong correlation between the number of landslides and the peak ground acceleration within the study area, specific for different geological formations.  相似文献   
10.
Nepal lies on the southern slope of Himalaya in Asia. In a width ranging between 150 and 250 km, the altitude varies greatly from about 100 m at its southern border to a maximum of 8848 min the northern part. Like the variation in altitude, climatic condition varies quite a lot. Long-term monthly mean erythemal UV daily dose values for Nepal are evaluated using Total Ozone Mapping Spectrometer (TOMS) estimation from the time of its overpass between 1996 and 2003. The results are presented as summer and winter maps of mean UV levels in each satellite grid. The mean winter erythemal UV daily dose ranges between 2.1 and 3.6 kJ m-2 whereas summer values are found to lie between 4.6 and 9.7 kJ m-2. The altitude variation increases the UV levels by about 0.2 kJ km-1 in winter months, and 0.9 kJ km-1 in summer. A multiyear monthly average erythemal daily dose in most of the areas shows that the summer value is about three times higher than that in winter. Although year-to-year variation is not pronounced in high- and mid-elevation regions, UV levels seemed to decrease from 1997 to 2002 in the southern part of the country in the low elevation region by about 5.35%. Due to the combined effects of the altitude, low ozone concentration in the troposphere, and thin air, surface UV radiation at higher altitudes is found to be higher than in the surrounding regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号